The 1950 Census population schedules were created by the Bureau of the Census in an attempt to enumerate every person living in the United States on April 1, 1950, although some persons were missed. The 1950 census population schedules were digitized by the National Archives and Records Administration (NARA) and released publicly on April 1, 2022. The 1950 Census enumeration district maps contain maps of counties, cities, and other minor civil divisions that show enumeration districts, census tracts, and related boundaries and numbers used for each census. The coverage is nation wide and includes territorial areas. The 1950 Census enumeration district descriptions contain written descriptions of census districts, subdivisions, and enumeration districts.
1950 Dwellings Census Data for Baltimore, Maryland. Refer to the 1950 codebook (codebook_1950.pdf) for more information. This is part of a collection of 221 Baltimore Ecosystem Study metadata records that point to a geodatabase. The geodatabase is available online and is considerably large. Upon request, and under certain arrangements, it can be shipped on media, such as a usb hard drive. The geodatabase is roughly 51.4 Gb in size, consisting of 4,914 files in 160 folders. Although this metadata record and the others like it are not rich with attributes, it is nonetheless made available because the data that it represents could be indeed useful.
The United States Census Bureau’s international dataset provides estimates of country populations since 1950 and projections through 2050. Specifically, the dataset includes midyear population figures broken down by age and gender assignment at birth. Additionally, time-series data is provided for attributes including fertility rates, birth rates, death rates, and migration rates.
You can use the BigQuery Python client library to query tables in this dataset in Kernels. Note that methods available in Kernels are limited to querying data. Tables are at bigquery-public-data.census_bureau_international.
What countries have the longest life expectancy? In this query, 2016 census information is retrieved by joining the mortality_life_expectancy and country_names_area tables for countries larger than 25,000 km2. Without the size constraint, Monaco is the top result with an average life expectancy of over 89 years!
SELECT
age.country_name,
age.life_expectancy,
size.country_area
FROM (
SELECT
country_name,
life_expectancy
FROM
bigquery-public-data.census_bureau_international.mortality_life_expectancy
WHERE
year = 2016) age
INNER JOIN (
SELECT
country_name,
country_area
FROM
bigquery-public-data.census_bureau_international.country_names_area
where country_area > 25000) size
ON
age.country_name = size.country_name
ORDER BY
2 DESC
/* Limit removed for Data Studio Visualization */
LIMIT
10
Which countries have the largest proportion of their population under 25? Over 40% of the world’s population is under 25 and greater than 50% of the world’s population is under 30! This query retrieves the countries with the largest proportion of young people by joining the age-specific population table with the midyear (total) population table.
SELECT
age.country_name,
SUM(age.population) AS under_25,
pop.midyear_population AS total,
ROUND((SUM(age.population) / pop.midyear_population) * 100,2) AS pct_under_25
FROM (
SELECT
country_name,
population,
country_code
FROM
bigquery-public-data.census_bureau_international.midyear_population_agespecific
WHERE
year =2017
AND age < 25) age
INNER JOIN (
SELECT
midyear_population,
country_code
FROM
bigquery-public-data.census_bureau_international.midyear_population
WHERE
year = 2017) pop
ON
age.country_code = pop.country_code
GROUP BY
1,
3
ORDER BY
4 DESC /* Remove limit for visualization*/
LIMIT
10
The International Census dataset contains growth information in the form of birth rates, death rates, and migration rates. Net migration is the net number of migrants per 1,000 population, an important component of total population and one that often drives the work of the United Nations Refugee Agency. This query joins the growth rate table with the area table to retrieve 2017 data for countries greater than 500 km2.
SELECT
growth.country_name,
growth.net_migration,
CAST(area.country_area AS INT64) AS country_area
FROM (
SELECT
country_name,
net_migration,
country_code
FROM
bigquery-public-data.census_bureau_international.birth_death_growth_rates
WHERE
year = 2017) growth
INNER JOIN (
SELECT
country_area,
country_code
FROM
bigquery-public-data.census_bureau_international.country_names_area
Historic (none)
United States Census Bureau
Terms of use: This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.
See the GCP Marketplace listing for more details and sample queries: https://console.cloud.google.com/marketplace/details/united-states-census-bureau/international-census-data
Manually annotated 3-digit occupation codes from the Norwegian full count 1950 population census.
Manually annotated 3-digit occupational codes from the Norwegian full count 1950 population census.
