Facebook
TwitterThis database provides reference data on controlled cell image experiments. The database contains cell images of A-10 rat smooth muscle and NIH-3T3 mouse fibroblasts. A novel rule and root based method is used to create experimental metadata as described in About Us page.
Facebook
Twitterhttps://www.proteinatlas.org/about/licencehttps://www.proteinatlas.org/about/licence
Subcellular methods
The subcellular resource of the Human Protein Atlas provides high-resolution insights into the expression and spatiotemporal distribution of proteins encoded by 13603 genes (67% of the human protein-coding genes), as well as predictions for an additional 3459 secreted- or membrane proteins, covering a total of 17062 genes (85% of the human protein-coding genes). For each gene, the subcellular distribution of the protein has been investigated by immunofluorescence (ICC-IF) and confocal microscopy in up to three different standard cell lines, selected from a panel of 42 cell lines used in the subcellular resource. For some genes, the protein has also been stained in up to three ciliated cell lines, induced pluripotent stem cells (iPSCs) and/or in human sperm cells. Upon image analysis, the subcellular localization of the protein has been classified into one or more of 49 different organelles and subcellular structures. In addition, the resource includes an annotation of genes that display single-cell variation in protein expression levels and/or subcellular distribution, as well as an extended analysis of cell cycle dependency of such variations.
The subcellular resource offers a database for detailed exploration of individual genes and proteins of interest, as well as for systematic analysis of proteomes in a broader context. More information about the content of the resouce, as well as the generation and analysis of the data, can be found in the Methods summary. Learn about:
The subcellular distribution of proteins in standard human cell lines, including ciliated cells and iPSCs. The subcellular distribution of proteins in human sperm. The proteomes of different organelles and subcellular structures. Single-cell variability in the expression levels and/or localizations of proteins.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides a curated Excel-based database of metamaterial unit cells intended to support the marine energy research community in the design and analysis of innovative marine energy systems. The database compiles geometric and mechanical information for a wide range of unit cell topologies, enabling rapid visual assessment, geometric reconstruction, and systematic classification based on functional behavior. Each entry includes a visual figure, bibliographic reference with DOI, coupling mode, nonlinear or buckling behavior classification, and both demonstrated and potential applications in the context of marine energy.
The dataset also includes detailed data required to reconstruct each unit cell geometry, such as coordinate matrices (nodal coordinates and indices), connectivity matrices (element connections), and schematic skeleton diagrams with node numbering. These data formats are compatible with MATLAB and other finite element preprocessing tools. While the coordinate and connectivity data have been regenerated for consistency, they may not exactly replicate those from the original publications.
Facebook
TwitterDatabase characterizing and comparing pluripotent human stem cells. The growth and culture conditions of all 21 human embryonic stem cell lines approved under the August 2001 Presidential Executive Order have been analyzed. Available to the scientific community are the results of our rigorous characterization of these cell lines at a more advanced level.
