Facebook
TwitterThe Bureau of the Census has released Census 2000 Summary File 1 (SF1) 100-Percent data. The file includes the following population items: sex, age, race, Hispanic or Latino origin, household relationship, and household and family characteristics. Housing items include occupancy status and tenure (whether the unit is owner or renter occupied). SF1 does not include information on incomes, poverty status, overcrowded housing or age of housing. These topics will be covered in Summary File 3. Data are available for states, counties, county subdivisions, places, census tracts, block groups, and, where applicable, American Indian and Alaskan Native Areas and Hawaiian Home Lands. The SF1 data are available on the Bureau's web site and may be retrieved from American FactFinder as tables, lists, or maps. Users may also download a set of compressed ASCII files for each state via the Bureau's FTP server. There are over 8000 data items available for each geographic area. The full listing of these data items is available here as a downloadable compressed data base file named TABLES.ZIP. The uncompressed is in FoxPro data base file (dbf) format and may be imported to ACCESS, EXCEL, and other software formats. While all of this information is useful, the Office of Community Planning and Development has downloaded selected information for all states and areas and is making this information available on the CPD web pages. The tables and data items selected are those items used in the CDBG and HOME allocation formulas plus topics most pertinent to the Comprehensive Housing Affordability Strategy (CHAS), the Consolidated Plan, and similar overall economic and community development plans. The information is contained in five compressed (zipped) dbf tables for each state. When uncompressed the tables are ready for use with FoxPro and they can be imported into ACCESS, EXCEL, and other spreadsheet, GIS and database software. The data are at the block group summary level. The first two characters of the file name are the state abbreviation. The next two letters are BG for block group. Each record is labeled with the code and name of the city and county in which it is located so that the data can be summarized to higher-level geography. The last part of the file name describes the contents . The GEO file contains standard Census Bureau geographic identifiers for each block group, such as the metropolitan area code and congressional district code. The only data included in this table is total population and total housing units. POP1 and POP2 contain selected population variables and selected housing items are in the HU file. The MA05 table data is only for use by State CDBG grantees for the reporting of the racial composition of beneficiaries of Area Benefit activities. The complete package for a state consists of the dictionary file named TABLES, and the five data files for the state. The logical record number (LOGRECNO) links the records across tables.
Facebook
TwitterSourcing accurate and up-to-date demographics GIS data across Asia and MENA has historically been difficult for retail brands looking to expand their store networks in these regions. Either the data does not exist or it isn't readily accessible or updated regularly.
GapMaps uses known population data combined with billions of mobile device location points to provide highly accurate and globally consistent geodemographic datasets across Asia and MENA at 150m x 150m grid levels in major cities and 1km grids outside of major cities.
With this information, brands can get a detailed understanding of who lives in a catchment, where they work and their spending potential which allows you to:
Premium demographics GIS data for Asia and MENA includes the latest estimates (updated annually) on:
Primary Use Cases for GapMaps Demographics GIS Data:
Integrate GapMaps demographic data with your existing GIS or BI platform to generate powerful visualizations.
Commercial Real-Estate (Brokers, Developers, Investors, Single & Multi-tenant O/O)
Tenant Recruitment
Target Marketing
Market Potential / Gap Analysis
Marketing / Advertising (Billboards/OOH, Marketing Agencies, Indoor Screens)
Customer Profiling
Target Marketing
Market Share Analysis
Facebook
Twitter(by Joseph Kerski)This map is for use in the "What is the spatial pattern of demographic variables around the world?" activity in Section 1 of the Going Places with Spatial Analysiscourse. The map contains population characteristics by country for 2013.These data come from the Population Reference Bureau's 2014 World Population Data Sheet.The Population Reference Bureau (PRB) informs people around the world about population, health, and the environment, empowering them to use that information to advance the well-being of current and future generations.PRB analyzes complex demographic data and research to provide the most objective, accurate, and up-to-date population information in a format that is easily understood by advocates, journalists, and decision makers alike.The 2014 year's data sheet has detailed information on 16 population, health, and environment indicators for more than 200 countries. For infant mortality, total fertility rate, and life expectancy, we have included data from 1970 and 2013 to show change over time. This year's special data column is on carbon emissions.For more information about how PRB compiles its data, see: https://www.prb.org/
Facebook
TwitterCensus Tracts are small, relatively permanent statistical subdivisions of a county or statistically equivalent entity delineated by local participants as part of the U.S. Census Bureau's Participant Statistical Areas Program. The primary purpose of Census Tracts is to provide a stable set of geographic units for the presentation of decennial census data. In 1980 the New Orleans City Planning Commission, for planning and decision-making purposes, divided the city into Census Tract based 'neighborhoods'. Additional neighborhoods were created after the 1990 and 2000 Censuses. Following Hurricane Katrina the Greater New Orleans Community Data Center (GNOCDC) settled on these boundaries to facilitate the use of local data in decision-making. These neighborhoods underwent further change during the 2010 Census due to modifications (consolidation and/or splitting) of Census Tracts, the resulting boundaries were renamed as 'Neighborhood Statistical Areas' to reflect their actual function.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
There are a number of Kaggle datasets that provide spatial data around New York City. For many of these, it may be quite interesting to relate the data to the demographic and economic characteristics of nearby neighborhoods. I hope this data set will allow for making these comparisons without too much difficulty.