This dataset is made up of images containing handwritten 3-digit occupation codes from the Norwegian population census of 1950. The occupation codes were added to the census sheets by Statistics Norway after the census was concluded for the purpose of creating aggregated occupational statistics for the entire population. The coding standard used in the 1950 census is, according to Statistics Norway’s official publications (https://www.ssb.no/historisk-statistikk/folketellinger/folketellingen-1950, booklet 4, page 81), very similar to the standards used in the census for 1920. Cf. the 13th booklet published for the 1920 census (https://www.ssb.no/historisk-statistikk/folketellinger/folketellingen-1920, note that this booklet is only available in Norwegian). In short, an occupation code is a 3-digit number that corresponds to a given occupation or type of occupation. According to the official list of occupation codes provided by Statistics Norway there are 339 unique codes. These are not all necessarily sequential or hierarchical in general, but some subgroupings are. This list can be found under Files. It is also worth noting that these images were extracted from the original census sheet images algorithmically. This process was not flawless and lead to additional images being extracted, these can contain written occupation titles or be left entirely blank. The dataset consists of 90,000 unique images, and 9,000 images that were randomly selected and copied from the unique images. These were all used for a research project (link to preprint article: https://doi.org/10.48550/arXiv.2306.16126) where we (author list can be found in preprint) tried to find a more efficient way of reviewing and correcting classification results from a Machine Learning model, where the results did not pass a pre-set confidence threshold. This was a follow-up to our previous article where we describe the initial project and creating of our model in more detail, if it is of interest (“Lessons Learned Developing and Using a Machine Learning Model to Automatically Transcribe 2.3 Million Handwritten Occupation Codes”, https://doi.org/10.51964/hlcs11331).
This metadata report documents tabular data sets consisting of items from the Census of Agriculture. These data are a subset of items from county-level data (including state totals) for the conterminous United States covering the census reporting years (every five years, with adjustments for 1978 and 1982) beginning with the 1950 Census of Agriculture and ending with the 2012 Census of Agriculture. Historical (1950-1997) data were extracted from digital files obtained through the Intra-university Consortium on Political and Social Research (ICPSR). More current (1997-2012) data were extracted from the National Agriculture Statistical Service (NASS) Census Query Tool for the census years of 1997, 2002, 2007, and 2012. Most census reports contain item values from the prior census for comparison. At times these values are updated or reweighted by the reporting agency; the Census Bureau prior to 1997 or NASS from 1997 on. Where available, the updated or reweighted data were used; otherwise, the original reported values were used. Changes in census item definitions and reporting as well as changes to county areas and names over the time span required a degree of manipulation on the data and county codes to make the data as comparable as possible over time. Not all of the census items are present for the entire 1950-2012 time span as certain items have been added since 1950 and when possible the items were derived from other items by subtracting or combining sub items. Specific changes and calculations are documented in the processing steps sections of this report. Other missing data occurs at the state and (or) county level due to census non-disclosure rules where small numbers of farms reporting an item have acres and (or) production values withheld to prevent identification of individual farms. In general, caution should be exercised when comparing current (2012) data with values reported in earlier censuses. While the 1974-2012 data are comparable, data prior to 1974 will have inflated farm counts and slightly inflated production amounts due to the differences in collection methods, primarily, the definition of a farm. Further discussion on comparability can be found the comparability section of the Supplemental Information element of this metadata report. Excluded from the tabular data are the District of Columbia, Menominee County, Wisconsin, and the independent cities of Virginia with the exception of the three county-equivalent cities of Chesapeake City, Suffolk, and Virginia Beach. Data for independent cities of Virginia prior to 1959 have been included with their surrounding or adjacent county. Please refer to the Supplemental Information element for information on terminology, the Census of Agriculture, the Inter-university Consortium for Political and Social Research (ICPSR), table and variable structure, data comparability, all farms and economic class 1-5 farms, item calculations, increase of farms from 1974 to 1978, missing data and exclusion explanations, 1978 crop irregularities, pastureland irregularities, county alignment, definitions, and references. In addition to the metadata is an excel workbook (VariableKey.xlsx) with spreadsheets containing key spreadsheets for items and variables by category and a spreadsheet noting the presence or absence of entire variable data by year. Note: this dataset was updated on 2016-02-10 to populate omitted irrigation values for Miami-Dade County, Florida in 1997.
https://www.gesis.org/en/institute/data-usage-termshttps://www.gesis.org/en/institute/data-usage-terms
Population data at the state level on the basis of the 1950 census.
