Facebook
Twitteranalyze the current population survey (cps) annual social and economic supplement (asec) with r the annual march cps-asec has been supplying the statistics for the census bureau's report on income, poverty, and health insurance coverage since 1948. wow. the us census bureau and the bureau of labor statistics ( bls) tag-team on this one. until the american community survey (acs) hit the scene in the early aughts (2000s), the current population survey had the largest sample size of all the annual general demographic data sets outside of the decennial census - about two hundred thousand respondents. this provides enough sample to conduct state- and a few large metro area-level analyses. your sample size will vanish if you start investigating subgroups b y state - consider pooling multiple years. county-level is a no-no. despite the american community survey's larger size, the cps-asec contains many more variables related to employment, sources of income, and insurance - and can be trended back to harry truman's presidency. aside from questions specifically asked about an annual experience (like income), many of the questions in this march data set should be t reated as point-in-time statistics. cps-asec generalizes to the united states non-institutional, non-active duty military population. the national bureau of economic research (nber) provides sas, spss, and stata importation scripts to create a rectangular file (rectangular data means only person-level records; household- and family-level information gets attached to each person). to import these files into r, the parse.SAScii function uses nber's sas code to determine how to import the fixed-width file, then RSQLite to put everything into a schnazzy database. you can try reading through the nber march 2012 sas importation code yourself, but it's a bit of a proc freak show. this new github repository contains three scripts: 2005-2012 asec - download all microdata.R down load the fixed-width file containing household, family, and person records import by separating this file into three tables, then merge 'em together at the person-level download the fixed-width file containing the person-level replicate weights merge the rectangular person-level file with the replicate weights, then store it in a sql database create a new variable - one - in the data table 2012 asec - analysis examples.R connect to the sql database created by the 'download all microdata' progr am create the complex sample survey object, using the replicate weights perform a boatload of analysis examples replicate census estimates - 2011.R connect to the sql database created by the 'download all microdata' program create the complex sample survey object, using the replicate weights match the sas output shown in the png file below 2011 asec replicate weight sas output.png statistic and standard error generated from the replicate-weighted example sas script contained in this census-provided person replicate weights usage instructions document. click here to view these three scripts for more detail about the current population survey - annual social and economic supplement (cps-asec), visit: the census bureau's current population survey page the bureau of labor statistics' current population survey page the current population survey's wikipedia article notes: interviews are conducted in march about experiences during the previous year. the file labeled 2012 includes information (income, work experience, health insurance) pertaining to 2011. when you use the current populat ion survey to talk about america, subract a year from the data file name. as of the 2010 file (the interview focusing on america during 2009), the cps-asec contains exciting new medical out-of-pocket spending variables most useful for supplemental (medical spending-adjusted) poverty research. confidential to sas, spss, stata, sudaan users: why are you still rubbing two sticks together after we've invented the butane lighter? time to transition to r. :D
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Age, Sex, Race, Ethnicity, Total Housing Units, and Voting Age Population. This service is updated annually with American Community Survey (ACS) 5-year data. Contact: District of Columbia, Office of Planning. Email: planning@dc.gov. Geography: Census Tracts. Current Vintage: 2019-2023. ACS Table(s): DP05. Data downloaded from: Census Bureau's API for American Community Survey. Date of API call: January 2, 2025. National Figures: data.census.gov. Please cite the Census and ACS when using this data. Data Note from the Census: Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables. Data Processing Notes: This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2020 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page. Data processed using R statistical package and ArcGIS Desktop. Margin of Error was not included in this layer but is available from the Census Bureau. Contact the Office of Planning for more information about obtaining Margin of Error values.
