22 datasets found
  1. 1940 Census: Official 1940 Census Website

    • catalog.data.gov
    • data.amerigeoss.org
    Updated Nov 7, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Archives and Records Administration (2024). 1940 Census: Official 1940 Census Website [Dataset]. https://catalog.data.gov/dataset/1940-census-official-1940-census-website
    Explore at:
    Dataset updated
    Nov 7, 2024
    Dataset provided by
    National Archives and Records Administrationhttp://www.archives.gov/
    Description

    Website alows the public full access to the 1940 Census images, census maps and descriptions.

  2. Census of Population, 1940 [United States]: Public Use Microdata Sample

    • icpsr.umich.edu
    ascii
    Updated Jan 12, 2006
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Census of Population, 1940 [United States]: Public Use Microdata Sample [Dataset]. https://www.icpsr.umich.edu/web/ICPSR/studies/8236
    Explore at:
    asciiAvailable download formats
    Dataset updated
    Jan 12, 2006
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    United States. Bureau of the Census
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/8236/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/8236/terms

    Time period covered
    1940
    Area covered
    New Mexico, Vermont, Connecticut, Hawaii, Florida, New Hampshire, Washington, Maryland, New York (state), United States
    Description

    The 1940 Census Public Use Microdata Sample Project was assembled through a collaborative effort between the United States Bureau of the Census and the Center for Demography and Ecology at the University of Wisconsin. The collection contains a stratified 1-percent sample of households, with separate records for each household, for each "sample line" respondent, and for each person in the household. These records were encoded from microfilm copies of original handwritten enumeration schedules from the 1940 Census of Population. Geographic identification of the location of the sampled households includes Census regions and divisions, states (except Alaska and Hawaii), standard metropolitan areas (SMAs), and state economic areas (SEAs). Accompanying the data collection is a codebook that includes an abstract, descriptions of sample design, processing procedures and file structure, a data dictionary (record layout), category code lists, and a glossary. Also included is a procedural history of the 1940 Census. Each of the 20 subsamples contains three record types: household, sample line, and person. Household variables describe the location and condition of the household. The sample line records contain variables describing demographic characteristics such as nativity, marital status, number of children, veteran status, wage deductions for Social Security, and occupation. Person records also contain variables describing demographic characteristics including nativity, marital status, family membership, education, employment status, income, and occupation.

  3. r

    Lookup

    • redivis.com
    Updated Jan 10, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stanford Center for Population Health Sciences (2020). Lookup [Dataset]. https://redivis.com/datasets/fdpr-cd26cbc9y
    Explore at:
    Dataset updated
    Jan 10, 2020
    Dataset authored and provided by
    Stanford Center for Population Health Sciences
    Description

    This dataset includes variable names, variable labels, variable values, and corresponding variable value labels for the IPUMS 1940 datasets.

  4. r

    Persons

    • redivis.com
    Updated Jan 10, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stanford Center for Population Health Sciences (2020). Persons [Dataset]. https://redivis.com/datasets/fdpr-cd26cbc9y
    Explore at:
    Dataset updated
    Jan 10, 2020
    Dataset authored and provided by
    Stanford Center for Population Health Sciences
    Time period covered
    1940
    Description

    This dataset includes all individuals from the 1940 US census.

  5. 1940 Census Population Schedules, Enumeration District Maps, and Enumeration...

    • registry.opendata.aws
    Updated Apr 15, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Archives and Records Administration (NARA) (2021). 1940 Census Population Schedules, Enumeration District Maps, and Enumeration District Descriptions [Dataset]. https://registry.opendata.aws/nara-1940-census/
    Explore at:
    Dataset updated
    Apr 15, 2021
    Dataset provided by
    National Archives and Records Administrationhttp://www.archives.gov/
    Description

    The 1940 Census population schedules were created by the Bureau of the Census in an attempt to enumerate every person living in the United States on April 1, 1940, although some persons were missed. The 1940 census population schedules were digitized by the National Archives and Records Administration (NARA) and released publicly on April 2, 2012. The 1940 Census enumeration district maps contain maps of counties, cities, and other minor civil divisions that show enumeration districts, census tracts, and related boundaries and numbers used for each census. The coverage is nation wide and includes territorial areas. The 1940 Census enumeration district descriptions contain written descriptions of census districts, subdivisions, and enumeration districts.