Exploring the data and making maps could be quite interesting as well.
This dataset contains two CSV files:
nyc_census_tracts.csv
This file contains a selection of census data taken from the ACS DP03 and DP05 tables. Things like total population, racial/ethnic demographic information, employment and commuting characteristics, and more are contained here. There is a great deal of additional data in the raw tables retrieved from the US Census Bureau website, so I could easily add more fields if there is enough interest.
I obtained data for individual census tracts, which typically contain several thousand residents.
census_block_loc.csv
For this file, I used an online FCC census block lookup tool to retrieve the census block code for a 200 x 200 grid containing
New York City and a bit of the surrounding area. This file contains the coordinates and associated census block codes along
with the state and county names to make things a bit more readable to users.
Each census tract is split into a number of blocks, so one must extract the census tract code from the block code.
The data here was taken from the American Community Survey 2015 5-year estimates (https://factfinder.census.gov/faces/nav/jsf/pages/index.xhtml).
The census block coordinate data was taken from the FCC Census Block Conversions API (https://www.fcc.gov/general/census-block-conversions-api)
As public data from the US government, this is not subject to copyright within the US and should be considered public domain.
Facebook
Twitter"""
This dataset provides a detailed breakdown of demographic information for counties across the United States, derived from the U.S. Census Bureau's 2023 American Community Survey (ACS). The data includes population counts by gender, race, and ethnicity, alongside unique identifiers for each county using State and County FIPS codes.
The dataset includes the following columns: - County: Name of the county. - State: Name of the state the county belongs to. - State FIPS Code: Federal Information Processing Standard (FIPS) code for the state. - County FIPS Code: FIPS code for the county. - FIPS: Combined State and County FIPS codes, a unique identifier for each county. - Total Population: Total population in the county. - Male Population: Number of males in the county. - Female Population: Number of females in the county. - Total Race Responses: Total race-related responses recorded in the survey. - White Alone: Number of individuals identifying as White alone. - Black or African American Alone: Number of individuals identifying as Black or African American alone. - Hispanic or Latino: Number of individuals identifying as Hispanic or Latino.
NAME field for clarity.This dataset is highly versatile and suitable for: - Demographic Analysis: - Analyze population distribution by gender, race, and ethnicity. - Geographic Studies: - Use FIPS codes to map counties geographically. - Data Visualizations: - Create visual insights into demographic trends across counties.
Special thanks to the U.S. Census Bureau for making this data publicly available and to the Kaggle community for fostering a collaborative space for data analysis and exploration. """
Facebook
TwitterThe TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. ZIP Code Tabulation Areas (ZCTAs) are approximate area representations of U.S. Postal Service (USPS) ZIP Code service areas that the Census Bureau creates to present statistical data for each decennial census. The Census Bureau delineates ZCTA boundaries for the United States, Puerto Rico, American Samoa, Guam, the Commonwealth of the Northern Mariana Islands, and the U.S. Virgin Islands once each decade following the decennial census. Data users should not use ZCTAs to identify the official USPS ZIP Code for mail delivery. The USPS makes periodic changes to ZIP Codes to support more efficient mail delivery. The Census Bureau uses tabulation blocks as the basis for defining each ZCTA. Tabulation blocks are assigned to a ZCTA based on the most frequently occurring ZIP Code for the addresses contained within that block. The most frequently occurring ZIP Code also becomes the five-digit numeric code of the ZCTA. These codes may contain leading zeros. Blocks that do not contain addresses but are surrounded by a single ZCTA (enclaves) are assigned to the surrounding ZCTA. Because the Census Bureau only uses the most frequently occurring ZIP Code to assign blocks, a ZCTA may not exist for every USPS ZIP Code. Some ZIP Codes may not have a matching ZCTA because too few addresses were associated with the specific ZIP Code or the ZIP Code was not the most frequently occurring ZIP Code within any of the blocks where it exists. The ZCTA boundaries in this release are those delineated following the 2020 Census.