Facebook
TwitterAnnual State Resident Population Estimates for 5 Race Groups (5 Race Alone or in Combination Groups) by Age, Sex, and Hispanic Origin // Source: U.S. Census Bureau, Population Division // Note: 'In combination' means in combination with one or more other races. The sum of the five race groups adds to more than the total population because individuals may report more than one race. The estimates are based on the 2010 Census and reflect changes to the April 1, 2010 population due to the Count Question Resolution program and geographic program revisions. Hispanic origin is considered an ethnicity, not a race. Hispanics may be of any race. Responses of 'Some Other Race' from the 2010 Census are modified. This results in differences between the population for specific race categories shown for the 2010 Census population in this file versus those in the original 2010 Census data. For more information, see http://www.census.gov/popest/data/historical/files/MRSF-01-US1.pdf. // For detailed information about the methods used to create the population estimates, see http://www.census.gov/popest/methodology/index.html. // Each year, the Census Bureau's Population Estimates Program (PEP) utilizes current data on births, deaths, and migration to calculate population change since the most recent decennial census, and produces a time series of estimates of population. The annual time series of estimates begins with the most recent decennial census data and extends to the vintage year. The vintage year (e.g., V2013) refers to the final year of the time series. The reference date for all estimates is July 1, unless otherwise specified. With each new issue of estimates, the Census Bureau revises estimates for years back to the last census. As each vintage of estimates includes all years since the most recent decennial census, the latest vintage of data available supersedes all previously produced estimates for those dates. The Population Estimates Program provides additional information including historical and intercensal estimates, evaluation estimates, demographic analysis, and research papers on its website: http://www.census.gov/popest/index.html.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Age, Sex, Race, Ethnicity, Total Housing Units, and Voting Age Population. This service is updated annually with American Community Survey (ACS) 5-year data. Contact: District of Columbia, Office of Planning. Email: planning@dc.gov. Geography: Census Tracts. Current Vintage: 2018-2022. ACS Table(s): DP05. Data downloaded from: Census Bureau's API for American Community Survey. Date of API call: January 2, 2024. National Figures: data.census.gov. Please cite the Census and ACS when using this data. Data Note from the Census: Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables. Data Processing Notes: This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2020 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page. Data processed using R statistical package and ArcGIS Desktop. Margin of Error was not included in this layer but is available from the Census Bureau. Contact the Office of Planning for more information about obtaining Margin of Error values.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Abstract:The 50-hectare plot at Barro Colorado Island, Panama, is a 1000 meter by 500 meter rectangle of forest inside of which all woody trees and shrubs with stems at least 1 cm in stem diameter have been censused. Every individual tree in the 50 hectares was permanently numbered with an aluminum tag in 1982, and every individual has been revisited six times since (in 1985, 1990, 1995, 2000, 2005, and 2010). In each census, every tree was measured, mapped and identified to species. Details of the census method are presented in Condit (Tropical forest census plots: Methods and results from Barro Colorado Island, Panama and a comparison with other plots; Springer-Verlag, 1998), and a description of the seven-census results in Condit, Chisholm, and Hubbell (Thirty years of forest census at Barro Colorado and the Importance of Immigration in maintaining diversity; PLoS ONE, 7:e49826, 2012).Description:CITATION TO DATABASE: Condit, R., Lao, S., Pérez, R., Dolins, S.B., Foster, R.B. Hubbell, S.P. 2012. Barro Colorado Forest Census Plot Data, 2012 Version. DOI http://dx.doi.org/10.5479/data.bci.20130603 CO-AUTHORS: Stephen Hubbell and Richard Condit have been principal investigators of the project for over 30 years. They are fully responsible for the field methods and data quality. As such, both request that data users contact them and invite them to be co-authors on publications relying on the data. More recent versions of the data, often with important updates, can be requested directly from R. Condit (conditr@gmail.com). ACKNOWLEDGMENTS: The following should be acknowledged in publications for contributions to the 50-ha plot project: R. Foster as plot founder and the first botanist able to identify so many trees in a diverse forest; R. Pérez and S. Aguilar for species identification; S. Lao for data management; S. Dolins for database design; plus hundreds of field workers for the census work, now over 2 million tree