  6. r

    Households

    • redivis.com
    Updated Jan 10, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stanford Center for Population Health Sciences (2020). Households [Dataset]. https://redivis.com/datasets/fdpr-cd26cbc9y
    Explore at:
    Dataset updated
    Jan 10, 2020
    Dataset authored and provided by
    Stanford Center for Population Health Sciences
    Time period covered
    1940
    Description

    This dataset includes all households from the 1940 US census.

  7. Historic US Census - 1940

    • redivis.com
    application/jsonl +7
    Updated Jan 10, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stanford Center for Population Health Sciences (2020). Historic US Census - 1940 [Dataset]. http://doi.org/10.57761/660g-eq95
    Explore at:
    avro, arrow, sas, application/jsonl, spss, parquet, stata, csvAvailable download formats
    Dataset updated
    Jan 10, 2020
    Dataset provided by
    Redivis Inc.
    Authors
    Stanford Center for Population Health Sciences
    Time period covered
    Jan 1, 1940 - Dec 31, 1940
    Area covered
    United States
    Description

    Abstract

    The Integrated Public Use Microdata Series (IPUMS) Complete Count Data include more than 650 million individual-level and 7.5 million household-level records. The IPUMS microdata are the result of collaboration between IPUMS and the nation’s two largest genealogical organizations—Ancestry.com and FamilySearch—and provides the largest and richest source of individual level and household data.

    Before Manuscript Submission

    All manuscripts (and other items you'd like to publish) must be submitted to

    phsdatacore@stanford.edu for approval prior to journal submission.

    We will check your cell sizes and citations.

    For more information about how to cite PHS and PHS datasets, please visit:

    https:/phsdocs.developerhub.io/need-help/citing-phs-data-core

    Documentation

    Historic data are scarce and often only exists in aggregate tables. The key advantage of historic US census data is the availability of individual and household level characteristics that researchers can tabulate in ways that benefits their specific research questions. The data contain demographic variables, economic variables, migration variables and family variables. Within households, it is possible to create relational data as all relations between household members are known. For example, having data on the mother and her children in a household enables researchers to calculate the mother’s age at birth. Another advantage of the Complete Count data is the possibility to follow individuals over time using a historical identifier.

    In sum: the historic US census data are a unique source for research on social and economic change and can provide population health researchers with information about social and economic determinants.Historic data are scarce and often only exists in aggregate tables. The key advantage of historic US census data is the availability of individual and household level characteristics that researchers can tabulate in ways that benefits their specific research questions. The data contain demographic variables, economic variables, migration variables and family variables. Within households, it is possible to create relational data as all relations between household members are known. For example, having data on the mother and her children in a household enables researchers to calculate the mother’s age at birth. Another advantage of the Complete Count data is the possibility to follow individuals over time using a historical identifier. In sum: the historic US census data are a unique source for research on social and economic change and can provide population health researchers with information about social and economic determinants.

    The historic US 1940 census data was collected in April 1940. Enumerators collected data traveling to households and counting the residents who regularly slept at the household. Individuals lacking permanent housing were counted as residents of the place where they were when the data was collected. Household members absent on the day of data collected were either listed to the household with the help of other household members or were scheduled for the last census subdivision.

    Notes

    • We provide IPUMS household and person data separately so that it is convenient to explore the descriptive statistics on each level. In order to obtain a full dataset, merge the household and person on the variables SERIAL and SERIALP. In order to create a longitudinal dataset, merge datasets on the variable HISTID.
    • Households with more than 60 people in the original data were broken up for processing purposes. Every person in the large households are considered to be in their own household. The original large households can be identified using the variable SPLIT40, reconstructed using the variable SERIAL40, and the original count is found in the variable NUMPREC40.
    • Some variables are missing from this data set for specific enumeration districts. The enumeration districts with missing data can be identified using the variable EDMISS. These variables will be added in a future release.
    • Coded variables derived from string variables are still in progress. These variables include: occupation, industry and migration status.
    • Missing observations have been allocated and some inconsistencies have been edited for the following variables: Missing observations have been allocated and some inconsistencies have been edited for the following variables: SURSIM, SEX, SCHOOL, RELATE, RACE, OCC1950, MTONGUE, MBPL, FBPL, BPL, MARST, EMPSTAT, CITIZEN, OWNERSHP. The flag variables indicating an allocated observation for the associated variables can be included in your extract by clicking the ‘Select data quality flags’ box on the extract summary page.
    • Most inconsistent information was not edited for this release, thus there are observations outside of the universe for many variables. In particular, the variables GQ, and GQTYPE have known inconsistencies and will be improved with the next r
  8. e

    Alaskan Population Demographic Information from Decennial and American...