Facebook
TwitterA repository for data regarding membrane channels, receptor and neurotransmitters that are expressed in specific types of cells. The database is presently focused on neurons but will eventually include other cell types, such as glia, muscle, and gland cells. This resource is intended to: * Serve as a repository for data on gene products expressed in different brain regions * Support research on cellular properties in the nervous system * Provide a gateway for entering data into the cannonical neuron forms in NeuronDB * Identify receptors across neuron types to aid in drug development * Serve as a first step toward a functional genomics of nerve cells * Serve as a teaching aid
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
A Dye-sensitized Solar-Cell Device Database Auto-generated Using ChemDataExtractor
Facebook
TwitterDatabase of neuronal cell types based on multimodal characterization of single cells to enable data-driven approaches to classification. It includes data such as electrophysiology recordings, imaging data, morphological reconstructions, and RNA and DNA sequencing data.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Perovskite Solar Cell Device Database Auto-generated Using ChemDataExtractor
Facebook
TwitterTHIS RESOURCE IS NO LONGER IN SERVICE, documented June 5, 2017. It has been merged with Cell Image Library. Database for sharing and mining cellular and subcellular high resolution 2D, 3D and 4D data from light and electron microscopy, including correlated imaging that makes unique and valuable datasets available to the scientific community for visualization, reuse and reanalysis. Techniques range from wide field mosaics taken with multiphoton microscopy to 3D reconstructions of cellular ultrastructure using electron tomography. Contributions from the community are welcome. The CCDB was designed around the process of reconstruction from 2D micrographs, capturing key steps in the process from experiment to analysis. The CCDB refers to the set of images taken from microscope the as the Microscopy Product. The microscopy product refers to a set of related 2D images taken by light (epifluorescence, transmitted light, confocal or multiphoton) or electron microscopy (conventional or high voltage transmission electron microscopy). These image sets may comprise a tilt series, optical section series, through focus series, serial sections, mosaics, time series or a set of survey sections taken in a single microscopy session that are not related in any systematic way. A given set of data may be more than one product, for example, it is possible for a set of images to be both a mosaic and a tilt series. The Microscopy Product ID serves as the accession number for the CCDB. All microscopy products must belong to a project and be stored along with key specimen preparation details. Each project receives a unique Project ID that groups together related microscopy products. Many of the datasets come from published literature, but publication is not a prerequisite for inclusion in the CCDB. Any datasets that are of high quality and interest to the scientific community can be included in the CCDB.
Facebook
TwitterThis dataset contains files reconstructing single-cell data presented in 'Reference transcriptomics of porcine peripheral immune cells created through bulk and single-cell RNA sequencing' by Herrera-Uribe & Wiarda et al. 2021. Samples of peripheral blood mononuclear cells (PBMCs) were collected from seven pigs and processed for single-cell RNA sequencing (scRNA-seq) in order to provide a reference annotation of porcine immune cell transcriptomics at enhanced, single-cell resolution. Analysis of single-cell data allowed identification of 36 cell clusters that were further classified into 13 cell types, including monocytes, dendritic cells, B cells, antibody-secreting cells, numerous populations of T cells, NK cells, and erythrocytes. Files may be used to reconstruct the data as presented in the manuscript, allowing for individual query by other users. Scripts for original data analysis are available at https://github.com/USDA-FSEPRU/PorcinePBMCs_bulkRNAseq_scRNAseq. Raw data are available at https://www.ebi.ac.uk/ena/browser/view/PRJEB43826. Funding for this dataset was also provided by NRSP8: National Animal Genome Research Program (https://www.nimss.org/projects/view/mrp/outline/18464). Resources in this dataset:Resource Title: Herrera-Uribe & Wiarda et al. PBMCs - All Cells 10X Format. File Name: PBMC7_AllCells.zipResource Description: Zipped folder containing PBMC counts matrix, gene names, and cell IDs. Files are as follows: matrix of gene counts* (matrix.mtx.gx) gene names (features.tsv.gz) cell IDs (barcodes.tsv.gz) *The ‘raw’ count matrix is actually gene counts obtained following ambient RNA removal. During ambient RNA removal, we specified to calculate non-integer count estimations, so most gene counts are actually non-integer values in