Facebook
TwitterAn application (https://maps.seattle.gov/ACS-Neighborhood-Profiles) that presents U.S. Census Bureau 5-year American Community Survey data for census tracts in King County, Washington. Presented in a dashboard format with selectors for different time periods and levels of geographies, these snapshots are a curated set of data grouped into 12 topical profiles. Data is pulled from the demographic profiles DP02-DP05 and several supplemental tables for multiple nonoverlapping vintages starting in 2006-2010 and shown by the corresponding census tract vintage. Also includes the most recent release annually (usually released in December for the previous year) with the vintage identified in the "ACS Vintage" field. Use caution when looking at the most recent year as some data in the sample are the same as in the five-year period just prior.Data is presented in charts and graphs for pre-defined geographies as well as custom selection of census tracts either from a list or by selecting tracts on the map (shift-click to select multiple tracts). The census tract boundaries match the vintage of the ACS data (currently 2010 and 2020) so please note the geographic changes between the decades. Charts allow downloading of the summarized data shown in the chart.The City of Seattle geography does not include the small portions of tracts 263, 264, 265, so city totals will vary slightly from published Census Bureau numbers.Tracts have been coded as being within the City of Seattle as well as assigned to neighborhood groups called "Community Reporting Areas". These areas were created after the 2000 census to provide geographically consistent neighborhoods through time for reporting U.S. Census Bureau data. This is not an attempt to identify neighborhood boundaries as defined by neighborhoods themselves. Get all the data for these profiles from SeattleGeoData. The full range of data products from the U.S. Census Bureau can be found by visiting the online data portal Explore Census Data.Interested in mapping the ACS? Check out this gallery for mapping apps and other census related dashboards.Important notes: ACS estimates are based on a survey mailed to a small percentage of houeholds and may carry substantial margins of error for small geographic areas or population groups. The margin of error (MOE) is an indicator of the reliability of the ACS estimate. Please see the Census Bureau guidance on calculating ....can't find something easy to link to....The 2010 and 2015 ACS vintages use the 2010 census tracts. The years 2020 and beyond use the 2020 census tracts. There were a significant number of new tracts created in 2020 so please use caution when comparing at the tract level between those time periods.Medians for aggregated areas are the weighted averages of the medians for the tracts selected.Monetary values are inflation-adjusted to the vintage year.Housing characteristics may not match other sources of housing data such as the King County Assessor or City of Seattle permit reports.Credits:Most icons sourced from the Noun Project.(Lars Meiertoberens, MRK, Gan Khoon Lay ....)
Facebook
TwitterGeolocet's Administrative Boundaries Spatial Data serves as the gateway to visualizing geographic distributions and patterns with precision. The comprehensive dataset covers all European countries, encompassing the boundaries of each country, as well as its political and statistical divisions. Tailoring data purchases to exact needs is possible, allowing for the selection of individual levels of geography or bundling all levels for a country with a discount. The seamless integration of administrative boundaries onto digital maps transforms raw data into actionable insights.
🌐 Coverage Across European Countries
Geolocet's Administrative Boundaries Data offers coverage across all European countries, ensuring access to the most up-to-date and accurate geographic information. From national borders to the finest-grained administrative units, this data enables informed choices based on verified and official sources.
🔍 Geographic Context for Strategic Decisions
Understanding the geographical context is crucial for strategic decision-making. Geolocet's Administrative Boundaries Spatial Data empowers exploration of geo patterns, planning expansions, analysis of regional demographics, and optimization of operations with precision. Whether it is for establishing new business locations, efficient resource allocation, or policy impact analysis, this data provides the essential geographic context for success.
🌍 Integration with Geolocet’s Demographic Data
The integration of Geolocet's Administrative Boundaries Spatial Data with Geolocet's Demographic Data creates a synergy that enriches insights. The combination of administrative boundaries and demographic information offers a comprehensive understanding of regions and their unique characteristics. This integration enables tailoring of strategies, marketing campaigns, and resource allocation to specific areas with confidence.