    • knb.ecoinformatics.org
    • search.dataone.org
    • +1more
    Updated Apr 11, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States Census Bureau; Juliet Bachtel; John Randazzo; Erika Gavenus (2019). Alaskan Population Demographic Information from Decennial and American Community Survey Census Data, 1940-2016 [Dataset]. http://doi.org/10.5063/F10R9MPV
    Explore at:
    Dataset updated
    Apr 11, 2019
    Dataset provided by
    Knowledge Network for Biocomplexity
    Authors
    United States Census Bureau; Juliet Bachtel; John Randazzo; Erika Gavenus
    Time period covered
    Jan 1, 1940 - Dec 31, 2015
    Area covered
    Variables measured
    lat, lng, Year, city, ANVSA, Negro, Other, Place, White, Aleut., and 145 more
    Description

    These data comprise Census records relating to the Alaskan people's population demographics for the State of Alaskan Salmon and People (SASAP) Project. Decennial census data were originally extracted from IPUMS National Historic Geographic Information Systems website: https://data2.nhgis.org/main (Citation: Steven Manson, Jonathan Schroeder, David Van Riper, and Steven Ruggles. IPUMS National Historical Geographic Information System: Version 12.0 [Database]. Minneapolis: University of Minnesota. 2017. http://doi.org/10.18128/D050.V12.0). A number of relevant tables of basic demographics on age and race, household income and poverty levels, and labor force participation were extracted. These particular variables were selected as part of an effort to understand and potentially quantify various dimensions of well-being in Alaskan communities. The file "censusdata_master.csv" is a consolidation of all 21 other data files in the package. For detailed information on how the datasets vary over different years, view the file "readme.docx" available in this data package. The included .Rmd file is a script which combines the 21 files by year into a single file (censusdata_master.csv). It also cleans up place names (including typographical errors) and uses the USGS place names dataset and the SASAP regions dataset to assign latitude and longitude values and region values to each place in the dataset. Note that some places were not assigned a region or location because they do not fit well into the regional framework. Considerable heterogeneity exists between census surveys each year. While we have attempted to combine these datasets in a way that makes sense, there may be some discrepancies or unexpected values. The RMarkdown document SASAPWebsiteGraphicsCensus.Rmd is used to generate a variety of figures using these data, including the additional file Chignik_population.png. An additional set of 25 figures showing regional trends in population and income metrics are also included.

  9. e

    Data on Alaskan Population demographics ranging from 1940 to 2015

    • knb.ecoinformatics.org
    • dataone.org
    • +1more
    Updated Feb 7, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States Census Bureau; Juliet Bachtel; John Randazzo (2019). Data on Alaskan Population demographics ranging from 1940 to 2015 [Dataset]. http://doi.org/10.5063/F1CV4FZX
    Explore at:
    Dataset updated
    Feb 7, 2019
    Dataset provided by
    Knowledge Network for Biocomplexity
    Authors
    United States Census Bureau; Juliet Bachtel; John Randazzo
    Time period covered
    Jan 1, 1940 - Dec 31, 2015
    Area covered
    Variables measured
    lat, lng, Year, city, ANVSA, Negro, Other, Place, White, Aleut., and 138 more
    Description

    These data comprise Census records relating to the Alaskan people's population demographics for the State of Alaskan Salmon and People (SASAP) Project. Decennial census data were originally extracted from IPUMS National Historic Geographic Information Systems website: https://data2.nhgis.org/main(Citation: Steven Manson, Jonathan Schroeder, David Van Riper, and Steven Ruggles. IPUMS National Historical Geographic Information System: Version 12.0 [Database]. Minneapolis: University of Minnesota. 2017. http://doi.org/10.18128/D050.V12.0). A number of relevant tables of basic demographics on age and race, household income and poverty levels, and labor force participation were extracted.

      These particular variables were selected as part of an effort to understand and potentially quantify various dimensions of well-being in Alaskan communities.
      The file "censusdata_master.csv" is a consolidation of all 21 other data files in the package. For detailed information on how the datasets vary over different years, view the file "readme.docx" available in this data package.
    
