100+ datasets found
  1. d

    Census Block Groups in 2020

    • catalog.data.gov
    • opendata.dc.gov
    • +3more
    Updated Apr 30, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Washington, DC (2025). Census Block Groups in 2020 [Dataset]. https://catalog.data.gov/dataset/census-block-groups-in-2020
    Explore at:
    Dataset updated
    Apr 30, 2025
    Dataset provided by
    City of Washington, DC
    Description

    Standard block groups are clusters of blocks within the same census tract that have the same first digit of their 4-character census block number (e.g., Blocks 3001, 3002, 3003 to 3999 in census tract 1210.02 belong to block group 3). Current block groups do not always maintain these same block number to block group relationships due to boundary and feature changes that occur throughout the decade. For example, block 3001 might move due to a change in the census tract boundary. Even if the block is no longer in block group 3, the block number (3001) will not change. However, the GEOID for that block, identifying block group 3, would remain the same in the attribute information in the TIGER/Line Shapefiles because block GEOIDs are always built using the decennial geographic codes.Block groups delineated for the 2020 Census generally contain 600 to 3,000 people. Local participants delineated most block groups as part of the Census Bureau's PSAP. The Census Bureau delineated block groups only where a local or tribal government declined to participate or where the Census Bureau could not identify a potential local participant.A block group usually covers a contiguous area. Each census tract contains one or more block groups and block groups have unique numbers within census tract. Within the standard census geographic hierarchy, block groups never cross county or census tract boundaries, but may cross the boundaries of county subdivisions, places, urban areas, voting districts, congressional districts, and AIANNH areas.Block groups have a valid range of zero (0) through nine (9). Block groups beginning with a zero generally are in coastal and Great Lakes water and territorial seas. Rather than extending a census tract boundary into the Great Lakes or out to the 3-mile territorial sea limit, the Census Bureau delineated some census tract boundaries along the shoreline or just offshore.

  2. a

    VT Data – 2020 Census Block Group

    • hub.arcgis.com
    • geodata.vermont.gov
    • +3more
    Updated Oct 20, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    VT Center for Geographic Information (2022). VT Data – 2020 Census Block Group [Dataset]. https://hub.arcgis.com/datasets/b144ae3e38aa4b68a64f7f102bbabba8
    Explore at:
    Dataset updated
    Oct 20, 2022
    Dataset authored and provided by
    VT Center for Geographic Information
    Area covered
    Description

    This layer contains a Vermont-only subset of block group level 2020 Decennial Census redistricting data as reported by the U.S. Census Bureau for all states plus DC and Puerto Rico. The attributes come from the 2020 Public Law 94-171 (P.L. 94-171) tables.Data download date: August 12, 2021Census tables: P1, P2, P3, P4, H1, P5, HeaderDownloaded from: Census FTP siteProcessing Notes:Data was downloaded from the U.S. Census Bureau FTP site, imported into SAS format and joined to the 2020 TIGER boundaries. Boundaries are sourced from the 2020 TIGER/Line Geodatabases. Boundaries have been projected into Web Mercator and each attribute has been given a clear descriptive alias name. No alterations have been made to the vertices of the data.Each attribute maintains it's specified name from Census, but also has a descriptive alias name and long description derived from the technical documentation provided by the Census. For a detailed list of the attributes contained in this layer, view the Data tab and select "Fields". The following alterations have been made to the tabular data:Joined all tables to create one wide attribute table:P1 - RaceP2 - Hispanic or Latino, and not Hispanic or Latino by RaceP3 - Race for the Population 18 Years and OverP4 - Hispanic or Latino, and not Hispanic or Latino by Race for the Population 18 Years and OverH1 - Occupancy Status (Housing)P5 - Group Quarters Population by Group Quarters Type (correctional institutions, juvenile facilities, nursing facilities/skilled nursing, college/university student housing, military quarters, etc.)HeaderAfter joining, dropped fields: FILEID, STUSAB, CHARITER, CIFSN, LOGRECNO, GEOVAR, GEOCOMP, LSADC, and BLOCK.GEOCOMP was renamed to GEOID and moved be the first column in the table, the original GEOID was dropped.Placeholder fields for future legislative districts have been dropped: CD118, CD119, CD120, CD121, SLDU22, SLDU24, SLDU26, SLDU28, SLDL22, SLDL24 SLDL26, SLDL28.P0020001 was dropped, as it is duplicative of P0010001. Similarly, P0040001 was dropped, as it is duplicative of P0030001.In addition to calculated fields, County_Name and State_Name were added.The following calculated fields have been added (see long field descriptions in the Data tab for formulas used): PCT_P0030001: Percent of Population 18 Years and OverPCT_P0020002: Percent Hispanic or LatinoPCT_P0020005: Percent White alone, not Hispanic or LatinoPCT_P0020006: Percent Black or African American alone, not Hispanic or LatinoPCT_P0020007: Percent American Indian and Alaska Native alone, not Hispanic or LatinoPCT_P0020008: Percent Asian alone, Not Hispanic or LatinoPCT_P0020009: Percent Native Hawaiian and Other Pacific Islander alone, not Hispanic or LatinoPCT_P0020010: Percent Some Other Race alone, not Hispanic or LatinoPCT_P0020011: Percent Population of Two or More Races, not Hispanic or LatinoPCT_H0010002: Percent of Housing Units that are OccupiedPCT_H0010003: Percent of Housing Units that are VacantPlease note these percentages might look strange at the individual block group level, since this data has been protected using differential privacy.*VCGI exported a Vermont-only subset of the nation-wide layer to produce this layer--with fields limited to this popular subset: OBJECTID: OBJECTID GEOID: Geographic Record Identifier NAME: Area Name-Legal/Statistical Area Description (LSAD) Term-Part Indicator County_Name: County Name State_Name: State Name P0010001: Total Population P0010003: Population of one race: White alone P0010004: Population of one race: Black or African American alone P0010005: Population of one race: American Indian and Alaska Native alone P0010006: Population of one race: Asian alone P0010007: Population of one race: Native Hawaiian and Other Pacific Islander alone P0010008: Population of one race: Some Other Race alone P0020002: Hispanic or Latino Population P0020003: Non-Hispanic or Latino Population P0030001: Total population 18 years and over H0010001: Total housing units H0010002: Total occupied housing units H0010003: Total vacant housing units P0050001: Total group quarters population PCT_P0030001: Percent of Population 18 Years and Over PCT_P0020002: Percent Hispanic or Latino PCT_P0020005: Percent White alone, not Hispanic or Latino PCT_P0020006: Percent Black or African American alone, not Hispanic or Latino PCT_P0020007: Percent American Indian and Alaska Native alone, not Hispanic or Latino PCT_P0020008: Percent Asian alone, not Hispanic or Latino PCT_P0020009: Percent Native Hawaiian and Other Pacific Islander alone, not Hispanic or Latino PCT_P0020010: Percent Some Other Race alone, not Hispanic or Latino PCT_P0020011: Percent Population of two or more races, not Hispanic or Latino PCT_H0010002: Percent of Housing Units that are Occupied PCT_H0010003: Percent of Housing Units that are Vacant SUMLEV: Summary Level REGION: Region DIVISION: Division COUNTY: County (FIPS) COUNTYNS: County (NS) TRACT: Census Tract BLKGRP: Block Group AREALAND: Area (Land) AREAWATR: Area (Water) INTPTLAT: Internal Point (Latitude) INTPTLON: Internal Point (Longitude) BASENAME: Area Base Name POP100: Total Population Count HU100: Total Housing Count *To protect the privacy and confidentiality of respondents, data has been protected using differential privacy techniques by the U.S. Census Bureau. This means that some individual block groups will have values that are inconsistent or improbable. However, when aggregated up, these issues become minimized.Download Census redistricting data in this layer as a file geodatabase.Additional links:U.S. Census BureauU.S. Census Bureau Decennial CensusAbout the 2020 Census2020 Census2020 Census data qualityDecennial Census P.L. 94-171 Redistricting Data Program