🌍 Integration with Geolocet’s POI Data
Combining Geolocet's Administrative Boundaries Spatial Data with our POI (Points of Interest) Data unveils not only the administrative divisions but also insights into the local characteristics of these areas. Overlaying POI data on administrative boundaries reveals details about the number and types of businesses, services, and amenities within specific regions. Whether conducting market research, identifying prime locations for retail outlets, or analyzing the accessibility of essential services, this combined data empowers a holistic view of target areas.
🔍 Customized Data Solutions with DaaS
Geolocet's Data as a Service (DaaS) model offers flexibility tailored to specific needs. The transparent pricing model ensures cost-efficiency, allowing payment solely for the required data. Whether nationwide administrative boundary data or specific regional details are needed, Geolocet provides a solution to match individual objectives. Contact us today to explore how Geolocet's Administrative Boundaries Spatial Data can elevate decision-making processes and provide the essential geographic data for success.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset provides a comprehensive overview of Brazil’s 2022 Census data, focusing on São Paulo’s neighbourhoods. The data combines demographic and socioeconomic information with geospatial shapefiles of São Paulo’s neighbourhoods, enabling users to perform statistical and spatial analyses.
Users can explore patterns, trends, and transformations in São Paulo’s urban landscape by linking census sectors to neighbourhood boundaries.
This dataset is ideal for data scientists, urban planners, and researchers seeking to uncover the dynamics of São Paulo’s neighbourhoods through an intersection of demographic and spatial data.
Contribute to new insights and empower decision-making in understanding Brazil’s largest city!
Facebook
TwitterThe data in the dataset come from the Estonian Statistical Database. Grid-based population data are updated once a year. Census data are georeferenced to building accuracy, which allows data to be aggregated to grid level of different resolution. The building's centroid was used as the basis for aggregating into squares. The data of several buildings within the square were linked to the square where the building's centroid was located. If the population data could not be linked to the building (the data were linked to the building by address and in some cases the address was not identifiable), the data were added in the middle of the village or census station. Counted homeless people are also associated with the village or precinct centre.
The 1 km x 1 km square map of the population covers the whole territory of Estonia, including only inhabited squares. Grid-based data serve as a basis for making competent decisions in the preparation of social plans and development plans, including regional development plans. Grid-based data are used in scientific research, in the private sector mainly to select the best location and to define the target group.
Facebook
TwitterCensus Current (2022) Legal and Statistical Entities Web Map Service; January 1, 2022 vintage.
County Subdivisions are the primary divisions of counties and equivalent entities. They include census county divisions, census subareas, minor civil divisions, and unorganized territories, and can be classified as either legal or statistical. Legal entities are termed minor civil divisions and statistical entities can be either census county divisions, census subareas, or unorganized territories.
Minor Civil Divisions (MCDs) are the primary governmental or administrative divisions of a county in many states (parishes in Louisiana) and of the county equivalents in Puerto Rico and the Island Areas. MCDs in the United States, Puerto Rico, and the Island Areas represent many different kinds of legal entities with a wide variety of governmental and/or administrative functions. MCDs include areas variously designated as barrios, barrios-pueblo, boroughs, charter townships, commissioner districts, election districts, election precincts, gores, grants, locations, magisterial districts, parish governing authority districts, plantations, purchases, reservations, supervisor's districts, towns, and townships. The Census Bureau recognizes MCDs in 29 states, Puerto Rico, and the Island Areas. The District of Columbia has no primary divisions, and is considered equivalent to an MCD for statistical purposes.
In some states, all or some incorporated places are not part of any MCD; these places are termed independent places. In nine states-Maine, Massachusetts, New Hampshire, New Jersey, North Dakota, Pennsylvania, Rhode Island, South Dakota, and Wisconsin-all incorporated places are independent places. In other states, incorporated places are part of, or dependent within, the MCDs in which they are located, or the pattern is mixed-some incorporated places are independent of MCDs and others are included within one or more MCDs.
In New York and Maine, American Indian reservations (AIRs) generally exist outside the jurisdiction of any town (MCD) and thus also serve as the equivalent of MCDs for purposes of data presentation.
In states with legal MCDs, the Census Bureau assigns a default FIPS county subdivision code of 00000 and ANSI code of eight zeroes in some coastal, territorial sea, and Great Lakes water where county subdivisions do not extend into the Great Lakes or out to the three-mile limit.
Census County Divisions (CCDs) are areas delineated by the Census Bureau in cooperation with state, tribal, and local officials for statistical purposes. CCDs have no legal function and are not governmental units. CCD boundaries usually follow visible features and usually coincide with census tract boundaries. The name of each CCD is based on a place, county, or well-known local name that identifies its location.