measurements; the National Science Foundation, Smithsonian Tropical Research Institute, and MacArthur Foundation for the bulk of the financial support. File 1. RoutputFull.pdf: Detailed documentation of the 'full' tables in Rdata format (File 5). File 2. RoutputStem.pdf: Detailed documentation of the 'stem' tables in Rdata format (File 7). File 3. ViewFullTable.zip: A zip archive with a single ascii text file named ViewFullTable.txt holding a table with all census data from the BCI 50-ha plot. Each row is a single measurement of a single stem, with columns indicating the census, date, species name, plus tree and stem identifiers; all seven censuses are included. A full description of all columns in the table can be found at http://dx.doi.org/10.5479/data.bci.20130604 (ViewFullTable, pp. 21-22 of the pdf). File 4. ViewTax.txt: An ascii text table with information on all tree species recorded in the 50-ha plot. There are columns with taxonomics names (family, genus, species, and subspecies), plus the taxonomic authority. The column 'Mnemonic' gives a shortened code identifying each species, a code used in the R tables (Files 5, 7). The column 'IDLevel' indicates the depth to which the species is identified: if IDLevel='species', it is a fully identified, but if IDLevel='genus', the genus is known but not the species. IDLevel can also be 'family', or 'none' in case the species is not even known to family. File 5. bci.full.Rdata31Aug2012.zip: A zip archive holding seven R Analytical Tables, versions of the BCI 50 ha plot census data in R format. These are designed for data analysis. There are seven files, one for each of the 7 censuses: 'bci.full1.rdata' for the first census through 'bci.full7.rdata' for the seventh census. Each of the seven files is a table having one record per individual tree, and each includes a record for every tree found over the entire seven censuses (i.e. whether or not they were observed alive in the given census, there is a record). Detailed documentation of these tables is given in RoutputFull.pdf (File 1). File 6. bci.spptable.rdata: A list of the 1064 species found across all tree plots and inventories in Panama, in R format. This is a superset of species found in the BCI censuses: every BCI species is included, plus additional species never observed at BCI. The column 'sp' in this table is a code identifying the species in the R census tables (File 5, 7), and matching 'mnemomic' in ViewFullTable (File 3). File 7. bci.stem.Rdata31Aug2012.zip: A zip archive holding seven R Analytical Tables, versions of the BCI 50 ha plot census data in R format. These are designed for data analysis. There are seven files, one for each of the 7 censuses: 'bci.stem1.rdata' for the first census through 'bci.stem7.rdata' for the seventh census. Each of the seven files is a table having one record per individual stem, necessary because some individual trees have more than one stem. Each includes a record for every stem found over the entire seven censuses (i.e. whether or not they were observed alive in the given census, there is a record). Detailed documentation of these tables is given in RoutputStem.pdf (File 2). File 8. TSMAttributes.txt: An ascii text table giving full descriptions of measurement codes, which are also referred to as TSMCodes. These short codes are used in the column 'code' in R tables and in the column 'ListOfTSM' in ViewFullTable.txt, in both cases with individual codes separated by commas. File 9. bci_31August2012_mysql.zip: A zip archive holding one file, 'bci.sql', which is a mysqldump of the complete MySQL database (version 5.0.95, http://www.mysql.com) created 31 August 2012. The database includes data collected from seven censuses of the BCI 50 ha plot plus censuses of many additional plots elsewhere in Panama, plus transects where only species identifications were collected and trees were not tagged nor measurements made. Detailed documentation of all tables within the database can be found at (http://dx.doi.org/10.5479/data.bci.20130604). This version of the data is intended for experienced SQL users; for most, the R Analytical Tables in Rtables.zip are more useful.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Occupancy status, Units, Rooms, Year built, Owner/Renter (Tenure), Mortgage/Rent costs, and more. This service is updated annually with American Community Survey (ACS) 5-year data. Contact: District of Columbia, Office of Planning. Email: planning@dc.gov. Geography: Census Tracts. Current Vintage: 2019-2023. ACS Table(s): DP04. Data downloaded from: Census Bureau's API for American Community Survey. Date of API call: January 2, 2025. National Figures: data.census.gov. Please cite the Census and ACS when using this data. Data Note from the Census: Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables. Data Processing Notes: This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2020 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page. Data processed using R statistical package and ArcGIS Desktop. Margin of Error was not included in this layer but is available from the Census Bureau. Contact the Office of Planning for more information about obtaining Margin of Error values.