  3. 2022 Cartographic Boundary File (SHP), Current Block Group for United...

    • catalog.data.gov
    Updated Dec 14, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Commerce, U.S. Census Bureau, Geography Division, Customer Engagement Branch (Point of Contact) (2023). 2022 Cartographic Boundary File (SHP), Current Block Group for United States, 1:500,000 [Dataset]. https://catalog.data.gov/dataset/2022-cartographic-boundary-file-shp-current-block-group-for-united-states-1-500000
    Explore at:
    Dataset updated
    Dec 14, 2023
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Area covered
    United States
    Description

    The 2022 cartographic boundary shapefiles are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. Block Groups (BGs) are clusters of blocks within the same census tract. Each census tract contains at least one BG, and BGs are uniquely numbered within census tracts. BGs have a valid code range of 0 through 9. BGs have the same first digit of their 4-digit census block number from the same decennial census. For example, tabulation blocks numbered 3001, 3002, 3003,.., 3999 within census tract 1210.02 are also within BG 3 within that census tract. BGs coded 0 are intended to only include water area, no land area, and they are generally in territorial seas, coastal water, and Great Lakes water areas. Block groups generally contain between 600 and 3,000 people. A BG usually covers a contiguous area but never crosses county or census tract boundaries. They may, however, cross the boundaries of other geographic entities like county subdivisions, places, urban areas, voting districts, congressional districts, and American Indian / Alaska Native / Native Hawaiian areas. The generalized BG boundaries in this release are based on those that were delineated as part of the Census Bureau's Participant Statistical Areas Program (PSAP) for the 2020 Census.

  4. c

    Data from: U.S. Census Block Groups

    • geospatial.gis.cuyahogacounty.gov
    • resilience-fema.hub.arcgis.com
    • +2more
    Updated Jun 25, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri U.S. Federal Datasets (2021). U.S. Census Block Groups [Dataset]. https://geospatial.gis.cuyahogacounty.gov/maps/fedmaps::u-s-census-block-groups
    Explore at:
    Dataset updated
    Jun 25, 2021
    Dataset authored and provided by
    Esri U.S. Federal Datasets
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    U.S. Census Block GroupsThis feature layer, utilizing National Geospatial Data Asset (NGDA) data from the U.S. Census Bureau (USCB), displays Census block groups in the 50 states, the District of Columbia, and Puerto Rico. Per the USCB, "Block Groups (BGs) are clusters of blocks within the same census tract. Each census tract contains at least one BG, and BGs are uniquely numbered within census tracts. BGs have a valid code range of 0 through 9. BGs have the same first digit of their 4-digit census block number from the same decennial census. BGs coded 0 are intended to only include water area, no land area, and they are generally in territorial seas, coastal water, and Great Lakes water areas. Block groups generally contain between 600 and 3,000 people. A BG usually covers a contiguous area but never crosses county or census tract boundaries. They may, however, cross the boundaries of other geographic entities like county subdivisions, places, urban areas, voting districts, congressional districts, and American Indian / Alaska Native / Native Hawaiian areas".Block Group 2 - Census Tract 010400 (Santa Fe, NM area)Data version: This cached Esri federal service is checked weekly for updates from its enterprise federal source (Census Block Groups) and will support mapping, analysis, data exports and OGC API – Feature access.NGDAID: 70 (Series Information for Block Group State-based TIGER/Line Shapefiles, Current)OGC API Features Link: (U.S. Census Block Groups - OGC Features) copy this link to embed it in OGC Compliant viewersFor more information, please visit: What are census blocks?For feedback please contact: Esri_US_Federal_Data@esri.comNGDA Data SetThis data set is part of the NGDA Governmental Units, and Administrative and Statistical Boundaries Theme Community. Per the Federal Geospatial Data Committee (FGDC), this theme is defined as the "boundaries that delineate geographic areas for uses such as governance and the general provision of services (e.g., states, American Indian reservations, counties, cities, towns, etc.), administration and/or for a specific purpose (e.g., congressional districts, school districts, fire districts, Alaska Native Regional Corporations, etc.), and/or provision of statistical data (census tracts, census blocks, metropolitan and micropolitan statistical areas, etc.). Boundaries for these various types of geographic areas are either defined through a documented legal description or through criteria and guidelines. Other boundaries may include international limits, those of federal land ownership, the extent of administrative regions for various federal agencies, as well as the jurisdictional offshore limits of U.S. sovereignty. Boundaries associated solely with natural resources and/or cultural entities are excluded from this theme and are included in the appropriate subject themes."For other NGDA Content: Esri Federal Datasets