Census Subareas are statistical subdivisions of boroughs, city and boroughs, municipalities, and census areas, the statistical equivalent entities for counties in Alaska. The state of Alaska and the Census Bureau cooperatively delineate the census subareas to serve as the statistical equivalents of MCDs.
Unorganized Territories (UTs) are defined by the Census Bureau in nine MCD states where portions of counties or equivalent entities are not included in any legally established MCD or incorporated place. The Census Bureau recognizes such separate pieces of territory as one or more separate county subdivisions for census purposes. It assigns each unorganized territory a descriptive name, followed by the designation "UT".
Facebook
TwitterODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
A. SUMMARY The Department of Public Health and the Mayor’s Office of Housing and Community Development, with support from the Planning Department, created these 41 neighborhoods by grouping 2010 Census tracts, using common real estate and residents’ definitions for the purpose of providing consistency in the analysis and reporting of socio-economic, demographic, and environmental data, and data on City-funded programs and services. These neighborhoods are not codified in Planning Code nor Administrative Code, although this map is referenced in Planning Code Section 415 as the “American Community Survey Neighborhood Profile Boundaries Map. Note: These are NOT statistical boundaries as they are not controlled for population size. This is also NOT an official map of neighborhood boundaries in SF but an aggregation of Census tracts and should be used in conjunction with other spatial boundaries for decision making. B. HOW THE DATASET IS CREATED This dataset is produced by assigning Census tracts to neighborhoods based on existing neighborhood definitions used by Planning and MOHCD. A qualitative assessment is made to identify the appropriate neighborhood for a given tract based on understanding of population distribution and significant landmarks. Once all tracts have been assigned a neighborhood, the tracts are dissolved to produce this dataset, Analysis Neighborhoods. C. UPDATE PROCESS This dataset is static. Changes to the analysis neighborhood boundaries will be evaluated as needed by the Analysis Neighborhood working group led by DataSF and the Planning department and includes staff from various other city departments. Contact us for any questions. D. HOW TO USE THIS DATASET Downloading this dataset and opening it in Excel may cause some of the data values to be lost or not display properly (particularly the Analysis Neighborhood column). For a simple list of Analysis Neighborhoods without geographic coordinates, click here: https://data.sfgov.org/resource/xfcw-9evu.csv?$select=nhood E. RELATED DATASETS 2020 Census tracts assigned a neighborhood 2010 Census tracts assigned a neighborhood View this dataset on ArcGIS Online
Facebook
TwitterStatistics Canada conducts the Census of Agriculture every five years at the same time as the Census of Population. The most recent Census of Agriculture was on May 15, 2001.The Census of Agriculture collects and disseminates a wide range of data on the agriculture industry such as number and type of farms, farm operator characteristics, business operating arrangements, land management practices, crop areas, numbers of livestock and poultry, farm capital, operating expenses and receipts, and farm machinery and equipment. These data provide a comprehensive picture of the agriculture industry across Canada every five years at the national and provincial levels as well as at lower levels of geography. The Census of Agriculture is the cornerstone of Canada's Agriculture Statistics Program. Census of Agriculture data are an indispensable public and private sector tool for analysing important changes in the agriculture and food industries;developing, implementing and evaluating agricultural policies and programs such as farm income safety nets and environmental sustainability; and making production, marketing and investment decisions. Statistics Canada uses the data as benchmarks for its regular surveys on crops, livestock and farm finances between census years. In addition, data extracted from the unique Agriculture Population Linkage Database, which links data from both the Census of Population and Census of Agriculture databases, paint a socio-economic portrait not only of farm operators but also of their families and households. This release contains all farm data and farm operations data plus selected historical files. In 2001, a census farm was defined as an agricultural operation that produces at least one of the following products intended for sale: crops (hay, field crops, tree fruits or nuts, berries or grapes, vegetables, seed); livestock (cattle, pigs, sheep, horses, game animals, other livestock); poultry (hens, chickens, turkeys, chicks, game birds, other poultry); animal products (milk or cream, eggs, wool, furs, meat); or other agricultural products (Christmas trees, greenhouse or nursery products, mushrooms, sod, honey, maple syrup products). For 2001, a new farm type classification based on the North American Industrial Classification System (NAICS) has been added to the historical classification used in previous censuses. All tabulated data are subject to confidentiality restrictions prior to release. Due to confidentiality constraints, data for those geographic areas with very few agricultural operations are not released separately, but rather merged with a geographically adjacent area.