      The included .Rmd file is a script which combines the 21 files by year into a single file (censusdata_master.csv). It also cleans up place names (including typographical errors) and uses the
      USGS place names dataset and the SASAP regions dataset to assign latitude and longitude values and region values to each place in the dataset. Note that some places were not assigned a region or
      location because they do not fit well into the regional framework.
    
      Considerable heterogeneity exists between census surveys each year. While we have attempted to combine these datasets in a way that makes sense, there may be some discrepancies or unexpected values.
      Please send a description of any unusual values to the dataset contact.
    
  10. H

    CenSoc-Numident

    • dataverse.harvard.edu
    • search.dataone.org
    Updated Dec 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Joshua R. Goldstein; Monica Alexander; Casey Breen; Andrea Miranda González; Felipe Menares; Maria Osborne; Mallika Snyder; Ugur Yildirim (2024). CenSoc-Numident [Dataset]. http://doi.org/10.7910/DVN/I0TLPI
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 2, 2024
    Dataset provided by
    Harvard Dataverse
    Authors
    Joshua R. Goldstein; Monica Alexander; Casey Breen; Andrea Miranda González; Felipe Menares; Maria Osborne; Mallika Snyder; Ugur Yildirim
    License

    https://dataverse.harvard.edu/api/datasets/:persistentId/versions/7.0/customlicense?persistentId=doi:10.7910/DVN/I0TLPIhttps://dataverse.harvard.edu/api/datasets/:persistentId/versions/7.0/customlicense?persistentId=doi:10.7910/DVN/I0TLPI

    Description

    The CenSoc-Numident dataset links the 1940 census to the National Archives’ public release of the Social Security Numident file (“NARA Numident”). Our linking strategy relies on first name, last name, year of birth, and place of birth. To link unmarried women, we use father’s last name as a proxy for women’s maiden name. We use the ABE fully automated linking approach developed by Abramitzky, Boustan, and Eriksson (2012, 2014, 2017). To work with this dataset, researchers must download and link the 1940 full-count Census sample from IPUMS-USA on the HISTID variable. Please adhere to the citation and usage guidelines of both CenSoc and IPUMS-USA when using this dataset. The CenSoc-Numident supplemental geography file contains additional variables with place of birth and/or place of death information, such as county of birth and death, for a subset of the CenSoc-Numident dataset. The CenSoc-Numident sibling files identify sibling groups in the CenSoc-Numident dataset.

  11. d

    Census Linking Project: 1900-1940 Crosswalk

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 9, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Abramitzky, Ran; Boustan, Leah; Eriksson, Katherine; Rashid, Myera; Pérez, Santiago (2023). Census Linking Project: 1900-1940 Crosswalk [Dataset]. http://doi.org/10.7910/DVN/CHASVE
    Explore at:
    Dataset updated
    Nov 9, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Abramitzky, Ran; Boustan, Leah; Eriksson, Katherine; Rashid, Myera; Pérez, Santiago
    Description

    This crosswalk consists of individuals matched between the 1900 and 1940 complete-count US Censuses. Within the crosswalk, users have the option to select the linking method with which these matches were created. This version of the crosswalk contains links made by the ABE-exact (conservative and standard) method, the ABE-NYSIIS (conservative and standard) method and the ABE-NYSIIS (conservative and standard) method where race is used as a matching variable. For any chosen method, users can merge into this crosswalk a wide set of individual- and household-level variables provided publicly by IPUMS, thereby creating a historical longitudinal dataset for analysis.

  12. d

    Baldwin-Green Study: Canada-U.S. Census of Industry 1867-1940

    • search.dataone.org
    • borealisdata.ca
    Updated Dec 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    John Baldwin; Alan Green (2023). Baldwin-Green Study: Canada-U.S. Census of Industry 1867-1940 [Dataset]. https://search.dataone.org/view/sha256%3A77bbc22a8a786a93216bb616cbe75dfe9170485ce58720426447e7cb0d0a2568
    Explore at:
    Dataset updated
    Dec 28, 2023
    Dataset provided by
    Borealis
    Authors
    John Baldwin; Alan Green
    Time period covered
    Jan 1, 1867 - Jan 1, 1940
    Area covered
    Canada, United States
    Description

    This study matches Canadian and US manufacturing industries at the 2-digit SIC code level for census years 1900 to 1940. Canadian figures start at 1870. Only general figures were recorded, such as number of employees, number of establishments, salary and wages, gross production, cost of input materials, gross value added. The project does have some drawbacks, such as the lack of US figures gross production, cost of materials, and lack of figures for the iron and steel industry. But for an aggregate comparison of the two countries, the numbers can be considered reliable.