Topics: Surface area in square kilometers; population according to marital status, age category and religious affiliation; number of one-person and multiple-person households; people in institutions; influx and outflux; information on employment; occupational status.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This polygon shapefile provides county or county-equivalent boundaries for the conterminous United States and was created specifically for use with the data tables published as Selected Items from the Census of Agriculture for the Conterminous United States, 1950-2012 (LaMotte, 2015). This data layer is a modified version of Historic Counties for the 2000 Census of Population and Housing produced by the National Historical Geographic Information System (NHGIS) project, which is identical to the U.S. Census Bureau TIGER/Line Census 2000 file, with the exception of added shorelines. Excluded from the CAO_STCOFIPS boundary layer are Broomfield County, Colorado, Menominee County, Wisconsin, and the independent cities of Virginia with the exception of the 3 county-equivalent cities of Chesapeake City, Suffolk, and Virginia Beach. The census of agriculture was not taken in the District of Columbia for 1959, but available data indicate few if any farms in that area, the polygon was left ...
Link to the ScienceBase Item Summary page for the item described by this metadata record. Service Protocol: Link to the ScienceBase Item Summary page for the item described by this metadata record. Application Profile: Web Browser. Link Function: information
1950 Education Census Data for Baltimore, Maryland. Refer to the 1950 codebook (codebook_1950.pdf) for more information. This is part of a collection of 221 Baltimore Ecosystem Study metadata records that point to a geodatabase. The geodatabase is available online and is considerably large. Upon request, and under certain arrangements, it can be shipped on media, such as a usb hard drive. The geodatabase is roughly 51.4 Gb in size, consisting of 4,914 files in 160 folders. Although this metadata record and the others like it are not rich with attributes, it is nonetheless made available because the data that it represents could be indeed useful.
1950 Age Census Data for Baltimore, Maryland. Refer to the 1950 codebook (codebook_1950.pdf) for more information. This is part of a collection of 221 Baltimore Ecosystem Study metadata records that point to a geodatabase. The geodatabase is available online and is considerably large. Upon request, and under certain arrangements, it can be shipped on media, such as a usb hard drive. The geodatabase is roughly 51.4 Gb in size, consisting of 4,914 files in 160 folders. Although this metadata record and the others like it are not rich with attributes, it is nonetheless made available because the data that it represents could be indeed useful.
https://www.gesis.org/en/institute/data-usage-termshttps://www.gesis.org/en/institute/data-usage-terms
Keywords; Search terms: historical time series; historical statistics; histat / HISTAT .
Abstract:
The author’s aim is to give an overview of the development of the official German statistics and specially the official employment-statistics in the former German Democratic Republic (GDR).
Data-Sources of the official statistics of the GDR about the occupation has been: - four occupation censes, which has been carried out together with the population census (1950, 1964, 1971, 1981); - special surveys about the occupation carried out by the statistical service of the former GDR; - workplace-statistics and sector-specific reporting including information about employees, done by the SZS; - further statistical reporting by governmental organisations about employment.
In order to realise comparability between the official statistics of the former GDR with the official statistics of the Federal Republic of Germany (FRG), the Federal Statistical Office made substantial conversions and formed new statistical groups respectively (see special tables dealing with backward projection of the GDR-statistics, Table-Part D. and E.).
Topics:
Subcategorisation of the Study (Tables of the ZA-Database HISTAT): Some Data of the GDR-employment-statistics:
I. The official employment statistics of the GDR:
A. Employed persons and population
B. Employees and apprentices by occupational status
C. Employees by economic sectors
II. Making the former GDR’s labour force statistics comparable with the labour force statistics of the former Federal Republic of Germany (FRG)
D. Federal Statistical Office, Wiesbaden: Some Information of backward projection of the GDR’s labour force statistics into FRG-classification („ Systematics of economic sectors“, Issue 1979 (WZ)“)
III. Selected Information of population and occupation census (1950, 1964, 1971, 1981), according to the systematics of the Federal Statistics.
E. Federal Statistical Office, Wiesbaden: Employees of the former GDR by population and occupation census (conversion 1964, 1971, 1981) according to („ Systematics of economic sectors“, Issue 1979 (WZ)“)
1950 Income Census Data for Baltimore, Maryland. Refer to the 1950 codebook (codebook_1950.pdf) for more information. This is part of a collection of 221 Baltimore Ecosystem Study metadata records that point to a geodatabase. The geodatabase is available online and is considerably large. Upon request, and under certain arrangements, it can be shipped on media, such as a usb hard drive. The geodatabase is roughly 51.4 Gb in size, consisting of 4,914 files in 160 folders. Although this metadata record and the others like it are not rich with attributes, it is nonetheless made available because the data that it represents could be indeed useful.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is a hybrid gridded dataset of demographic data for the world, given as 5-year population bands at a 0.5 degree grid resolution.