this matrix but should still be treated as raw/unnormalized data that requires further normalization/transformation. Data can be read into R using the function Read10X().Resource Title: Herrera-Uribe & Wiarda et al. PBMCs - All Cells Metadata. File Name: PBMC7_AllCells_meta.csvResource Description: .csv file containing metadata for cells included in the final dataset. Metadata columns include: nCount_RNA = the number of transcripts detected in a cell nFeature_RNA = the number of genes detected in a cell Loupe = cell barcodes; correspond to the cell IDs found in the .h5Seurat and 10X formatted objects for all cells prcntMito = percent mitochondrial reads in a cell Scrublet = doublet probability score assigned to a cell seurat_clusters = cluster ID assigned to a cell PaperIDs = sample ID for a cell celltypes = cell type ID assigned to a cellResource Title: Herrera-Uribe & Wiarda et al. PBMCs - All Cells PCA Coordinates. File Name: PBMC7_AllCells_PCAcoord.csvResource Description: .csv file containing first 100 PCA coordinates for cells. Resource Title: Herrera-Uribe & Wiarda et al. PBMCs - All Cells t-SNE Coordinates. File Name: PBMC7_AllCells_tSNEcoord.csvResource Description: .csv file containing t-SNE coordinates for all cells.Resource Title: Herrera-Uribe & Wiarda et al. PBMCs - All Cells UMAP Coordinates. File Name: PBMC7_AllCells_UMAPcoord.csvResource Description: .csv file containing UMAP coordinates for all cells.Resource Title: Herrera-Uribe & Wiarda et al. PBMCs - CD4 T Cells t-SNE Coordinates. File Name: PBMC7_CD4only_tSNEcoord.csvResource Description: .csv file containing t-SNE coordinates for only CD4 T cells (clusters 0, 3, 4, 28). A dataset of only CD4 T cells can be re-created from the PBMC7_AllCells.h5Seurat, and t-SNE coordinates used in publication can be re-assigned using this .csv file.Resource Title: Herrera-Uribe & Wiarda et al. PBMCs - CD4 T Cells UMAP Coordinates. File Name: PBMC7_CD4only_UMAPcoord.csvResource Description: .csv file containing UMAP coordinates for only CD4 T cells (clusters 0, 3, 4, 28). A dataset of only CD4 T cells can be re-created from the PBMC7_AllCells.h5Seurat, and UMAP coordinates used in publication can be re-assigned using this .csv file.Resource Title: Herrera-Uribe & Wiarda et al. PBMCs - Gamma Delta T Cells UMAP Coordinates. File Name: PBMC7_GDonly_UMAPcoord.csvResource Description: .csv file containing UMAP coordinates for only gamma delta T cells (clusters 6, 21, 24, 31). A dataset of only gamma delta T cells can be re-created from the PBMC7_AllCells.h5Seurat, and UMAP coordinates used in publication can be re-assigned using this .csv file.Resource Title: Herrera-Uribe & Wiarda et al. PBMCs - Gamma Delta T Cells t-SNE Coordinates. File Name: PBMC7_GDonly_tSNEcoord.csvResource Description: .csv file containing t-SNE coordinates for only gamma delta T cells (clusters 6, 21, 24, 31). A dataset of only gamma delta T cells can be re-created from the PBMC7_AllCells.h5Seurat, and t-SNE coordinates used in publication can be re-assigned using this .csv file.Resource Title: Herrera-Uribe & Wiarda et al. PBMCs - Gene Annotation Information. File Name: UnfilteredGeneInfo.txtResource Description: .txt file containing gene nomenclature information used to assign gene names in the dataset. 'Name' column corresponds to the name assigned to a feature in the dataset.Resource Title: Herrera-Uribe & Wiarda et al. PBMCs - All Cells H5Seurat. File Name: PBMC7.tarResource Description: .h5Seurat object of all cells in PBMC dataset. File needs to be untarred, then read into R using function LoadH5Seurat().
Facebook
TwitterThe C4 DatabaseThis is the official repository for the hdf5 datasets of the cerebellar cell-type classification collaboration (C4), published as a companion to the paper "A deep-learning strategy to identify cell types across species from high-density extracellular recordings" published in Cell (https://doi.org/10.1016/j.cell.2025.01.041).Instructions to use the cell-type classifier, links to download these datasets, and a data explorer can be found at https://www.c4-database.com.The specifications of the fields, data types and data formats stored in the hdf5 binary files can be found at https://www.tinyurl.com/c4database. Hdf5 files can be easily opened with Python, MATLAB and many other programming languages.Using and Citing the C4 DatabaseThe data and visualizations on this website are intended to be freely available for use by the scientific community. The C4 dataset is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, while our classifier is licensed under the GNU General Public License v3.0 as part of NeuroPyxels. If you download and use our data for a publication, and/or if you would like to refer to the database, please cite Beau et al., 2025, Cell together with the NeuroPyxels repository (Beau et al., 2021, Zenodo), and include the link to the C4 online portal https://www.c4-database.com in your methods section. Thank you!