Facebook
TwitterAnnual County Resident Population Estimates for 6 Race Groups (5 Race Alone Groups and Two or More Races) by Five-Year Age Groups, Sex, and Hispanic Origin // Source: U.S. Census Bureau, Population Division // Note: The estimates are based on the 2010 Census and reflect changes to the April 1, 2010 population due to the Count Question Resolution program and geographic program revisions. Hispanic origin is considered an ethnicity, not a race. Hispanics may be of any race. Responses of 'Some Other Race' from the 2010 Census are modified. This results in differences between the population for specific race categories shown for the 2010 Census population in this file versus those in the original 2010 Census data. For more information, see http://www.census.gov/popest/data/historical/files/MRSF-01-US1.pdf. // For detailed information about the methods used to create the population estimates, see http://www.census.gov/popest/methodology/index.html. // Each year, the Census Bureau's Population Estimates Program (PEP) utilizes current data on births, deaths, and migration to calculate population change since the most recent decennial census, and produces a time series of estimates of population. The annual time series of estimates begins with the most recent decennial census data and extends to the vintage year. The vintage year (e.g., V2013) refers to the final year of the time series. The reference date for all estimates is July 1, unless otherwise specified. With each new issue of estimates, the Census Bureau revises estimates for years back to the last census. As each vintage of estimates includes all years since the most recent decennial census, the latest vintage of data available supersedes all previously produced estimates for those dates. The Population Estimates Program provides additional information including historical and intercensal estimates, evaluation estimates, demographic analysis, and research papers on its website: http://www.census.gov/popest/index.html.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Age, Sex, Race, Ethnicity, Total Housing Units, and Voting Age Population. This service is updated annually with American Community Survey (ACS) 1-year data. Contact: District of Columbia, Office of Planning. Email: planning@dc.gov. Geography: District-wide. Current Vintage: 2023. ACS Table(s): DP05. Data downloaded from: Census Bureau's API for American Community Survey. Date of API call: January 3, 2025. National Figures: data.census.gov. Please cite the Census and ACS when using this data. Data Note from the Census: Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables. Data Processing Notes: This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2020 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page. Data processed using R statistical package and ArcGIS Desktop. Margin of Error was not included in this layer but is available from the Census Bureau. Contact the Office of Planning for more information about obtaining Margin of Error values.
Facebook
TwitterAnnual State Resident Population Estimates for 6 Race Groups (5 Race Alone Groups and Two or More Races) by Age, Sex, and Hispanic Origin: April 1, 2010 to July 1, 2013 // File: 7/1/2013 State Characteristics Population Estimates // Source: U.S. Census Bureau, Population Division // Release Date: June 2014 // Note: The estimates are based on the 2010 Census and reflect changes to the April 1, 2010 population due to the Count Question Resolution program and geographic program revisions. Hispanic origin is considered an ethnicity, not a race. Hispanics may be of any race. Responses of 'Some Other Race' from the 2010 Census are modified. This results in differences between the population for specific race categories shown for the 2010 Census population in this file versus those in the original 2010 Census data. For more information, see http://www.census.gov/popest/data/historical/files/MRSF-01-US1.pdf. // For detailed information about the methods used to create the population estimates, see http://www.census.gov/popest/methodology/index.html. // Each year, the Census Bureau's Population Estimates Program (PEP) utilizes current data on births, deaths, and migration to calculate population change since the most recent decennial census, and produces a time series of estimates of population. The annual time series of estimates begins with the most recent decennial census data and extends to the vintage year. The vintage year (e.g., V2013) refers to the final year of the time series. The reference date for all estimates is July 1, unless otherwise specified. With each new issue of estimates, the Census Bureau revises estimates for years back to the last census. As each vintage of estimates includes all years since the most recent decennial census, the latest vintage of data available supersedes all previously produced estimates for those dates. The Population Estimates Program provides additional information including historical and intercensal estimates, evaluation estimates, demographic analysis, and research papers on its website: http://www.census.gov/popest/index.html.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Experimental Age, Sex, Race, and Ethnicity variables. Due to the impact of the COVID-19 pandemic, instead of providing the standard 1-year data products, the Census Bureau released experimental estimates from the 1-year data. This includes a limited number of data tables for the nation, states, and the District of Columbia. Please visit the following webpage for details. https://www.census.gov/programs-surveys/acs/data/experimental-data.htmlContact: District of Columbia, Office of Planning. Email: planning@dc.gov. Geography: District-wide. Current Vintage: 2020. ACS Table(s): Demographic - Experimental. Data downloaded from: Census Bureau's API for American Community Survey. Date of API call: March 18, 2022. National Figures: data.census.gov. Please cite the Census and ACS when using this data. Data Note from the Census: Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. Data processed using R statistical package and ArcGIS Desktop. Margin of Error was not included in this layer but is available from the Census Bureau. Contact the Office of Planning for more information about obtaining Margin of Error values.
Facebook
Twitterhttps://www.caliper.com/license/maptitude-license-agreement.htmhttps://www.caliper.com/license/maptitude-license-agreement.htm
2010 Census Tract data for use with GIS mapping software, databases, and web applications are from Caliper Corporation. Available for Maptitude or in any format such as shapefile, KML, KMZ, GeoJSON.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Please visit the following webpage for details. https://www.census.gov/programs-surveys/acs/data/experimental-data.htmlContact: District of Columbia, Office of Planning. Email: planning@dc.gov. Geography: District-wide. Current Vintage: 2020. ACS Table(s): Demographic - Experimental. Data downloaded from: Census Bureau's API for American Community Survey. Date of API call: March 18, 2022. National Figures: data.census.gov. Please cite the Census and ACS when using this data. Data Note from the Census: Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. Data processed using R statistical package and ArcGIS Desktop. Margin of Error was not included in this layer but is available from the Census Bureau. Contact the Office of Planning for more information about obtaining Margin of Error values.