This dataset combines the NASA SEDAC Gridded Population of the World version 4 (GPWv4) with the ISIMIP Histsoc gridded population data and the United Nations World Population Program (WPP) demographic modelling data.
Demographic fractions are given for the time period covered by the UN WPP model (1950-2050) while demographic totals are given for the time period covered by the combination of GPWv4 and Histsoc (1950-2020)
Method - demographic fractions
Demographic breakdown of country population by grid cell is calculated by combining the GPWv4 demographic data given for 2010 with the yearly country breakdowns from the UN WPP. This combines the spatial distribution of demographics from GPWv4 with the temporal trends from the UN WPP. This makes it possible to calculate exposure trends from 1980 to the present day.
To combine the UN WPP demographics with the GPWv4 demographics, we calculate for each country the proportional change in fraction of demographic in each age band relative to 2010 as:
\(\delta_{year,\ country,age}^{\text{wpp}} = f_{year,\ country,age}^{\text{wpp}}/f_{2010,country,age}^{\text{wpp}}\)
Where:
- \(\delta_{year,\ country,age}^{\text{wpp}}\) is the ratio of change in demographic for a given age and and country from the UN WPP dataset.
- \(f_{year,\ country,age}^{\text{wpp}}\) is the fraction of population in the UN WPP dataset for a given age band, country, and year.
- \(f_{2010,country,age}^{\text{wpp}}\) is the fraction of population in the UN WPP dataset for a given age band, country for the year 2020.
The gridded demographic fraction is then calculated relative to the 2010 demographic data given by GPWv4.
For each subset of cells corresponding to a given country c, the fraction of population in a given age band is calculated as:
\(f_{year,c,age}^{\text{gpw}} = \delta_{year,\ country,age}^{\text{wpp}}*f_{2010,c,\text{age}}^{\text{gpw}}\)
Where:
- \(f_{year,c,age}^{\text{gpw}}\) is the fraction of the population in a given age band for given year, for the grid cell c.
- \(f_{2010,c,age}^{\text{gpw}}\) is the fraction of the population in a given age band for 2010, for the grid cell c.
The matching between grid cells and country codes is performed using the GPWv4 gridded country code lookup data and country name lookup table. The final dataset is assembled by combining the cells from all countries into a single gridded time series. This time series covers the whole period from 1950-2050, corresponding to the data available in the UN WPP model.
Method - demographic totals
Total population data from 1950 to 1999 is drawn from ISIMIP Histsoc, while data from 2000-2020 is drawn from GPWv4. These two gridded time series are simply joined at the cut-over date to give a single dataset covering 1950-2020.
The total population per age band per cell is calculated by multiplying the population fractions by the population totals per grid cell.
Note that as the total population data only covers until 2020, the time span covered by the demographic population totals data is 1950-2020 (not 1950-2050).
Disclaimer
This dataset is a hybrid of different datasets with independent methodologies. No guarantees are made about the spatial or temporal consistency across dataset boundaries. The dataset may contain outlier points (e.g single cells with demographic fractions >1). This dataset is produced on a 'best effort' basis and has been found to be broadly consistent with other approaches, but may contain inconsistencies which not been identified.
Amazonia holds the largest continuous area of tropical forests with intense land use change dynamics inducing water, carbon, and energy feedbacks with regional and global impacts. Much of our knowledge of land use change in Amazonia comes from studies of the Brazilian Amazon, which accounts for two thirds of the region. Amazonia outside of Brazil has received less attention because of the difficulty of acquiring consistent data across countries. We present here an agricultural statistics database of the entire Amazonia region, with a harmonized description of crops and pastures in geospatial format, based on administrative boundary data at the municipality level. The spatial coverage includes countries within Amazonia and spans censuses and surveys from 1950 to 2012. Harmonized crop and pasture types are explored by grouping annual and perennial cropping systems, C3 and C4 photosynthetic pathways, planted and natural pastures, and main crops. Our analysis examined the spatial pattern of ratios between classes of the groups and their correlation with the agricultural extent of crops and pastures within administrative units of the Amazon, by country, and census/survey dates. Significant correlations were found between all ratios and the fraction of agricultural lands of each administrative unit, with the exception of planted to natural pastures ratio and pasture lands extent. Brazil and Peru in most cases have significant correlations for all ratios analyzed even for specific census and survey dates. Results suggested improvements, and potential applications of the database for carbon, water, climate, and land use change studies are discussed. The database presented here provides an Amazon-wide improved data set on agricultural dynamics with expanded temporal and spatial coverage.