  5. l

    2020 Census Block Groups

    • data.lacounty.gov
    • geohub.lacity.org
    • +2more
    Updated Mar 22, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    County of Los Angeles (2021). 2020 Census Block Groups [Dataset]. https://data.lacounty.gov/datasets/lacounty::2020-census-block-groups/about
    Explore at:
    Dataset updated
    Mar 22, 2021
    Dataset authored and provided by
    County of Los Angeles
    Area covered
    Description

    A Block Group usually covers a contiguous area. Each census tract contains at least one BG, and BGs are uniquely numbered within the census tract. Within the standard census geography hierarchy, BGs never cross state, county, or census tract boundaries but may cross the boundaries of any other geographic entity. There are little more number of Census Block Groups within Los Angeles County in 2020 Census TIGER/Line Shapefiles, compared in 2010.BGs are generally define to contain between 600 to 3,000 people and 240 and 1,200 housing units. BGs are the smallest geographic unit for which the Census Bureau tabulates sample data. Created/Updated: Updated on September 2023, to merged Long Beach Breakwater land-based block group silver polygons into bigger block group 9903000 as per 2022 TIGER Line Shapefiles, and to update Santa Catalina Islands and San Clemente Islands block group boundary based on DPW City boundaries (except 5990002 tract in Avalon). Updated on Sep 2022 and Dec 2022, to align tract boundary along city boundaries.Created on March 2021.How This Data is Created? This geographic file was downloaded from Census Bureau website: https://www2.census.gov/geo/tiger/TIGER2020PL/STATE/06_CALIFORNIA/06037/ on February, 2021 and customized for LA County. Data Fields:1. BG20 (BLKGRPCE20): 7 digit census tracts and block group number, 2. CT20 (TRACTCE20): 6-digit census tract number, 3. Label (NAMELSAD20): Block group number label

  6. Census of Population and Housing, 2000 [United States]: Block Group Subset...

    • icpsr.umich.edu
    ascii, sas, spss +1
    Updated Jan 18, 2006
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Inter-university Consortium for Political and Social Research [distributor] (2006). Census of Population and Housing, 2000 [United States]: Block Group Subset From Summary File 3 [Dataset]. http://doi.org/10.3886/ICPSR13576.v1
    Explore at:
    spss, ascii, stata, sasAvailable download formats
    Dataset updated
    Jan 18, 2006
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/13576/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/13576/terms

    Time period covered
    2000
    Area covered
    United States
    Description

    Prepared by the Inter-university Consortium for Political and Social Research, the block group subset was extracted from the Census of Population and Housing, 2000, Summary File 3 (SF3). The SF3 data contain information compiled from the questions asked of a sample of persons and housing units enumerated in Census 2000. Population items include sex, age, race, Hispanic or Latino origin, household relationship, marital status, caregiving by grandparents, language and ability to speak English, ancestry, place of birth, citizenship status and year of entry to the United States, migration, place of work, journey to work, school enrollment, educational attainment, veteran status, disability, employment status, industry, occupation, class of worker, income, and poverty status. Housing items include housing unit vacancy status, housing unit tenure (owner/renter), number of rooms, number of bedrooms, year moved into unit, occupants per room, units in structure, year structure built, heating fuel, telephone service, plumbing and kitchen facilities, vehicles available, value of home, rent, and shelter costs. The information in SF3 is presented in 813 tables, one variable per table cell, plus additional variables with geographic information. However, only 409 of these tables are shown for the block group and higher levels of geography. The remaining 404 tables, which are shown for the census tract and higher levels of geography, were excluded from the block group subset. Cases in the summary file data are classified by levels of observation, known as "summary levels" in the Census Bureau's nomenclature. The block group subset comprises all of the cases in the SF3 data for summary level 150. Five data files are provided with this collection. There is a block group subset for each of the four census regions (Northeast, Midwest, South, and West), plus a national subset that covers all of the regions.

  7. a

    2020 Census Block Groups

    • hub.arcgis.com
    • gis.westchestergov.com
    Updated May 6, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Westchester County GIS (2019). 2020 Census Block Groups [Dataset]. https://hub.arcgis.com/datasets/23398c02a988487c903838f4cb57e3d1
    Explore at:
    Dataset updated
    May 6, 2019
    Dataset authored and provided by
    Westchester County GIS
    Area covered
    Description

    The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Block Groups (BGs) are clusters of blocks within the same census tract. Each census tract contains at least one BG, and BGs are uniquely numbered within census tracts. BGs have a valid code range of 0 through 9. BGs have the same first digit of their 4-digit census block number from the same decennial census. For example, tabulation blocks numbered 3001, 3002, 3003,.., 3999 within census tract 1210.02 are also within BG 3 within that census tract. BGs coded 0 are intended to only include water area, no land area, and they are generally in territorial seas, coastal water, and Great Lakes water areas. Block groups generally contain between 600 and 3,000 people. A BG usually covers a contiguous area but never crosses county or census tract boundaries. They may, however, cross the boundaries of other geographic entities like county subdivisions, places, urban areas, voting districts, congressional districts, and American Indian / Alaska Native / Native Hawaiian areas. The BG boundaries in this release were delineated as part of the Census Bureau's Participant Statistical Areas Program (PSAP) for the 2020 Census.