Facebook
TwitterAge, Sex, Race, Ethnicity, Total Housing Units, and Voting Age Population. This service is updated annually with American Community Survey (ACS) 5-year data. Contact: District of Columbia, Office of Planning. Email: planning@dc.govGeography: Census TractsCurrent Vintage: 2019-2023ACS Table(s): DP05Data downloaded from: Census Bureau's API for American Community Survey Date of API call: January 2, 2025National Figures: data.census.gov The United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data. Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables. Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2010 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Data processed using R statistical package and ArcGIS Pro.Margin of Error was not included in this layer but is available from the Census Bureau. Contact the Office of Planning for more information about obtaining Margin of Error values.
Facebook
TwitterAge, Sex, Race, Ethnicity, Total Housing Units, and Voting Age Population. This service is updated annually with American Community Survey (ACS) 5-year data. Contact: District of Columbia, Office of Planning. Email: planning@dc.govGeography: Census TractsCurrent Vintage: 2019-2023ACS Table(s): DP05Data downloaded from: Census Bureau's API for American Community Survey Date of API call: January 2, 2025National Figures: data.census.gov The United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data. Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables. Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2010 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Data processed using R statistical package and ArcGIS Desktop.Margin of Error was not included in this layer but is available from the Census Bureau. Contact the Office of Planning for more information about obtaining Margin of Error values.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Abstract: These are results from a network of 65 tree census plots in Panama. At each, every individual stem in a rectangular area of specified size is given a unique number and identified to species, then stem diameter measured in one or more censuses. Data from these numerous plots and inventories were collected following the same methods as, and species identity harmonized with, the 50-ha long-term tree census at Barro Colorado Island. Precise location of every site, elevation, and estimated rainfall (for many sites) are also included. These data were gathered over many years, starting in 1994 and continuing to the present, by principal investigators R. Condit, R. Perez, S. Lao, and S. Aguilar. Funding has been provided by many organizations.Description:marenaRecent.full.Rdata5Jan2013.zip: A zip archive holding one R Analytical Table, a version of the Marena plots' census data in R format, designed for data analysis. This and all other tables labelled 'full' have one record per individual tree found in that census. Detailed documentations of the 'full' tables is given in RoutputFull.pdf (see component 10 below); an additional column 'plot' is included because the table includes records from many different locations. Plot coordinates are given in PanamaPlot.txt (component 12 below). This one file, 'marenaRecent.full1.rdata', has data from the latest census at 60 different plots. These are the best data to use if only a single plot census is needed. marena2cns.full.Rdata5Jan2013.zip: R Analytical Tables of the style 'full' for 44 plots with two censuses: 'marena2cns.full1.rdata' for the first census and 'marena2cns.full2.rdata' for the second census. These 44 plots are a subset of the 60 found in marenaRecent.full (component 1): the 44 that have been censused two or more times. These are the best data to use if two plot censuses are needed. marena3cns.full.Rdata5Jan2013.zip. R Analytical Tables of the style 'full' for nine plots with three censuses: 'marena3cns.full1.rdata' for the first census through 'marena2cns.full3.rdata' for the third census. These nine plots are a subset of the 44 found in marena2cns.full (component 2): the nine that have been censused three or more times. These are the best data to use if three plot censuses are needed. marena4cns.full.Rdata5Jan2013.zip. R Analytical Tables of the style 'full' for six plots with four censuses: 'marena4cns.full1.rdata' for the first census through 'marena4cns.full4.rdata' for the fourth census. These six plots are a subset of the nine found in marena3cns.full (component 3): the six that have been censused four or more times. These are the best data to use if four plot censuses are needed. marenaRecent.stem.Rdata5Jan2013.zip. A zip archive holding one R Analytical Table, a version of the Marena plots' census data in R format. These are designed for data analysis. This one file, 'marenaRecent.full1.rdata', has data from the latest census at 60 different