Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
A versatile synthetic approach to cadmium chalcogenide nanoparticles in the mesopores of SBA-15 silica as a host matrix was developed. The use of cadmium organochalcogenolates of the type Cd(XPh)2·TMEDA (X = S, Se, Te) allowed the preparation of nanoparticles of all three cadmium chalcogenides following the same experimental protocol. Particles of CdS, CdSe, and CdTe with a particle size of 7 nm were prepared from this class of single-source precursors. The incorporation of the precursor molecules into the pores was achieved by melt infiltration at a temperature of 140 °C. Subsequent pyrolysis of the precursors in the mesopores yielded the semiconductor particles. Owing to the high polarity of the silanol-covered pore walls, which lower the surface energy of the particles to a large extent, the dimorphic cadmium chalcogenides are obtained in their thermodynamically favored modifications; e.g., CdS particles crystallize in the wurtzite type, CdTe particles are obtained in the zinc blende structure, and CdSe (where no unambiguous preference exists) crystallizes as a “mixture” of both structures with a rather random stacking sequence.
https://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval
Graph and download economic data for ICE BofA US Corporate Index Option-Adjusted Spread (BAMLC0A0CM) from 1996-12-31 to 2025-08-28 about option-adjusted spread, corporate, and USA.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
A versatile synthetic approach to cadmium chalcogenide nanoparticles in the mesopores of SBA-15 silica as a host matrix was developed. The use of cadmium organochalcogenolates of the type Cd(XPh)2·TMEDA (X = S, Se, Te) allowed the preparation of nanoparticles of all three cadmium chalcogenides following the same experimental protocol. Particles of CdS, CdSe, and CdTe with a particle size of 7 nm were prepared from this class of single-source precursors. The incorporation of the precursor molecules into the pores was achieved by melt infiltration at a temperature of 140 °C. Subsequent pyrolysis of the precursors in the mesopores yielded the semiconductor particles. Owing to the high polarity of the silanol-covered pore walls, which lower the surface energy of the particles to a large extent, the dimorphic cadmium chalcogenides are obtained in their thermodynamically favored modifications; e.g., CdS particles crystallize in the wurtzite type, CdTe particles are obtained in the zinc blende structure, and CdSe (where no unambiguous preference exists) crystallizes as a “mixture” of both structures with a rather random stacking sequence.