  8. n

    Census Block Group 2020

    • nebraskamap.gov
    • map-nebraska.hub.arcgis.com
    Updated Jul 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Nebraska (2024). Census Block Group 2020 [Dataset]. https://www.nebraskamap.gov/datasets/census-block-group-2020-1
    Explore at:
    Dataset updated
    Jul 26, 2024
    Dataset authored and provided by
    State of Nebraska
    Area covered
    Description

    The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation.Block Groups (BGs) are clusters of blocks within the same census tract. Each census tract contains at least one BG, and BGs are uniquely numbered within census tracts. BGs have a valid code range of 0 through 9. BGs have the same first digit of their 4-digit census block number from the same decennial census. For example, tabulation blocks numbered 3001, 3002, 3003,.., 3999 within census tract 1210.02 are also within BG 3 within that census tract. BGs coded 0 are intended to only include water area, no land area, and they are generally in territorial seas, coastal water, and Great Lakes water areas. Block groups generally contain between 600 and 3,000 people. A BG usually covers a contiguous area but never crosses county or census tract boundaries. They may, however, cross the boundaries of other geographic entities like county subdivisions, places, urban areas, voting districts, congressional districts, and American Indian / Alaska Native / Native Hawaiian areas.The BG boundaries in this release are those that were delineated as part of the Census Bureau's Participant Statistical Areas Program (PSAP) for the 2020 Census.

  9. d

    Census 2020 Block Group

    • catalog.data.gov
    • hub.arcgis.com
    Updated Jun 9, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Hartford (2025). Census 2020 Block Group [Dataset]. https://catalog.data.gov/dataset/census-2020-block-group
    Explore at:
    Dataset updated
    Jun 9, 2025
    Dataset provided by
    City of Hartford
    Description

    The United States Census Bureau defines a Block Group as a "statistical divisions of census tracts, are generally defined to contain between 600 and 3,000 people, and are used to present data and control block numbering. A block group consists of clusters of blocks within the same census tract that have the same first digit of their four-digit census block number. For example, blocks 3001, 3002, 3003, . . ., 3999 in census tract 1210.02 belong to BG 3 in that census tract. Most BGs were delineated by local participants in the Census Bureau's Participant Statistical Areas Program. The Census Bureau delineated BGs only where a local or tribal government declined to participate, and a regional organization or State Data Center was not available to participate.A BG usually covers a contiguous area. Each census tract contains at least one BG, and BGs are uniquely numbered within the census tract. Within the standard census geographic hierarchy, BGs never cross state, county, or census tract boundaries but may cross the boundaries of any other geographic entity."

  10. c

    Census Block Group Data 2022

    • gis.data.ca.gov
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated Dec 2, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Water Boards (2021). Census Block Group Data 2022 [Dataset]. https://gis.data.ca.gov/datasets/waterboards::census-block-group-data-2022
    Explore at:
    Dataset updated
    Dec 2, 2021
    Dataset authored and provided by
    California Water Boards
    Area covered
    Description

    This is the feature layer. The map image layer is available here.The aquifer risk map is being developed to fulfill requirements of SB-200 and is intended to help prioritize areas where domestic wells and state small water systems may be accessing groundwater that does not meet primary drinking water standards (maximum contaminant level or MCL). In accordance with SB-200, the risk map is to be made available to the public and is to be updated annually starting January 1, 2021. This layer is part of the 2022 Aquifer Risk Map. The Fund Expenditure Plan states the risk map will be used by Water Boards staff to help prioritize areas for available SAFER funding.This layer displays data available at the census block group level. Water quality risk data from the 2022 Aquifer Risk Map is summarized by block group by displaying the number of domestic wells and state small water systems per block group in "high-risk" areas. Drought risk scores for rural/self-supplied communities from the Department of Water Resources are displayed (drought risk scores range from 0-100, with 100 representing the highest drought risk and 0 representing the lowest drought risk). Demographic information including Median Household Income (from 2018 ACS) and race/ethnicity data per block group (B03002 from 2019 ACS five-year survey) is also displayed.

  11. TIGER/Line Shapefile, Current, State, California, 2020 Census Block

    • catalog.data.gov
    Updated Dec 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Commerce, U.S. Census Bureau, Geography Division, Geospatial Products Branch (Point of Contact) (2023). TIGER/Line Shapefile, Current, State, California, 2020 Census Block [Dataset]. https://catalog.data.gov/dataset/tiger-line-shapefile-current-state-california-2020-census-block
    Explore at:
    Dataset updated
    Dec 15, 2023
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Area covered
    California
    Description

    This resource is a member of a series. The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Census Blocks are statistical areas bounded on all sides by visible features, such as streets, roads, streams, and railroad tracks, and/or by nonvisible boundaries such as city, town, township, and county limits, and short line-of-sight extensions of streets and roads. Census blocks are relatively small in area; for example, a block in a city bounded by streets. However, census blocks in remote areas are often large and irregular and may even be many square miles in area. A common misunderstanding is that data users think census blocks are used geographically to build all other census geographic areas, rather all other census geographic areas are updated and then used as the primary constraints, along with roads and water features, to delineate the tabulation blocks. As a result, all 2020 Census blocks nest within every other 2020 Census geographic area, so that Census Bureau statistical data can be tabulated at the block level and aggregated up to the appropriate geographic areas. Census blocks cover all territory in the United States, Puerto Rico, and the Island Areas (American Samoa, Guam, the Commonwealth of the Northern Mariana Islands, and the U.S. Virgin Islands). Blocks are the smallest geographic areas for which the Census Bureau publishes data from the decennial census. A block may consist of one or more faces.

