Smart phone price index (CPPI) by North American Product Classification System (NAPCS). The table includes annual data for the most recent reference period and the last four periods. Data are available from January 2015. The base period for the index is (2015=100).
In 2022, smartphone vendors sold around 1.39 billion smartphones were sold worldwide, with this number forecast to drop to 1.34 billion in 2023.
Smartphone penetration rate still on the rise
Less than half of the world’s total population owned a smart device in 2016, but the smartphone penetration rate has continued climbing, reaching 78.05 percent in 2020. By 2025, it is forecast that almost 87 percent of all mobile users in the United States will own a smartphone, an increase from the 27 percent of mobile users in 2010.
Smartphone end user sales
In the United States alone, sales of smartphones were projected to be worth around 73 billion U.S. dollars in 2021, an increase from 18 billion dollars in 2010. Global sales of smartphones are expected to increase from 2020 to 2021 in every major region, as the market starts to recover from the initial impact of the coronavirus (COVID-19) pandemic.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This synthetic but realistic dataset contains 90+ customer reviews for 6 smartphone models (from Apple, Samsung, and Google), along with: - Product specifications (Price, Screen Size, Battery, Camera, RAM, Storage, 5G, Water Resistance) - Customer reviews (Star Ratings, Review Text, Verified Purchase Status) - Sales data (Units Sold per Model)
Potential Use Cases: ✅ Feature importance analysis (Which specs drive ratings?) ✅ Sentiment analysis (NLP on reviews) ✅ Pricing strategy optimization ✅ Market research (Comparing Apple vs. Samsung vs. Google)
Objective: Understand how product features influence purchasing decisions and satisfaction.
Which smartphone brand did you purchase?
brand
column.Which model did you purchase?
model_name
column.Where did you purchase the phone?
verified_purchase
(assumed online = verified).How would you rate the following features? (1 = Poor, 5 = Excellent)
star_rating
(average of these).Which feature is MOST important to you?
review_text
keywords (e.g., "battery" mentions).How do you feel about the price of your phone?
price
vs. star_rating
correlation.Would you recommend this phone to others?
star_rating
(5 = Definitely Yes).Column Details (Metadata)
Column Name (Type) Description "Example"**
model_id (Integer) Unique ID for each phone model 1 (iPhone 14)
brand (String) Manufacturer (Apple, Samsung, Google) "Apple"
model_name (String) Name of the phone model "iPhone 15"
price (Integer) Price in USD 999
screen_size (Float) Screen size in inches 6.1
battery (Integer) Battery capacity in mAh 4000
camera_main (String) Main camera resolution (MP) "48MP"
ram (Integer) RAM in GB 8
storage (Integer) Storage in GB 128
has_5g (Boolean) Whether the phone supports 5G TRUE
water_resistant (String) Water resistance rating (IP68 or None) "IP68"
units_sold (Integer) Estimated units sold (for market analysis) 15000
review_id (Integer) Unique ID for each review 1
user_name (String) Randomly generated reviewer name "John"
star_rating (Integer) Rating from 1 (worst) to 5 (best) 5
verified_purchase (Boolean) Whether the reviewer bought the product TRUE
review_date (Date) Date of the review (YYYY-MM-DD) "2023-05-10"
review_text (String) Simulated review text based on features & rating "The 48MP camera is amazing!"
Suggested Analysis Ideas to inspire data analysis: A. Feature Impact on Ratings Regression: star_rating ~ battery + camera_main + price Key drivers: Does battery life affect ratings more than camera quality?
B. Sentiment Analysis (NLP)
Use tidytext (R) or NLTK (Python) to extract most-loved/hated features.
Example:
r
library(tidytext)
reviews_tidy <- final_data %>% unnest_tokens(word, review_text)
reviews_tidy %>% count(word, sort = TRUE) %>% filter(n > 5)
C. Brand Comparison Apple vs. Samsung vs. Google: Which brand has higher average ratings? Price sensitivity: Do cheaper phones (e.g., Pixel) get better value ratings?
D. Sales vs. Features Correlation: units_sold ~ price + brand Premium segment analysis: Do iPhones sell more despite higher prices?
Global Telemarketing Data | 95% Phone & Email Accuracy | 270M+ Verified Contacts Forager.ai redefines telemarketing success with the world’s most actionable contact database. We combine 100M+ mobile numbers and 170M+ verified emails with deep company insights – all updated every 14 days to maintain 95% accuracy rates that outperform legacy providers.
Why Telemarketing Teams Choose Us ✅ Dual-Channel Verified Every record confirms both working mobile numbers AND valid Personal email or Work email addresses – critical for multi-touch campaigns.
✅ Decision-Maker Intel 41% of contacts hold budget authority (Director to C-Suite) with:
Direct mobile numbers
Verified corporate emails
Department hierarchy mapping
Purchase intent signals
✅ Freshness Engine Bi-weekly verification sweeps catch: ✖ Job changers (23% of database monthly) ✖ Company restructuring ✖ Number/email deactivations
✅ Compliance Built-In Automated opt-out management + full GDPR/CCPA documentation.