This is a transcribed spreadsheet of the original US Census bureau data from the 1850 Agriculture Census of Union County, South Carolina.
Date Range Comments: Census was in 1850, not 1950. CZO CMS cannot handle pre-1900 dates so we're temporarily using 1950. Record to be fixed in HydroShare.
In 2023, the median age of the population of the United States was 39.2 years. While this may seem quite young, the median age in 1960 was even younger, at 29.5 years. The aging population in the United States means that society is going to have to find a way to adapt to the larger numbers of older people. Everything from Social Security to employment to the age of retirement will have to change if the population is expected to age more while having fewer children. The world is getting older It’s not only the United States that is facing this particular demographic dilemma. In 1950, the global median age was 23.6 years. This number is projected to increase to 41.9 years by the year 2100. This means that not only the U.S., but the rest of the world will also have to find ways to adapt to the aging population.
Keywords; Search terms: historical time series; historical statistics; histat / HISTAT .
Abstract:
The author’s aim is to give an overview of the development of the official German statistics and specially the official employment-statistics in the former German Democratic Republic (GDR).
Data-Sources of the official statistics of the GDR about the occupation has been:- four occupation censes, which has been carried out together with the population census (1950, 1964, 1971, 1981);- special surveys about the occupation carried out by the statistical service of the former GDR;- workplace-statistics and sector-specific reporting including information about employees, done by the SZS;- further statistical reporting by governmental organisations about employment. In order to realise comparability between the official statistics of the former GDR with the official statistics of the Federal Republic of Germany (FRG), the Federal Statistical Office made substantial conversions and formed new statistical groups respectively (see special tables dealing with backward projection of the GDR-statistics, Table-Part D. and E.).
Topics:
Subcategorisation of the Study (Tables of the ZA-Database HISTAT):Some Data of the GDR-employment-statistics:
I. The official employment statistics of the GDR:
A. Employed persons and population
B. Employees and apprentices by occupational status
C. Employees by economic sectors
II. Making the former GDR’s labour force statistics comparable with the labour force statistics of the former Federal Republic of Germany (FRG)
D. Federal Statistical Office, Wiesbaden: Some Information of backward projection of the GDR’s labour force statistics into FRG-classification („ Systematics of economic sectors“, Issue 1979 (WZ)“)
III. Selected Information of population and occupation census (1950, 1964, 1971, 1981), according to the systematics of the Federal Statistics.
E. Federal Statistical Office, Wiesbaden: Employees of the former GDR by population and occupation census (conversion 1964, 1971, 1981) according to („ Systematics of economic sectors“, Issue 1979 (WZ)“)
In 2023, about 17.7 percent of the American population was 65 years old or over; an increase from the last few years and a figure which is expected to reach 22.8 percent by 2050. This is a significant increase from 1950, when only eight percent of the population was 65 or over. A rapidly aging population In recent years, the aging population of the United States has come into focus as a cause for concern, as the nature of work and retirement is expected to change to keep up. If a population is expected to live longer than the generations before, the economy will have to change as well to fulfill the needs of the citizens. In addition, the birth rate in the U.S. has been falling over the last 20 years, meaning that there are not as many young people to replace the individuals leaving the workforce. The future population It’s not only the American population that is aging -- the global population is, too. By 2025, the median age of the global workforce is expected to be 39.6 years, up from 33.8 years in 1990. Additionally, it is projected that there will be over three million people worldwide aged 100 years and over by 2050.
The 1950 Census population schedules were created by the Bureau of the Census in an attempt to enumerate every person living in the United States on April 1, 1950, although some persons were missed. The 1950 census population schedules were digitized by the National Archives and Records Administration (NARA) and released publicly on April 1, 2022. The 1950 Census enumeration district maps contain maps of counties, cities, and other minor civil divisions that show enumeration districts, census tracts, and related boundaries and numbers used for each census. The coverage is nation wide and includes territorial areas. The 1950 Census enumeration district descriptions contain written descriptions of census districts, subdivisions, and enumeration districts.