  12. Census 2020: Block Groups for San Francisco

    • data.sfgov.org
    • s.cnmilf.com
    • +1more
    Updated Jul 25, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States Census Bureau (2022). Census 2020: Block Groups for San Francisco [Dataset]. https://data.sfgov.org/widgets/24e8-pd2q?mobile_redirect=true
    Explore at:
    xml, application/rdfxml, kml, tsv, csv, application/rssxml, application/geo+json, kmzAvailable download formats
    Dataset updated
    Jul 25, 2022
    Dataset authored and provided by
    United States Census Bureauhttp://census.gov/
    License

    ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
    License information was derived automatically

    Area covered
    San Francisco
    Description

    A. SUMMARY Census Block groups are the next level above census blocks in the geographic hierarchy. Block groups are a combination of census blocks that is a subdivision of a census tract.A block group consists of all census blocks whose numbers begin with the same digit in a given census tract; for example, block group 3 includes all census blocks numbered in the 300s. More information on the census tracts can be found here.

    B. HOW THE DATASET IS CREATED The boundaries are uploaded from TIGER/Line shapefiles provided by the U.S. Census Bureau.

    C. UPDATE PROCESS This dataset is static. Changes to the census blocks are tracked in multiple datasets. See here for 2000 census tract boundaries.

    D. HOW TO USE THIS DATASET This boundary file can be joined to other census datasets on GEOID. Column descriptions can be found on in the technical documentation included on the census.gov website

    E. RELATED DATASETS Census 2020: Census Tracts for San Francisco Analysis Neighborhoods - 2020 census tracts assigned to neighborhoods Census 2020: Blocks for San Francisco Census 2020: Blocks for San Francisco Clipped to SF Shoreline Census 2020: Blocks Groups for San Francisco Clipped to SF Shoreline

  13. t

    2020 Census Geography - Datasets - Capitol Data Portal

    • data.capitol.texas.gov
    Updated Aug 17, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). 2020 Census Geography - Datasets - Capitol Data Portal [Dataset]. https://data.capitol.texas.gov/dataset/2020-census-geography
    Explore at:
    Dataset updated
    Aug 17, 2021
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The United States Census Bureau publishes geographic units used for tabulation of the 2020 Census population data in the 2020 TIGER/Line Shapefile. The geographic units, which remain constant throughout the decade, include counties, census tracts, block groups, and blocks. Fields have been added so data formatted or published by the council can be joined to the shapefile for analysis. Each Shapefile (.shp) is in a compressed file (.zip) format. Blocks.zip - Census Blocks BlockGroups.zip - Block Groups Tracts.zip - Census Tracts Counties.zip - Counties Cities.zip - Census Places (Cities) CDPs.zip - Census Designated Places Each 'Pop' file contains the 2020 Census population for the corresponding geographic level. BlocksPop.zip - Census Blocks 2020 Census Population BlockGroupPop.zip - Census Block Groups 2020 Census Population TractsPop.zip - Census Tracts 2020 Census Population CountiesPop.zip - Counties 2020 Census Population

  14. n

    Census Housing and Household Block Group

    • linc.osbm.nc.gov
    • ncosbm.opendatasoft.com
    csv, excel, json
    Updated Oct 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Census Housing and Household Block Group [Dataset]. https://linc.osbm.nc.gov/explore/dataset/census-housing-and-household-block-group/
    Explore at:
    json, csv, excelAvailable download formats
    Dataset updated
    Oct 5, 2024
    Description

    Housing characteristics (tenure, seasonal housing, vacant housing, value, rent, age of structure) and household characteristics (household size, families, marital status, presence of children, nonfamily households) as reported by the US Census Bureau for census block groups (ie statistical subdivisions of county census tracts).

  15. a

    2010 Census Blocks Profile

    • hub.arcgis.com
    • opendata.atlantaregional.com
    • +1more
    Updated Jan 31, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fulton County, Georgia - GIS (2017). 2010 Census Blocks Profile [Dataset]. https://hub.arcgis.com/documents/a55c1dd91e054e89b6abf3bc5e6d7bc5
    Explore at:
    Dataset updated
    Jan 31, 2017
    Dataset authored and provided by
    Fulton County, Georgia - GIS
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    The 2010 Census Blocks with Demographic Profile dataset was produced by joining the U.S.Census Bureau's 2010 TIGER/Line File-derived Census Blocks for Fulton County with selected 2010 Summary File 1 data fields. The result is a census block boundary layer attributed with some the more commonly used demographics such as total population, population by race, population by age group, median age, and housing and household characteristics. Because the dataset was derived from the TIGER/Line File Census Blocks, the U.S.Census Bureau's metadata for that dataset is provided below.The TIGER/Line Files are shapefiles and related database files (.dbf) that are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line File is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Census Blocks are statistical areas bounded on all sides by visible features, such as streets, roads, streams, and railroad tracks, and/or by nonvisible boundaries such as city, town, township, and county limits, and short line-of-sight extensions of streets and roads. Census blocks are relatively small in area; for example, a block in a city bounded by streets. However, census blocks in remote areas are often large and irregular and may even be many square miles in area. A common misunderstanding is that data users think census blocks are used geographically to build all other census geographic areas, rather all other census geographic areas are updated and then used as the primary constraints, along with roads and water features, to delineate the tabulation blocks. As a result, all 2010 Census blocks nest within every other 2010 Census geographic area, so that Census Bureau statistical data can be tabulated at the block level and aggregated up to the appropriate geographic areas. Census blocks cover all territory in the United States, Puerto Rico, and the Island Areas (American Samoa, Guam, the Commonwealth of the Northern Mariana Islands, and the U.S. Virgin Islands). Blocks are the smallest geographic areas for which the Census Bureau publishes data from the decennial census. A block may consist of one or more faces.