Your Complete Telemarketing Toolkit Core Data Points: ✔ Direct dial mobile/work numbers ✔ Verified corporate email addresses ✔ Job title & decision-making authority ✔ Company size/revenue/tech stack ✔ Department structure & team size ✔ Location data (HQ/local offices) ✔ LinkedIn/Social media validation
Proven Use Cases • Cold Calling 2.0: Target CROs with mobile numbers + know their tech stack before dialing • Email-to-Call Sequencing: Match verified emails to mobile numbers for 360° outreach • List Hygiene: Clean existing CRM contacts against our live database • Market Expansion: Target specific employee counts (50-200 person companies) • Event Follow-Ups: Re-engage webinar/trade show leads with updated contact info
Enterprise-Grade Delivery
Real-Time API: Connect to Five9/Aircall/Salesforce
CRM-Ready Files: CSV with custom fields
Compliance Hub: Automated opt-out tracking
PostgreSQL Sync/ JSON files: 2-3 weeks updates for large datasets
Why We Outperform Competitors → 62% Connect Rate: Actual client result vs. industry 38% average → 3:1 ROI Guarantee: We’ll prove value or extend your license → Free Audit: Upload 10K contacts – we’ll show % salvageable
Need Convincing? Free API test account → Experience our accuracy firsthand. See why 89% of trial users convert to paid plans.
Telemarketing Data | Verified Contact Database | Cold Calling Lists | Phone & Email Data | Decision-Maker Contacts | CRM Enrichment | GDPR-Compliant Leads | B2B Contact Data | Sales Prospecting | ABM Targeting
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset illustrates the median household income in Mobile, spanning the years from 2010 to 2021, with all figures adjusted to 2022 inflation-adjusted dollars. Based on the latest 2017-2021 5-Year Estimates from the American Community Survey, it displays how income varied over the last decade. The dataset can be utilized to gain insights into median household income trends and explore income variations.
Key observations:
From 2010 to 2021, the median household income for Mobile decreased by $1,596 (3.19%), as per the American Community Survey estimates. In comparison, median household income for the United States increased by $4,559 (6.51%) between 2010 and 2021.
Analyzing the trend in median household income between the years 2010 and 2021, spanning 11 annual cycles, we observed that median household income, when adjusted for 2022 inflation using the Consumer Price Index retroactive series (R-CPI-U-RS), experienced growth year by year for 4 years and declined for 7 years.
https://i.neilsberg.com/ch/mobile-al-median-household-income-trend.jpeg" alt="Mobile, AL median household income trend (2010-2021, in 2022 inflation-adjusted dollars)">
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2022-inflation-adjusted dollars.
Years for which data is available:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Mobile median household income. You can refer the same here
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Title: 1985 Auto Imports Database
Source Information: -- Creator/Donor: Jeffrey C. Schlimmer (Jeffrey.Schlimmer@a.gp.cs.cmu.edu) -- Date: 19 May 1987 -- Sources: 1) 1985 Model Import Car and Truck Specifications, 1985 Ward's Automotive Yearbook. 2) Personal Auto Manuals, Insurance Services Office, 160 Water Street, New York, NY 10038 3) Insurance Collision Report, Insurance Institute for Highway Safety, Watergate 600, Washington, DC 20037
Past Usage: -- Kibler,~D., Aha,~D.~W., & Albert,~M. (1989). Instance-based prediction of real-valued attributes. {\it Computational Intelligence}, {\it 5}, 51--57. -- Predicted price of car using all numeric and Boolean attributes -- Method: an instance-based learning (IBL) algorithm derived from a localized k-nearest neighbor algorithm. Compared with a linear regression prediction...so all instances with missing attribute values were discarded. This resulted with a training set of 159 instances, which was also used as a test set (minus the actual instance during testing). -- Results: Percent Average Deviation Error of Prediction from Actual -- 11.84% for the IBL algorithm -- 14.12% for the resulting linear regression equation
Relevant Information: -- Description This data set consists of three types of entities: (a) the specification of an auto in terms of various characteristics, (b) its assigned insurance risk rating, (c) its normalized losses in use as compared to other cars. The second rating corresponds to the degree to which the auto is more risky than its price indicates. Cars are initially assigned a risk factor symbol associated with its price. Then, if it is more risky (or less), this symbol is adjusted by moving it up (or down) the scale. Actuarians call this process "symboling". A value of +3 indicates that the auto is risky, -3 that it is probably pretty safe.
The third factor is the relative average loss payment per insured vehicle year. This value is normalized for all autos within a particular size classification (two-door small, station wagons, sports/speciality, etc...), and represents the average loss per car per year.
-- Note: Several of the attributes in the database could be used as a "class" attribute.
Number of Instances: 205
Number of Attributes: 26 total -- 15 continuous -- 1 integer -- 10 nominal
Attribute Information:
Attribute: Attribute Range:
Missing Attribute Values: (denoted by "?") Attribute #: Number of instances missing a value:
In the fourth quarter of 2024, Samsung shipped around 52 million smartphones, a decrease from the both the previous quarter and the same quarter of the previous year. Samsung’s sales consistently place the smartphone giant among the top three smartphone vendors in the world, alongside Xiaomi and Apple. Samsung smartphone sales – how many phones does Samsung sell? Global smartphone sales reached over 1.2 billion units during 2024. While the global smartphone market is led by Samsung and Apple, Xiaomi has gained ground following the decline of Huawei. Together, these three companies hold more than 50 percent of the global smartphone market share.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Smart phone price index (CPPI) by North American Product Classification System (NAPCS). The table includes annual data for the most recent reference period and the last four periods. Data are available from January 2015. The base period for the index is (2015=100).