Facebook
TwitterMicroRNA profiling was performed on RNA samples matched to those included in the NIH Human Pluripotent Stem Cell Database (Series GSE32923). Twenty undifferentiated human embryonic stem cell lines and 4 human tissues were analyzed. Expanded descriptions of methods used are available at: http://stemcelldb.nih.gov. 49 samples: 38 human ESC (UNDIFFerentiated), 1 human Brain, 1 human Heart, 1 human Liver, 1 human Ovary and 7 processing controls (UniRef).
Facebook
TwitterhPSCreg is a global registry of human pluripotent stem cell (hPSC) lines containing manually validated information, including ethical provenance, procurement, derivation process, genetic and expression data, other biological and molecular characteristics, use, and quality of the line — Current status: 1123 hESC lines, 7670 hiPSC lines, and 205 clinical studies, and 2402 certificates
Facebook
TwitterThis dataset was created by HARSH_RAone
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The SUM human breast cancer cell lines have been used by many labs around the world to develop extensive data sets derived from comparative genomic hybridization analysis, gene expression profiling, whole exome sequencing, and reverse phase protein array analysis. In a previous study, the authors of this paper performed genome-scale shRNA essentiality screens on the entire SUM line panel, as well as on MCF10A cells, MCF-7 cells, and MCF-7LTED cells. In this study, the authors have developed the SUM Breast Cancer Cell Line Knowledge Base, to make all of these omics data sets available to users of the SUM lines, and to allow users to mine the data and analyse them with respect to biological pathways enriched by the data in each cell line.Data access: All the datasets supporting the findings of this study are publicly available in the SLKBase platform here: https://sumlineknowledgebase.com/. RPPA data, drug sensitivity data, apelisib response data, and data on dose response, are also part of this figshare data record (https://doi.org/10.6084/m9.figshare.12497630).Study aims and methodology: This web-based knowledge base provides users with data and information on the derivation of each of the cell lines, provides narrative summaries of the genomics and cell biology of each breast cancer cell line, and provides protocols for the proper maintenance of the cells. The database includes a series of data mining tools that allow rapid identification of the functional oncogene signatures for each line, the enrichment of any KEGG pathway with screen hit and gene expression data for each of the lines, and a rapid analysis of protein and phospho-protein expression for the cell lines. A gene search tool that returns all of the functional genome and functional druggable data for any gene for the entire cell line panel, is included. Additionally, the authors have expanded the database to include functional genomic data for an additional 29 commonly used breast cancer cell lines. The three overarching goals in the original development of the SLKBase are: 1) to provide a rich source of information for anyone working with any of the SUM breast cancer cell lines, 2) to give researchers ready access to the large genomic data sets that have been developed with these cells, and 3) to allow researchers to perform orthogonal analyses of the various genomics data sets that we and others have obtained from the SUM lines. For more information on the development and contents of the database, please read the related article.Datasets supporting the paper:The data mining tools accessed the following datasets to generate the figures and tables, and these datasets are downloadable from the Data Download centre on the SLKBase: Exome sequencing data: SLKBase.exome_.seq_.sum_.xlsxGene amplification and expression data for the SUM cell lines: SUM44amplificationdata.xlsSUM52.xlsSUM149.xlsSUM159.xlsSUM185.xlsSUM190.xlsSUM225.xlsSUM229.xlsSUM1315.xlsCellecta shRNA screen data for the SUM cell lines:SUM44Celectadata.csvSUM52Cellectadata.csvSUM102Cellectadata.csvSUM149Cellectadata.csvSUM159Cellectadata.csvSUM185Cellectadata.csvSUM190Cellectadata.csvSUM225Cellectadata.csvSUM229Cellectadata.csvSUM1315hits.hit.csvMCF10A.hits_.csvBreast cancer cell line data included in this data record (these datasets were used to generate figures 1, 2 and 7 in the article):Proteomics data from the Reverse Phase Protein Array (RPPA) assay analysis: Ethier.SUMline.RPPA.xlsxDrug sensitivity data: NAVITOCLAX.drugsensitivity.Zscores.xlsxApelisib response data: Apelisib all lines (2).xlsxDose response data: 092614 Dose Response CP 52s.11.15.xlsxAll the files are either in .xlsx or .csv file format.