  16. d

    US Social Vulnerability by Census Block Groups

    • dataone.org
    Updated Nov 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bryan, Michael (2023). US Social Vulnerability by Census Block Groups [Dataset]. http://doi.org/10.7910/DVN/ARBHPK
    Explore at:
    Dataset updated
    Nov 8, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Bryan, Michael
    Area covered
    United States
    Description

    blockgroupvulnerability OPPORTUNITY The US Centers for Disease Control (CDC) publishes a set of percentiles that compare US geographies by vulnerability across household, socioeconomic, racial/ethnic and housing themes. These Social Vulnerability Indexes (SVI) were originally intended to to help public health officials and emergency response planners identify communities that will need support around an event. They are generally valuable for any public interest that wants to relate themselves to needy communities by geography. The SVI publication and its basis variables are provided at the Census tract level of geographic detail. The Census' American Community Survey is available down the to the block group level, however. Recasting the SVI methods at this lower level of geography allows it to be tied to thousands of other demographic variables available. Because the SVI relies on ACS variables only available at the tract level, a projection model needs to applied to approximate its results using blockgroup level ACS variables. The blockgroupvulnerability dataset casts a prediction for the CDCs logic for a new contribution to the Open Environments blockgroup series available on Harvard's dataverse platform. DATA The CDC's annual SVI publication starts with 23 simple derivations using 50 ACS Census variables. Next the SVI process ranks census geographies to calculate a rank for each, where Percentile Rank = (Rank-1) / (N-1). The SVI themes are then calculated at the tract level as a percentile rank of a sum of the percentile ranks of the first level ACS derived variables. Finally, the overall ranking is taken as the sum of the theme percentile rankings. The SVI data publication is keyed by geography (7 cols) where ultimately the Census Tract FIPS code is 2 State + 3 County + 4 Tract + 2 Tract Decimals eg, 56043000301 is 56 Wyoming, 043 Washakie County, Tract 3.01 republishes Census demographics called 'adjunct variables' including area, population, households and housing units from the ACS daytime population taken from LandScan 2020 estimates derives 23 SVI variables from 50 ACS 5 Year variables with each having an estimate (E_), estimate precentage (EP_), margin of error (M_), margin percentage (MP_) and flag variable (F_) for those greater than 90% or less than 10% provides the final 4 themes and a composite SVI percentile annually vars = ['ST', 'STATE', 'ST_ABBR', 'STCNTY', 'COUNTY', 'FIPS', 'LOCATION'] +\ ['SNGPNT','LIMENG','DISABL','AGE65','AGE17','NOVEH','MUNIT','MOBILE','GROUPQ','CROWD','UNINSUR','UNEMP','POV150','NOHSDP','HBURD','TWOMORE','OTHERRACE','NHPI','MINRTY','HISP','ASIAN','AIAN','AFAM','NOINT'] +\ ['TOTAL','THEME1','THEME2','THEME3','THEME4'] + \ ['AREA_SQMI', 'TOTPOP', 'DAYPOP', 'HU', 'HH'] knowns = vars + \ # Estimates, the result of calc against ACS vars [('E_'+v) for v in vars] + \ # Flag 0,1 whether this geog is in 90 percentile rank (its vulnerable) [('F_'+v) for v in vars] +\ # Margine of error for ACS calcs [('M_'+v) for v in vars] + \ # Margine of error for ACS calcs, as percentage [('MP_'+v) for v in vars] +\ # Estimates of ACS calcs, as percentage [('EP_'+v) for v in vars] + \ # Estimated percentile ranks [('EPL_'+v) for v in vars] + \ # Sum across var percentile ranks [('SPL_'+v) for v in vars]+ \ # Percentile rank of the sum of percentile ranks [('RPL_'+v) for v in vars] [c for c in svitract.columns if c not in knowns] The SVI themes range over [0,1] but the CDC uses -999 as an NA value; this is set for ~800 or 1% of tracts which have no total poulation. The themes are numbered: Socioeconomic Status – RPL_THEME1 Household Characteristics – RPL_THEME2 Racial & Ethnic Minority Status – RPL_THEME3 Housing Type & Transportation – RPL_THEME4 The themes with their variables and ACS sources are as follows: Unlike Census data, the CDC ranks Puerto Rico and Tribal tracts separately from the US otherwise. Theme SVI Variable ACS Table ACS Variables Socioeconomic E_UNINSUR S2701 S2701_C04_001E Socioeconomic E_UNEMP DP03 DP03_0005E Socioeconomic E_POV150 S1701 S1701_C01_040E Socioeconomic E_NOHSDP B06009 B06009_002E Socioeconomic E_HBURD S2503 S2503_C01_028E + S2503_C01_032E + S2503_C01_036E + S2503_C01_040E Household E_SNGPNT B11012 B11012_010E + B11012_015E Household E_LIMENG B16005 B16005_007E + B16005_008E + B16005_012E + B16005_013E + B16005_017E + B16005_018E + B16005_022E + B16005_023E + B16005_029E + B16005_030E + B16005_034E + B16005_035E + B16005_039E + B16005_040E + B16005_044E + B16005_045E Household E_DISABL DP02 DP02_0072E Household E_AGE65 S0101 S0101_C01_030E Household E_AGE17 B09001 B09001_001E Racial & Ethnic E_TWOMORE DP05 DP05_0083E Racial & Ethnic E_OTHERRACE DP05 DP05_0082E Racial & Ethnic E_NHPI DP05 DP05_0081E Racial & Ethnic E_MINRTY DP05 DP05_0071E + DP05_0078E + DP05_0079E + DP05_0080E + DP05_0081E + DP05_0082E + ... Visit https://dataone.org/datasets/sha256%3A3edd5defce2f25c7501953ca3e77c4f15a8c71251352373a328794f961755c1c for complete metadata about this dataset.