Facebook
TwitterMEJ aims to create easy-to-use, publicly-available maps that paint a holistic picture of intersecting environmental, social, and health impacts experienced by communities across the US.
With guidance from the residents of impacted communities, MEJ combines environmental, public health, and demographic data into an indicator of vulnerability for communities in every state. MEJ’s goal is to fill an existing data gap for individual states without environmental justice mapping tools, and to provide a valuable tool for advocates, scholars, students, lawyers, and policy makers.
The negative effects of pollution depend on a combination of vulnerability and exposure. People living in poverty, for example, are more likely to develop asthma or die due to air pollution. The method MEJ uses, following the method developed for CalEnviroScreen, reflects this in the two overall components of a census tract’s final “Cumulative EJ Impact”: population characteristics and pollution burden. The CalEnviroScreen methodology was developed through an intensive, multi-year effort to develop a science-backed, peer-reviewed tool to assess environmental justice in a holistic way, and has since been replicated by several other states.
CalEnviroScreen Methodology:
Population characteristics are a combination of socioeconomic data (often referred to as the social determinants of health) and health data that together reflect a populations' vulnerability to pollutants. Pollution burden is a combination of direct exposure to a pollutant and environmental effects, which are adverse environmental conditions caused by pollutants, such as toxic waste sites or wastewater releases. Together, population characteristics and pollution burden help describe the disproportionate impact that environmental pollution has on different communities.
Every indicator is ranked as a percentile from 0 to 100 and averaged with the others of the same component to form an overall score for that component. Each component score is then percentile ranked to create a component percentile. The Sensitive Populations component score, for example, is the average of a census tract’s Asthma, Low Birthweight Infants, and Heart Disease indicator percentiles, and the Sensitive Populations component percentile is the percentile rank of the Sensitive Populations score.
The Population Characteristics score is the average of the Sensitive Populations component score and the Socioeconomic Factors component score. The Population Characteristics percentile is the percentile rank of the Population Characteristics score.
The Pollution Burden score is the average of the Pollution Exposure component score and one half of the Environmental Effects component score (Environmental Effects may have a smaller effect on health outcomes than the indicators included the Exposures component so are weighted half as much as Exposures). The Pollution Burden percentile is the percentile rank of the Pollution Burden score.
The Populaton Characteristics and Pollution Burden scores are then multiplied to find the final Cumulative EJ Impact score for a census tract, and then this final score is percentile-ranked to find a census tract's final Cumulative EJ Impact percentile.
Census tracts with no population aren't given a Population Characteristics score.
Census tracts with an indicator score of zero are assigned a percentile rank of zero. Percentile rank is then only calculated for those census tracts with a score above zero.
Census tracts that are missing data for more than two indicators don't receive a final Cumulative EJ Impact ranking.
%3C!-- --%3E
Facebook
TwitterGeolocet offers a rich repository of European demographic data, providing you with a robust foundation for data-driven decisions. Our datasets encompass a diverse range of attributes, but it's important to note that the attributes available may vary significantly from country to country. This variation reflects the unique demographic reporting standards and data availability in each region.
Attributes include essential demographic factors such as Age Bands, Gender, and Marital Status, as a minimum. In some countries, we provide cross-referenced attributes, such as Marital Status per Age Band, Marital Status per Gender, or even intricate combinations like Marital Status per Gender and Age. Additionally, for select countries, we offer insights into income, employment status, household composition, housing status, and many more.
🌐 Trusted Source Data
Our demographic data is derived exclusively from official census sources, ensuring the highest level of accuracy and reliability. We take pride in using data that is available under open licenses for commercial use. However, it's important to note that our data is not a direct representation of the original census data. Instead, we use this source data to create comprehensive demographic models that are tailored to your needs.
🔄 Annual Data Updates
To keep your insights fresh and accurate, our data is updated once per year. We offer annual subscriptions, allowing you to access the latest demographic information and maintain the relevance of your analyses.
🌍 Geographic Coverage
While our demographic data spans across the majority of European countries and their administrative divisions' boundaries, it's important to inquire about specific attributes and coverage for each region of interest. We understand that your data needs may vary depending on your target regions, and our team is here to assist you in selecting the most relevant datasets for your objectives.
Contact us to explore our offerings and learn how our data can elevate your decision-making processes.