  13. e

    Data from: Neighborhood Socioeconomic and demographic changes in Baltimore's...

    • portal.edirepository.org
    • search.dataone.org
    • +1more
    csv, zip
    Updated Mar 5, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dexter Locke (2019). Neighborhood Socioeconomic and demographic changes in Baltimore's (BES) Neighborhoods: 1930 to 2010 [Dataset]. http://doi.org/10.6073/pasta/346d11d1e409ac395d18f5619b896336
    Explore at:
    zip(1627908 bytes), csv(408211 byte)Available download formats
    Dataset updated
    Mar 5, 2019
    Dataset provided by
    EDI
    Authors
    Dexter Locke
    Time period covered
    1930 - 2017
    Area covered
    Variables measured
    Name, p_own, p_black, p_eduHS, p_white, time_yr, Comments, neigh_yr, p_eduCOL, p_vacant, and 5 more
    Description

    This dataset was created primarily to map and track socioeconomic and demographic variables from the US Census Bureau from year 1940 to year 2010, by decade, within the City of Baltimore's Mayor's Office of Information Technology (MOIT) year 2010 neighborhood boundaries. The socioeconomic and demographic variables include the percent White, percent African American, percent owner occupied homes, percent vacant homes, the percentage of age 25 and older people with a high school education or greater, and the percentage of age 25 and older people with a college education or greater. Percent White and percent African American are also provided for year 1930. Each of the the year 2010 neighborhood boundaries were also attributed with the 1937 Home Owners' Loan Corporation (HOLC) definition of neighborhoods via spatial overlay. HOLC rated neighborhoods as A, B, C, D or Undefined. HOLC categorized the perceived safety and risk of mortgage refinance lending in metropolitan areas using a hierarchical grading scale of A, B, C, and D. A and B areas were considered the safest areas for federal investment due to their newer housing as well as higher earning and racially homogenous households. In contrast, C and D graded areas were viewed to be in a state of inevitable decline, depreciation, and decay, and thus risky for federal investment, due to their older housing stock and racial and ethnic composition. This policy was inherently a racist practice. Places were graded based on who lived there; poor areas with people of color were labeled as lower and less-than. HOLC's 1937 neighborhoods do not cover the entire extent of the year 2010 neighborhood boundaries. The neighborhood boundaries were also augmented to include which of the year 2017 Housing Market Typology (HMT) the 2010 neighborhoods fall within. Finally, the neighborhood boundaries were also augmented to include tree canopy and tree canopy change year 2007 to year 2015.

  14. o

    Deep Roots of Racial Inequalities in US Healthcare: The 1906 American...