  17. H

    2020 General Election Voting by US Census Block Group

    • dataverse.harvard.edu
    Updated Mar 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Michael Bryan (2025). 2020 General Election Voting by US Census Block Group [Dataset]. http://doi.org/10.7910/DVN/NKNWBX
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 10, 2025
    Dataset provided by
    Harvard Dataverse
    Authors
    Michael Bryan
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    PROBLEM AND OPPORTUNITY In the United States, voting is largely a private matter. A registered voter is given a randomized ballot form or machine to prevent linkage between their voting choices and their identity. This disconnect supports confidence in the election process, but it provides obstacles to an election's analysis. A common solution is to field exit polls, interviewing voters immediately after leaving their polling location. This method is rife with bias, however, and functionally limited in direct demographics data collected. For the 2020 general election, though, most states published their election results for each voting location. These publications were additionally supported by the geographical areas assigned to each location, the voting precincts. As a result, geographic processing can now be applied to project precinct election results onto Census block groups. While precinct have few demographic traits directly, their geographies have characteristics that make them projectable onto U.S. Census geographies. Both state voting precincts and U.S. Census block groups: are exclusive, and do not overlap are adjacent, fully covering their corresponding state and potentially county have roughly the same size in area, population and voter presence Analytically, a projection of local demographics does not allow conclusions about voters themselves. However, the dataset does allow statements related to the geographies that yield voting behavior. One could say, for example, that an area dominated by a particular voting pattern would have mean traits of age, race, income or household structure. The dataset that results from this programming provides voting results allocated by Census block groups. The block group identifier can be joined to Census Decennial and American Community Survey demographic estimates. DATA SOURCES The state election results and geographies have been compiled by Voting and Election Science team on Harvard's dataverse. State voting precincts lie within state and county boundaries. The Census Bureau, on the other hand, publishes its estimates across a variety of geographic definitions including a hierarchy of states, counties, census tracts and block groups. Their definitions can be found here. The geometric shapefiles for each block group are available here. The lowest level of this geography changes often and can obsolesce before the next census survey (Decennial or American Community Survey programs). The second to lowest census level, block groups, have the benefit of both granularity and stability however. The 2020 Decennial survey details US demographics into 217,740 block groups with between a few hundred and a few thousand people. Dataset Structure The dataset's columns include: Column Definition BLOCKGROUP_GEOID 12 digit primary key. Census GEOID of the block group row. This code concatenates: 2 digit state 3 digit county within state 6 digit Census Tract identifier 1 digit Census Block Group identifier within tract STATE State abbreviation, redundent with 2 digit state FIPS code above REP Votes for Republican party candidate for president DEM Votes for Democratic party candidate for president LIB Votes for Libertarian party candidate for president OTH Votes for presidential candidates other than Republican, Democratic or Libertarian AREA square kilometers of area associated with this block group GAP total area of the block group, net of area attributed to voting precincts PRECINCTS Number of voting precincts that intersect this block group ASSUMPTIONS, NOTES AND CONCERNS: Votes are attributed based upon the proportion of the precinct's area that intersects the corresponding block group. Alternative methods are left to the analyst's initiative. 50 states and the District of Columbia are in scope as those U.S. possessions voting in the general election for the U.S. Presidency. Three states did not report their results at the precinct level: South Dakota, Kentucky and West Virginia. A dummy block group is added for each of these states to maintain national totals. These states represent 2.1% of all votes cast. Counties are commonly coded using FIPS codes. However, each election result file may have the county field named differently. Also, three states do not share county definitions - Delaware, Massachusetts, Alaska and the District of Columbia. Block groups may be used to capture geographies that do not have population like bodies of water. As a result, block groups without intersection voting precincts are not uncommon. In the U.S., elections are administered at a state level with the Federal Elections Commission compiling state totals against the Electoral College weights. The states have liberty, though, to define and change their own voting precincts https://en.wikipedia.org/wiki/Electoral_precinct. The Census Bureau practices "data suppression", filtering some block groups from demographic publication because they do not meet a population threshold. This practice...

  18. V

    Virginia Tenure by Vehicles Available by Census Block Group (ACS 5-Year)

    • data.virginia.gov
    csv
    Updated Jan 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office of INTERMODAL Planning and Investment (2025). Virginia Tenure by Vehicles Available by Census Block Group (ACS 5-Year) [Dataset]. https://data.virginia.gov/dataset/virginia-tenure-by-vehicles-available-by-census-block-group-acs-5-year
    Explore at:
    csv(11736517)Available download formats
    Dataset updated
    Jan 3, 2025
    Dataset authored and provided by
    Office of INTERMODAL Planning and Investment
    Description

    2013-2023 Virginia Tenure by Vehicles Available by Census Block Group (ACS 5-Year). Contains estimates and margins of error.