plots. The table has one record per individual stem, necessary because some individual trees have more than one stem. Detailed documentations of these tables is given in RoutputFull.pdf (see component 11 below); an additional column 'plot' is included because the table includes records from many different locations. Plot coordinates are given in PanamaPlot.txt (component 12 below). These are the best data to use if only a single plot census is needed, and individual stems are desired. marena2cns.stem.Rdata5Jan2013.zip. R Analytical Tables of the style 'stem' for 44 plots with two censuses: 'marena2cns.stem1.rdata' for the first census and 'marena3cns.stem2.rdata' for the second census. These 44 plots are a subset of the 60 found in marenaRecent.stem (component 1): the 44 that have been censused two or more times. These are the best data to use if two plot censuses are needed, and individual stems are desired. marena3cns.stem.Rdata5Jan2013.zip. R Analytical Tables of the style 'stem' for nine plots with three censuses: 'marena3cns.stem1.rdata' for the first census through 'marena3cns.stem3.rdata' for the third census. These nine plots are a subset of the 44 found in marena2cns.stem (component 6): the nine that have been censused three or more times. These are the best data to use if three plot censuses are needed, and individual stems are desired. marena4cns.stem.Rdata5Jan2013.zip. R Analytical Tables of the style 'stem' for six plots with four censuses: 'marena3cns.stem1.rdata' for the first census through 'marena3cns.stem3.rdata' for the third census. These six plots are a subset of the nine found in marena3cns.stem (component 7): the six that have been censused four or more times. These are the best data to use if four plot censuses are needed, and individual stems are desired. bci.spptable.rdata. A list of the 1414 species found across all tree plots and inventories in Panama, in R format. The column 'sp' in this table is a code identifying the species in the full census tables (marena.full and marena.stem, components 1-4 and 5-8 above). RoutputFull.pdf: Detailed documentation of the 'full' tables in Rdata format (components 1-4 above). RoutputStem.pdf: Detailed documentation of the 'stem' tables in Rdata format (component 5-8 above). PanamaPlot.txt: Locations of all tree plots and inventories in Panama.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Sources: U.S. Census Bureau; American Community Survey, 2019-2023 American Community Survey 5-Year Estimates, Tables B02001; generated by CCRPC staff; using data.census.gov; https://data.census.gov; (16 December 2024). U.S. Census Bureau; American Community Survey, 2019-2023 American Community Survey 5-Year Estimates, Table B03002; generated by CCRPC staff; using data.census.gov; https://data.census.gov; (16 December 2024).
Facebook
TwitterOpen Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
Sources: U.S. Census Bureau, Census 2020; generated by CCRPC staff; using 2020 Census Demographic Data Map Viewer; https://www.census.gov/library/visualizations/2021/geo/demographicmapviewer.html; (18 August 2021); U.S. Census Bureau; Census 2000, Summary File 1, Table DP-1; generated by CCRPC staff; using American FactFinder; http://factfinder2.census.gov; (30 December 2015). U.S. Census Bureau; Census 2010, Summary File 1, Table P1; generated by CCRPC staff; using American FactFinder; http://factfinder2.census.gov; (30 December 2015). U.S. Census Bureau; 1980 Census of Population, Volume 1: Characteristics of the Population, Chapter A: Number of Inhabitants, Part 15: Illinois, PC80-1-A15, Table 2, Land Area and Population: 1930-1980. U.S. Census Bureau; Fourteenth Census of the United States; State Compendium Illinois, Table 1. - Area and Population of Counties: 1850 to 1920; https://www.census.gov/library/publications/1924/dec/state-compendium.html; (23 August 2018).
Facebook
TwitterHousehold type, Education, Disability, Language, Computer/Internet Use, and more. This service is updated annually with American Community Survey (ACS) 5-year data. Contact: District of Columbia, Office of Planning. Email: planning@dc.gov. Geography: Census Tracts. Current Vintage: 2016-2020. ACS Table(s): DP02. Data downloaded from: Census Bureau's API for American Community Survey. Date of API call: April 8, 2022. National Figures: data.census.gov. Please cite the Census and ACS when using this data. Data Note from the Census: Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables. Data Processing Notes: This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2020 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page. Data processed using R statistical package and ArcGIS Desktop. Margin of Error was not included in this layer but is available from the Census Bureau. Contact the Office of Planning for more information about obtaining Margin of Error values.