🌐 Enhanced with Spatial Insights: Administrative Boundaries Spatial Data
Geolocet's demographic data isn't limited to numbers; it's brought to life through seamless integration with our Administrative Boundaries Spatial Data. This integration offers precise boundary mapping, allowing you to visualize demographic distributions, patterns, and densities on a map. This spatial perspective unlocks geo patterns and insights, aiding in strategic decision-making. Whether you're planning localized marketing strategies, optimizing resource allocation, or selecting ideal expansion sites, the geographic context adds depth to your data-driven strategies. Contact us today to explore how this spatial synergy can enhance your decision-making.
🌍 Enhanced with Robust Aggregated POI Data
Geolocet doesn't stop at demographics; we enhance your analysis by offering Geolocet's POI Aggregated Data. This data source provides a comprehensive understanding of local areas, enabling you to craft detailed local area profiles. It's not just about numbers; it's about uncovering the essence of each locality.
🔍 Crafting Local Area Profiles
When you combine our POI Aggregated Data with our Demographics Data, you have the tools to craft insightful local area profiles. Dive into the specific data points for various sectors, such as the number of hospitals, schools, hotels, restaurants, pubs, casinos, groceries, clothing stores, gas stations, and more within designated areas. This level of granularity allows you to paint a vivid picture of each locality, understanding its unique characteristics and offerings.
Contact us today to explore how this synergy can elevate your strategic decision-making and enrich your insights into local communities.
🔍 Customized Data Solutions with DaaS
Geolocet's Data as a Service (DaaS) offers flexibility tailored to your needs. Our transparent pricing model ensures cost-efficiency, allowing you to pay only for the data you require.
Facebook
TwitterThis map compares the number of people living above the poverty line to the number of people living below. Why do this?There are people living below the poverty line everywhere. Nearly every area of the country has a balance of people living above the poverty line and people living below it. There is not an "ideal" balance, so this map makes good use of the national ratio of 6 persons living above the poverty line for every 1 person living below it. Please consider that there is constant movement of people above and below the poverty threshold, as they gain better employment or lose a job; as they encounter a new family situation, natural disaster, health issue, major accident or other crisis. There are areas that suffer chronic poverty year after year. This map does not indicate how long people in the area have been below the poverty line. "The poverty rate is one of several socioeconomic indicators used by policy makers to evaluate economic conditions. It measures the percentage of people whose income fell below the poverty threshold. Federal and state governments use such estimates to allocate funds to local communities. Local communities use these estimates to identify the number of individuals or families eligible for various programs." Source: U.S. Census BureauIn the U.S. overall, there are 6 people living above the poverty line for every 1 household living below. Green areas on the map have a higher than normal number of people living above compared to below poverty. Orange areas on the map have a higher than normal number of people living below the poverty line compared to those above in that same area.The map shows the ratio for counties and census tracts, using these layers, created directly from the U.S. Census Bureau's American Community Survey (ACS)For comparison, an older layer using 2013 ACS data is also provided.The layers are updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. Poverty status is based on income in past 12 months of survey. Current Vintage: 2014-2018ACS Table(s): B17020Data downloaded from: Census Bureau's API for American Community Survey National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2010 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -555555...) have been set to null. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small. NOTE: any calculated percentages or counts that contain estimates that have null margins of error yield null margins of error for the calculated fields.
Facebook
TwitterA map showing disability populations by disability type, based on 2020 Census Tracts with American Community Survey 5 year average data from 2017-2021Disability data come from the American Community Survey (ACS), The survey includes six disability types: hearing difficulty, vision difficulty, cognitive difficulty, ambulatory difficulty, self-care difficulty, and independent living difficulty. Respondents who report anyone of the six disability types are considered to have a disability. Hearing difficulty deaf or having serious difficulty hearing.Vision difficulty blind or having serious difficulty seeing, even when wearing glasses.Cognitive difficulty Because of a physical, mental, or emotional problem, having difficulty remembering, concentrating, or making decisions Ambulatory difficulty Having serious difficulty walking or climbing stairs.Self-care difficulty Having difficulty bathing or dressing.Independent living difficulty Because of a physical, mental, or emotional problem, having difficulty doing errands alone such as visiting a doctor’s office or shopping (DOUT).
Facebook
TwitterGapMaps Live is an easy-to-use location intelligence platform available across 25 countries globally that allows you to visualise your own store data, combined with the latest demographic, economic and population movement intel right down to the micro level so you can make faster, smarter and surer decisions when planning your network growth strategy.