Facebook
TwitterAttribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically
As a first step towards building models that can recognise immune cells in WSIs, we introduce Immunocto, a high-resolution (40 x magnification) massive database of 2,282,818 immune cells distributed across 4 immune cell subtypes (CD4 T-cells, CD8+ T-cells, B-cells, and macrophages). To our knowledge, Immunocto is the largest available dataset of immune cells extracted from H\&E WSIs by an order of magnitude. All models trained with this database can be tried at www.octopath.ai
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
To reveal distinct transcriptomes associated with various spermatogenic cells in both mouse and human testes, including spermatogonial stem cells (SSCs) and all of their subsequent progeny, we used the 10x Genomics Chromium (a commercialized Drop-Seq variant) to perform single-cell RNA-seq on various cell populations. Raw data and analyzed data (gene expression matrices) are deposited into the NIH GEO database. Here we include queryable, annotated and interactive files that can be used to compare single-cell transcriptomes.
Spermatogonia from immature (P6) and adult Id4-Egfp transgenic mice were used. The GFP-bright and dim phenotypes exhibit distinct fates when assayed by transplantation, with ID4-EGFPbright cells highly enriched for SSCs, and ID4-EGFPdim cells enriched for progenitors. Corresponding human spermatogonia were enriched from human testicular tissue by multi-parameter FACS. For both human and mouse, StaPut gravity sedimentation enriched for meiotic spermatocytes and post-meiotic spermatids and we profiled unselected steady-state spermatogenic cells.
The data from these experiments are stored in Loupe Cell Browser files (.cloupe) which are generated during analysis of 10x Genomics Single-cell data and can be opened and queried with the Loupe Cell Browser (10X Genomics). This software can be downloaded for free from https://support.10xgenomics.com/single-cell-gene-expression/software/downloads/latest. It is important to note that the companion manuscript for these data used additional analyses that are not represented in these files.
The following datasets are available:
Unselected or sorted P6 ID4-EGFP+ spermatogonia (sorted separately as EGFP-bright or EGFP-dim) were used for this study. Data are from 13094 cells and can be found in the following file: P6 Mouse Spermatogonia.cloupe (aggregate of three datasets, P6 ID4-EGFP bright/dim/unselected)
Unselected or sorted Adult ID4-EGFP+ spermatogonia (sorted separately as EGFP-bright or EGFP-dim), three replicate preparations of steady-state unselected spermatogenic cells, and StaPut-enriched adult spermatocytes and spermatids were used for this study. Data are from 17491 cells and can be found in the following files: Adult Mouse Sorted Spermatogonia.cloupe (Aggregated Ad Spg- ID4-EGFP bright/dim/CD9bright) Mouse Unselected Spermatogenic cells.cloupe (3 replicates of steady-state spermatogenic cells) Mouse StaPut Spermatocytes.cloupe Mouse StaPut Spermatids.cloupe
Sorted adult Human spermatogonia, three replicates of steady-state unselected spermatogenic cells, and StaPut-enriched adult spermatocytes and spermatids were used. Data are from 32727 cells and can be found in the following files: Human Sorted Spermatogonia.cloupe (3 replicates) Human Unselected Spermatogenic Cells.cloupe (3 replicates of steady-state spermatogenic cells) Human StaPut Spermatocytes.cloupe (2 replicates) Human StaPut Spermatids.cloupe (2 replicates)
Facebook
TwitterAll of the datasets and the below description are quoted from Project - Data-driven prediction of battery cycle life before capacity degradation.
This dataset, used in our publication “Data-driven prediction of battery cycle life before capacity degradation”, consists of 124 commercial lithium-ion batteries cycled to failure under fast-charging conditions. These lithium-ion phosphate (LFP)/graphite cells, manufactured by A123 Systems (APR18650M1A), were cycled in horizontal cylindrical fixtures on a 48-channel Arbin LBT potentiostat in a forced convection temperature chamber set to 30°C. The cells have a nominal capacity of 1.1 Ah and a nominal voltage of 3.3 V.