    • portal.sds.ox.ac.uk
    txt
    Updated Dec 5, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Benjamin Chrisinger (2023). Deep Roots of Racial Inequalities in US Healthcare: The 1906 American Medical Directory [Dataset]. http://doi.org/10.25446/oxford.24065709.v2
    Explore at:
    txtAvailable download formats
    Dataset updated
    Dec 5, 2023
    Dataset provided by
    University of Oxford
    Authors
    Benjamin Chrisinger
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    This dataset comprises physician-level entries from the 1906 American Medical Directory, the first in a series of semi-annual directories of all practicing physicians published by the American Medical Association [1]. Physicians are consistently listed by city, county, and state. Most records also include details about the place and date of medical training. From 1906-1940, Directories also identified the race of black physicians [2].This dataset comprises physician entries for a subset of US states and the District of Columbia, including all of the South and several adjacent states (Alabama, Arkansas, Delaware, Florida, Georgia, Kansas, Kentucky, Louisiana, Maryland, Mississippi, Missouri, North Carolina, Oklahoma, South Carolina, Tennessee, Texas, Virginia, West Virginia). Records were extracted via manual double-entry by professional data management company [3], and place names were matched to latitude/longitude coordinates. The main source for geolocating physician entries was the US Census. Historical Census records were sourced from IPUMS National Historical Geographic Information System [4]. Additionally, a public database of historical US Post Office locations was used to match locations that could not be found using Census records [5]. Fuzzy matching algorithms were also used to match misspelled place or county names [6].The source of geocoding match is described in the “match.source” field (Type of spatial match (census_YEAR = match to NHGIS census place-county-state for given year; census_fuzzy_YEAR = matched to NHGIS place-county-state with fuzzy matching algorithm; dc = matched to centroid for Washington, DC; post_places = place-county-state matched to Blevins & Helbock's post office dataset; post_fuzzy = matched to post office dataset with fuzzy matching algorithm; post_simp = place/state matched to post office dataset; post_confimed_missing = post office dataset confirms place and county, but could not find coordinates; osm = matched using Open Street Map geocoder; hand-match = matched by research assistants reviewing web archival sources; unmatched/hand_match_missing = place coordinates could not be found). For records where place names could not be matched, but county names could, coordinates for county centroids were used. Overall, 40,964 records were matched to places (match.type=place_point) and 931 to county centroids ( match.type=county_centroid); 76 records could not be matched (match.type=NA).Most records include information about the physician’s medical training, including the year of graduation and a code linking to a school. A key to these codes is given on Directory pages 26-27, and at the beginning of each state’s section [1]. The OSM geocoder was used to assign coordinates to each school by its listed location. Straight-line distances between physicians’ place of training and practice were calculated using the sf package in R [7], and are given in the “school.dist.km” field. Additionally, the Directory identified a handful of schools that were “fraudulent” (school.fraudulent=1), and institutions set up to train black physicians (school.black=1).AMA identified black physicians in the directory with the signifier “(col.)” following the physician’s name (race.black=1). Additionally, a number of physicians attended schools identified by AMA as serving black students, but were not otherwise identified as black; thus an expanded racial identifier was generated to identify black physicians (race.black.prob=1), including physicians who attended these schools and those directly identified (race.black=1).Approximately 10% of dataset entries were audited by trained research assistants, in addition to 100% of black physician entries. These audits demonstrated a high degree of accuracy between the original Directory and extracted records. Still, given the complexity of matching across multiple archival sources, it is possible that some errors remain; any identified errors will be periodically rectified in the dataset, with a log kept of these updates.For further information about this dataset, or to report errors, please contact Dr Ben Chrisinger (Benjamin.Chrisinger@tufts.edu). Future updates to this dataset, including additional states and Directory years, will be posted here: https://dataverse.harvard.edu/dataverse/amd.References:1. American Medical Association, 1906. American Medical Directory. American Medical Association, Chicago. Retrieved from: https://catalog.hathitrust.org/Record/000543547.2. Baker, Robert B., Harriet A. Washington, Ololade Olakanmi, Todd L. Savitt, Elizabeth A. Jacobs, Eddie Hoover, and Matthew K. Wynia. "African American physicians and organized medicine, 1846-1968: origins of a racial divide." JAMA 300, no. 3 (2008): 306-313. doi:10.1001/jama.300.3.306.3. GABS Research Consult Limited Company, https://www.gabsrcl.com.4. Steven Manson, Jonathan Schroeder, David Van Riper, Tracy Kugler, and Steven Ruggles. IPUMS National Historical Geographic Information System: Version 17.0 [GNIS, TIGER/Line & Census Maps for US Places and Counties: 1900, 1910, 1920, 1930, 1940, 1950; 1910_cPHA: ds37]. Minneapolis, MN: IPUMS. 2022. http://doi.org/10.18128/D050.V17.05. Blevins, Cameron; Helbock, Richard W., 2021, "US Post Offices", https://doi.org/10.7910/DVN/NUKCNA, Harvard Dataverse, V1, UNF:6:8ROmiI5/4qA8jHrt62PpyA== [fileUNF]6. fedmatch: Fast, Flexible, and User-Friendly Record Linkage Methods. https://cran.r-project.org/web/packages/fedmatch/index.html7. sf: Simple Features for R. https://cran.r-project.org/web/packages/sf/index.html

  15. Death rates for suicide, by sex, race, Hispanic origin, and age: United...

    • catalog.data.gov
    • healthdata.gov
    • +3more
    Updated Apr 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). Death rates for suicide, by sex, race, Hispanic origin, and age: United States [Dataset]. https://catalog.data.gov/dataset/death-rates-for-suicide-by-sex-race-hispanic-origin-and-age-united-states-020c1
    Explore at:
    Dataset updated
    Apr 23, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Area covered
    United States
    Description