Facebook
TwitterOpen Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
TO VIEW AND DOWNLOAD THE ACTUAL DATA, CLICK ON ONE OF THE LAYERS BELOWDescriptionThis dataset was created in late 2021 using the Census Bureau's redistricting PL 94-171 dataset. The block-level data is the official release of Census results, provided in a text format that requires processing via R or other statistical software. City Planning ran analysis of the Census results by aggregating data by city neighborhoods and comparing it to 2010 results to help the City and others understand how Cleveland's demographics changed from 2010 to 2020.This dataset is featured in the following app(s):Census 2020 in Cleveland Story MapTransit Oriented Development in ClevelandData GlossarySee the Attributes section in each layer below for information concerning fields.Update FrequencyStaticContactsCleveland City Planning Commission, Zoning & TechnologyDro Sohrabian, dsohrabian@clevelandohio.gov
Facebook
TwitterThis is Census 2020 block data specifically formatted for use by the Environmental Protection Agency (EPA) in-development Environmental Justice Analysis Multisite (EJAM) tool, which uses R code to find which block centroids are within X miles of each specified point (e.g., regulated facility), and to find those distances. The datasets have latitude and longitude of each block's internal point, as provided by Census Bureau, and the FIPS code of the block and its parent block group. The datasets also include a weight for each block, representing this block's Census 2020 population count as a fraction of the count for the parent block group overall, for use in estimating how much of a given block group is within X miles of a specified point or inside a polygon of interest. The datasets also have an effective radius of each block, which is what the radius would be in miles if the block covered the same area in square miles but were circular. The datasets also have coordinates in units that facilitate building a quadtree index of locations. They are in R data.table format, saved as .rda or .arrow files to be read by R code.
Facebook
Twitteranalyze the current population survey (cps) annual social and economic supplement (asec) with r the annual march cps-asec has been supplying the statistics for the census bureau's report on income, poverty, and health insurance coverage since 1948. wow. the us census bureau and the bureau of labor statistics ( bls) tag-team on this one. until the american community survey (acs) hit the scene in the early aughts (2000s), the current population survey had the largest sample size of all the annual general demographic data sets outside of the decennial census - about two hundred thousand respondents. this provides enough sample to conduct state- and a few large metro area-level analyses. your sample size will vanish if you start investigating subgroups b y state - consider pooling multiple years. county-level is a no-no. despite the american community survey's larger size, the cps-asec contains many more variables related to employment, sources of income, and insurance - and can be trended back to harry truman's presidency. aside from questions specifically asked about an annual experience (like income), many of the questions in this march data set should be t reated as point-in-time statistics. cps-asec generalizes to the united states non-institutional, non-active duty military population. the national bureau of economic research (nber) provides sas, spss, and stata importation scripts to create a rectangular file (rectangular data means only person-level records; household- and family-level information gets attached to each person). to import these files into r, the parse.SAScii function uses nber's sas code to determine how to import the fixed-width file, then RSQLite to put everything into a schnazzy database. you can try reading through the nber march 2012 sas importation code yourself, but it's a bit of a proc freak show. this new github repository contains three scripts: 2005-2012 asec - download all microdata.R down load the fixed-width file containing household, family, and person records import by separating this file into three tables, then merge 'em together at the person-level download the fixed-width file containing the person-level replicate weights merge the rectangular person-level file with the replicate weights, then store it in a sql database create a new variable - one - in the data table 2012 asec - analysis examples.R connect to the sql database created by the 'download all microdata' progr am create the complex sample survey object, using the replicate weights perform a boatload of analysis examples replicate census estimates - 2011.R connect to the sql database created by the 'download all microdata' program create the complex sample survey object, using the replicate weights match the sas output shown in the png file below 2011 asec replicate weight sas output.png statistic and standard error generated from the replicate-weighted example sas script contained in this census-provided person replicate weights usage instructions document. click here to view these three scripts for more detail about the current population survey - annual social and economic supplement (cps-asec), visit: the census bureau's current population survey page the bureau of labor statistics' current population survey page the current population survey's wikipedia article notes: interviews are conducted in march about experiences during the previous year. the file labeled 2012 includes information (income, work experience, health insurance) pertaining to 2011. when you use the current populat ion survey to talk about america, subract a year from the data file name. as of the 2010 file (the interview focusing on america during 2009), the cps-asec contains exciting new medical out-of-pocket spending variables most useful for supplemental (medical spending-adjusted) poverty research. confidential to sas, spss, stata, sudaan users: why are you still rubbing two sticks together after we've invented the butane lighter? time to transition to r. :D