    U.S. Census Bureau; American Community Survey, American Community Survey 5-Year Estimates, Table B25044 Data accessed from: Census Bureau's API for American Community Survey (https://www.census.gov/data/developers/data-sets.html)

    The United States Census Bureau's American Community Survey (ACS): -What is the American Community Survey? (https://www.census.gov/programs-surveys/acs/about.html) -Geography & ACS (https://www.census.gov/programs-surveys/acs/geography-acs.html) -Technical Documentation (https://www.census.gov/programs-surveys/acs/technical-documentation.html)

    Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Technical Documentation section. (https://www.census.gov/programs-surveys/acs/technical-documentation/code-lists.html)

    Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section. (https://www.census.gov/acs/www/methodology/sample_size_and_data_quality/)

    Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau's Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units for states and counties.

    Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation https://www.census.gov/programs-surveys/acs/technical-documentation.html). The effect of nonsampling error is not represented in these tables.

  19. a

    2020 Census Block Groups Top 50 American Community Survey Data with Seattle...

    • hub.arcgis.com
    Updated Feb 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Seattle ArcGIS Online (2024). 2020 Census Block Groups Top 50 American Community Survey Data with Seattle Neighborhoods [Dataset]. https://hub.arcgis.com/datasets/ff59dc88bfab4eb3bc4cd11eaf67ec2a
    Explore at:
    Dataset updated
    Feb 6, 2024
    Dataset authored and provided by
    City of Seattle ArcGIS Online
    Area covered
    Description

    U.S. Census Bureau 2020 block groups within the City of Seattle with American Community Survey (ACS) 5-year series data of frequently requested topics. Data is pulled from block group tables for the most recent ACS vintage. Seattle neighborhood geography of Council Districts, Comprehensive Plan Growth Areas are also included based on block group assignment.The census block groups have been assigned to a neighborhood based on the distribution of the total population from the 2020 decennial census for the component census blocks. If the majority of the population in the block group were inside the boundaries of the neighborhood, the block group was assigned wholly to that neighborhood.Feature layer created for and used in the Neighborhood Profiles application.The attribute data associated with this map is updated annually to contain the most currently released American Community Survey (ACS) 5-year data and contains estimates and margins of error. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Vintages: 2023ACS Table(s): Select fields from the tables listed here.Data downloaded from: Census Bureau's Explore Census Data The United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  20. d

    PLACES: Census Tract Data (GIS Friendly Format), 2020 release

    • catalog.data.gov
    • healthdata.gov
    • +2more
    Updated Jun 28, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). PLACES: Census Tract Data (GIS Friendly Format), 2020 release [Dataset]. https://catalog.data.gov/dataset/places-census-tract-data-gis-friendly-format-2020-release-2cba8
    Explore at:
    Dataset updated
    Jun 28, 2025
    Dataset provided by
    Centers for Disease Control and Prevention
    Description

    This dataset contains model-based census tract level estimates for the PLACES project 2020 release in GIS-friendly format. The PLACES project is the expansion of the original 500 Cities project and covers the entire United States—50 states and the District of Columbia (DC)—at county, place, census tract, and ZIP Code tabulation Areas (ZCTA) levels. It represents a first-of-its kind effort to release information uniformly on this large scale for local areas at 4 geographic levels. Estimates were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. The project was funded by the Robert Wood Johnson Foundation (RWJF) in conjunction with the CDC Foundation. Data sources used to generate these model-based estimates include Behavioral Risk Factor Surveillance System (BRFSS) 2018 or 2017 data, Census Bureau 2010 population estimates, and American Community Survey (ACS) 2014-2018 or 2013-2017 estimates. The 2020 release uses 2018 BRFSS data for 23 measures and 2017 BRFSS data for 4 measures (high blood pressure, taking high blood pressure medication, high cholesterol, and cholesterol screening). Four measures are based on the 2017 BRFSS data because the relevant questions are only asked every other year in the BRFSS. These data can be joined with the census tract 2015 boundary file in a GIS system to produce maps for 27 measures at the census tract level. An ArcGIS Online feature service is also available at https://www.arcgis.com/home/item.html?id=8eca985039464f4d83467b8f6aeb1320 for users to make maps online or to add data to desktop GIS software.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
City of Washington, DC (2025). Census Block Groups in 2020 [Dataset]. https://catalog.data.gov/dataset/census-block-groups-in-2020

Census Block Groups in 2020

Explore at:
7 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Apr 30, 2025
Dataset provided by
City of Washington, DC
Description

Standard block groups are clusters of blocks within the same census tract that have the same first digit of their 4-character census block number (e.g., Blocks 3001, 3002, 3003 to 3999 in census tract 1210.02 belong to block group 3). Current block groups do not always maintain these same block number to block group relationships due to boundary and feature changes that occur throughout the decade. For example, block 3001 might move due to a change in the census tract boundary. Even if the block is no longer in block group 3, the block number (3001) will not change. However, the GEOID for that block, identifying block group 3, would remain the same in the attribute information in the TIGER/Line Shapefiles because block GEOIDs are always built using the decennial geographic codes.Block groups delineated for the 2020 Census generally contain 600 to 3,000 people. Local participants delineated most block groups as part of the Census Bureau's PSAP. The Census Bureau delineated block groups only where a local or tribal government declined to participate or where the Census Bureau could not identify a potential local participant.A block group usually covers a contiguous area. Each census tract contains one or more block groups and block groups have unique numbers within census tract. Within the standard census geographic hierarchy, block groups never cross county or census tract boundaries, but may cross the boundaries of county subdivisions, places, urban areas, voting districts, congressional districts, and AIANNH areas.Block groups have a valid range of zero (0) through nine (9). Block groups beginning with a zero generally are in coastal and Great Lakes water and territorial seas. Rather than extending a census tract boundary into the Great Lakes or out to the 3-mile territorial sea limit, the Census Bureau delineated some census tract boundaries along the shoreline or just offshore.

Search
Clear search
Close search
Google apps
Main menu