    Data on death rates for suicide, by selected population characteristics. Please refer to the PDF or Excel version of this table in the HUS 2019 Data Finder (https://www.cdc.gov/nchs/hus/contents2019.htm) for critical information about measures, definitions, and changes over time. SOURCE: NCHS, National Vital Statistics System (NVSS); Grove RD, Hetzel AM. Vital statistics rates in the United States, 1940–1960. National Center for Health Statistics. 1968; numerator data from NVSS annual public-use Mortality Files; denominator data from U.S. Census Bureau national population estimates; and Murphy SL, Xu JQ, Kochanek KD, Arias E, Tejada-Vera B. Deaths: Final data for 2018. National Vital Statistics Reports; vol 69 no 13. Hyattsville, MD: National Center for Health Statistics. 2021. Available from: https://www.cdc.gov/nchs/products/nvsr.htm. For more information on the National Vital Statistics System, see the corresponding Appendix entry at https://www.cdc.gov/nchs/data/hus/hus19-appendix-508.pdf.

  16. d

    CenSoc Demo Files

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Jan 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Goldstein R, Joshua; Alexander, Monica; Breen, Casey; Miranda González, Andrea; Menares, Felipe; Osborne, Maria; Snyder, Mallika; Yildirim, Ugur (2024). CenSoc Demo Files [Dataset]. http://doi.org/10.7910/DVN/QVDPM9
    Explore at:
    Dataset updated
    Jan 26, 2024
    Dataset provided by
    Harvard Dataverse
    Authors
    Goldstein R, Joshua; Alexander, Monica; Breen, Casey; Miranda González, Andrea; Menares, Felipe; Osborne, Maria; Snyder, Mallika; Yildirim, Ugur
    Description

    A prelinked “demo” version of the CenSoc-DMF and CenSoc-Numident datasets with approximately 20 mortality covariates from the 1940 census and ~1% of records in the complete CenSoc datasets.

  17. Population of Nigeria 1950-2024

    • statista.com
    Updated Aug 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Population of Nigeria 1950-2024 [Dataset]. https://www.statista.com/statistics/1122838/population-of-nigeria/
    Explore at:
    Dataset updated
    Aug 1, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Nigeria
    Description

    As of July 2024, Nigeria's population was estimated at around 229.5 million. Between 1965 and 2024, the number of people living in Nigeria increased at an average rate of over two percent. In 2024, the population grew by 2.42 percent compared to the previous year. Nigeria is the most populous country in Africa. By extension, the African continent records the highest growth rate in the world. Africa's most populous country Nigeria was the most populous country in Africa as of 2023. As of 2022, Lagos held the distinction of being Nigeria's biggest urban center, a status it also retained as the largest city across all of sub-Saharan Africa. The city boasted an excess of 17.5 million residents. Notably, Lagos assumed the pivotal roles of the nation's primary financial hub, cultural epicenter, and educational nucleus. Furthermore, Lagos was one of the largest urban agglomerations in the world. Nigeria's youthful population In Nigeria, a significant 50 percent of the populace is under the age of 19. The most prominent age bracket is constituted by those up to four years old: comprising 8.3 percent of men and eight percent of women as of 2021. Nigeria boasts one of the world's most youthful populations. On a broader scale, both within Africa and internationally, Niger maintains the lowest median age record. Nigeria secures the 20th position in global rankings. Furthermore, the life expectancy in Nigeria is an average of 62 years old. However, this is different between men and women. The main causes of death have been neonatal disorders, malaria, and diarrheal diseases.

  18. d

    Historical Census Data by Blocks for early Central Phoenix, 1920-1940

    • search.dataone.org
    Updated May 15, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Joseph Tuccillo (2014). Historical Census Data by Blocks for early Central Phoenix, 1920-1940 [Dataset]. https://search.dataone.org/view/knb-lter-cap.581.1
    Explore at:
    Dataset updated
    May 15, 2014
    Dataset provided by
    LTER Network Member Node
    Authors
    Joseph Tuccillo
    Area covered
    Description

    Block-level census coverage of early Central Phoenix for 1920, 1930, and 1940, including population, race/ethnicity, household ownership and rentership, and temporary residency. This dataset was designed for use in combination with parcel-level land-use data derived from Sanborn Fire Insurance Maps to assess environmental justice issues in Phoenix’s early 20th Century development.