The objective of this work is to optimize fast charging for lithium-ion batteries. As such, all cells in this dataset are charged with a one-step or two-step fast-charging policy. This policy has the format “C1(Q1)-C2”, in which C1 and C2 are the first and second constant-current steps, respectively, and Q1 is the state-of-charge (SOC, %) at which the currents switch. The second current step ends at 80% SOC, after which the cells charge at 1C CC-CV. The upper and lower cutoff potentials are 3.6 V and 2.0 V, respectively, which are consistent with the manufacturer’s specifications. These cutoff potentials are fixed for all current steps, including fast charging; after some cycling, the cells may hit the upper cutoff potential during fast charging, leading to significant constant-voltage charging. All cells discharge at 4C.
The dataset is divided into three “batches”, representing approximately 48 cells each. Each batch is defined by a “batch date”, or the date the tests were started. Each batch has a few irregularities, as detailed on the page for each batch.
The data is provided in two formats. For each batch, a MATLAB struct is available. The struct provides a convenient data container in which the data for each cycle is easily accessible. This struct can be loaded in either MATLAB or python (via the h5py package). Pandas dataframes can be generated via the provided code. Additionally, the raw data for each cell is available as a CSV file. Note that the CSV files occasionally exhibit errors in both test time and step time in which the test time resets to zero mid-cycle; these errors are corrected for in the structs.
The temperature measurements are performed by attaching a Type T thermocouple with thermal epoxy (OMEGATHERM 201) and Kapton tape to the exposed cell can after stripping a small section of the plastic insulation. Note that the temperature measurements are not perfectly reliable; the thermal contact between the thermocouple and the cell can may vary substantially, and the thermocouple sometimes loses contact during cycling.
Internal resistance measurements were obtained during charging at 80% SOC by averaging 10 pulses of ±3.6C with a pulse width of 30 ms (2017-05-12 and 2017-06-30) or 33 ms (2018-04-12).
The following repository contains some starter code to load the datasets in either MATLAB or python:
https://github.com/rdbraatz/data-driven-prediction-of-battery-cycle-life-before-capacity-degradation
Low rate data used to generate figure 4:
If using this dataset in a publication, please cite: Severson et al. Data-driven prediction of battery cycle life before capacity degradation. Nature Energy volume 4, pages 383–391 (2019).
**Batch - 2017-05-12**
Experimental design
- All cells were cycled with one-step or two-step charging policies. The charging time varies from ~8 to 13.3 minutes (0-80% SOC). There are generally two cells tested per policy, with the exception of 3.6C(80%).
- 1 minute and 1 second rests were placed after reaching 80% SOC during charging and after discharging, respectively.
-We cycle to 80% of nominal capacity (0.88 Ah).
- An initial C/10 cycle was performed in the beginning of each test.
- The cutoff currents for the constant-voltage steps were C/50 for both charge and discharge.
- The pulse width of the IR test is 30 ms.
Experimental notes
- The computer automatically restarted twice. As such, there are some time gaps in the data.
- The temperature control is somewhat inconsistent, leading to variability in the baseline chamber temperature.
- The tests in channels 4 and 8 did not successfully start and thus do not have data.
- The thermocouples for channels 15 and 16 were accidentally switched.
Data notes
- Cycle 1 data is not available in the struct. The sampling rate for this cycle was initially too high, so we excluded it from the data set to create more manageable file sizes.
- The cells in Channels 1, 2, 3, 5, and 6 (3.6C(80%) and 4C(80%) policies) were stopped at the end of this batch and resume...
Facebook
TwitterThe Cell Collective database contains biological networks, including cycles, differentiation, plasticity, migration, and apoptosis.
Facebook
TwitterThis database provides reference data on controlled cell image experiments. The database contains cell images of A-10 rat smooth muscle and NIH-3T3 mouse fibroblasts. A novel rule and root based method is used to create experimental metadata as described in About Us page.