  19. Global population 1800-2100, by continent

    • statista.com
    • ai-chatbox.pro
    Updated Jul 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Global population 1800-2100, by continent [Dataset]. https://www.statista.com/statistics/997040/world-population-by-continent-1950-2020/
    Explore at:
    Dataset updated
    Jul 4, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    The world's population first reached one billion people in 1803, and reach eight billion in 2023, and will peak at almost 11 billion by the end of the century. Although it took thousands of years to reach one billion people, it did so at the beginning of a phenomenon known as the demographic transition; from this point onwards, population growth has skyrocketed, and since the 1960s the population has increased by one billion people every 12 to 15 years. The demographic transition sees a sharp drop in mortality due to factors such as vaccination, sanitation, and improved food supply; the population boom that follows is due to increased survival rates among children and higher life expectancy among the general population; and fertility then drops in response to this population growth. Regional differences The demographic transition is a global phenomenon, but it has taken place at different times across the world. The industrialized countries of Europe and North America were the first to go through this process, followed by some states in the Western Pacific. Latin America's population then began growing at the turn of the 20th century, but the most significant period of global population growth occurred as Asia progressed in the late-1900s. As of the early 21st century, almost two thirds of the world's population live in Asia, although this is set to change significantly in the coming decades. Future growth The growth of Africa's population, particularly in Sub-Saharan Africa, will have the largest impact on global demographics in this century. From 2000 to 2100, it is expected that Africa's population will have increased by a factor of almost five. It overtook Europe in size in the late 1990s, and overtook the Americas a decade later. In contrast to Africa, Europe's population is now in decline, as birth rates are consistently below death rates in many countries, especially in the south and east, resulting in natural population decline. Similarly, the population of the Americas and Asia are expected to go into decline in the second half of this century, and only Oceania's population will still be growing alongside Africa. By 2100, the world's population will have over three billion more than today, with the vast majority of this concentrated in Africa. Demographers predict that climate change is exacerbating many of the challenges that currently hinder progress in Africa, such as political and food instability; if Africa's transition is prolonged, then it may result in further population growth that would place a strain on the region's resources, however, curbing this growth earlier would alleviate some of the pressure created by climate change.

  20. d

    CenSoc Army Enlistment Records

    • search.dataone.org
    Updated Dec 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Goldstein, Joshua R.; Breen, Casey; Alexander, Monica; Miranda González, Andrea; Menares, Felipe; Osborne, Maria; Snyder, Mallika; Yildirim, Ugur; Wikle, Anna (2023). CenSoc Army Enlistment Records [Dataset]. http://doi.org/10.7910/DVN/ZFVVNA
    Explore at:
    Dataset updated
    Dec 7, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Goldstein, Joshua R.; Breen, Casey; Alexander, Monica; Miranda González, Andrea; Menares, Felipe; Osborne, Maria; Snyder, Mallika; Yildirim, Ugur; Wikle, Anna
    Description

    The CenSoc WWII Army Enlistment Dataset is a cleaned and harmonized version of the National Archives and Records Administration’s Electronic Army Serial Number Merged File, ca. 1938 - 1946 (2002). It contains enlistment records for over 9 million men and women who served in the United States Army, including the Army Air Corps, Women's Army Auxiliary Corps, and Enlisted Reserve Corps. We publish links between men in the CenSoc WWII Army Enlistment Dataset, Social Security Administration mortality data, and the 1940 Census. The CenSoc Enlistment-Census-1940 file links these enlistment records to the complete 1940 Census, and may be merged with IPUMS-USA census data using the HISTID identifier variable. The CenSoc Enlistment-Numident file links enlistment records to the Berkley Unified Numident Mortality Database (BUNMD), and the CenSoc Enlistment-DMF file links enlistment records to the Social Security Death Master File. For enlistment records in the Enlistment-Numident and Enlistment-DMF datasets that have been independently and additionally linked to the 1940 Census, we include the HISTID identifier variable that can be used to merge the data with IPUMS census data.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
National Archives and Records Administration (2024). 1940 Census: Official 1940 Census Website [Dataset]. https://catalog.data.gov/dataset/1940-census-official-1940-census-website
Organization logo

1940 Census: Official 1940 Census Website

Explore at:
4 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Nov 7, 2024
Dataset provided by
National Archives and Records Administrationhttp://www.archives.gov/
Description

Website alows the public full access to the 1940 Census images, census maps and descriptions.

Search
Clear search
Close search
Google apps
Main menu