With one single login, you can access the latest estimates on resident and worker populations, census metrics (eg. age, income, ethnicity), consuming class, retail spend insights and point-of-interest data across a range of categories including fast food, cafe, fitness, supermarket/grocery and more.
Some of the world's biggest brands including McDonalds, Subway, Burger King, Anytime Fitness and Dominos use GapMaps Live Map Data as a vital strategic tool where business success relies on up-to-date, easy to understand, location intel that can power business case validation and drive rapid decision making.
Primary Use Cases for GapMaps Live Map Data include:
Some of features our clients love about GapMaps Live Map Data include: - View business locations, competitor locations, demographic, economic and social data around your business or selected location - Understand consumer visitation patterns (“where from” and “where to”), frequency of visits, dwell time of visits, profiles of consumers and much more. - Save searched locations and drop pins - Turn on/off all location listings by category - View and filter data by metadata tags, for example hours of operation, contact details, services provided - Combine public data in GapMaps with views of private data Layers - View data in layers to understand impact of different data Sources - Share maps with teams - Generate demographic reports and comparative analyses on different locations based on drive time, walk time or radius. - Access multiple countries and brands with a single logon - Access multiple brands under a parent login - Capture field data such as photos, notes and documents using GapMaps Connect and integrate with GapMaps Live to get detailed insights on existing and proposed store locations.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This geographical dataset consists of a series of four shapefiles. The main one, EGY_SEC, provides the delineation for the villages (Yahya), cities (Madina), and neighbourhoods (Shiyakha) of Egypt's larger towns. This shapefile comprises 5410 geocoded geographical units linked with the 1996 census data.
The EGY_SEC geographical layer of Egypt's smallest administrative units has been sourced from various paper map series (notably Egyptian administrative military maps and the 1/25.000 series). The layer is georeferenced using Egypt's datum (Egypt 1907 / Blue Belt).
The previous work of Sylvie Fanchette1 on the Nile Delta population mapping has been instrumental in the making of this geodataset.
It was created in the frame of the programme EGIPTE “Explorations Géographiques Informatisées de la Population et du Territoire de l’Égypte » funded by CNRS from 2004 to 2006 (PIR-Ville). It was coordinated by François Moriconi and Eric Denis with the support of Hala Bayoumi and Ahmed Wagih, and hosted during the 1990s’ by the CEDEJ in Cairo.
An updated version of this map is used and can be viewed on the join website: https://www.cedejcapmas.org
The other 3 shapefiles are:
NILE for the Nile River layer
EGYPT for the governorate/muhafaza level layer
EGYPT_GOV for the district-level layer
The dataset is notably in the special issue of the Journal Geocarrefour (Revue de Géographie de Lyon), vol. 73, n°3, 1998 titled Géographie sociale de l'Egypte.
See also:
Denis, É., & Moriconi-Ébrard, F. (1998). La population de l'Egypte 1897-1996. L'information Géographique, 62(1), 12-23.
1. S. Fanchette. 1997. Le delta du Nil. Densités de population et urbanisation des campagnes. Fascicule de Recherches n°32. Urbama-Orstom. Tours. 389 p.
Facebook
TwitterThe Bureau of the Census has released Census 2000 Summary File 1 (SF1) 100-Percent data. The file includes the following population items: sex, age, race, Hispanic or Latino origin, household relationship, and household and family characteristics. Housing items include occupancy status and tenure (whether the unit is owner or renter occupied). SF1 does not include information on incomes, poverty status, overcrowded housing or age of housing. These topics will be covered in Summary File 3. Data are available for states, counties, county subdivisions, places, census tracts, block groups, and, where applicable, American Indian and Alaskan Native Areas and Hawaiian Home Lands. The SF1 data are available on the Bureau's web site and may be retrieved from American FactFinder as tables, lists, or maps. Users may also download a set of compressed ASCII files for each state via the Bureau's FTP server. There are over 8000 data items available for each geographic area. The full listing of these data items is available here as a downloadable compressed data base file named TABLES.ZIP. The uncompressed is in FoxPro data base file (dbf) format and may be imported to ACCESS, EXCEL, and other software formats. While all of this information is useful, the Office of Community Planning and Development has downloaded selected information for all states and areas and is making this information available on the CPD web pages. The tables and data items selected are those items used in the CDBG and HOME allocation formulas plus topics most pertinent to the Comprehensive Housing Affordability Strategy (CHAS), the Consolidated Plan, and similar overall economic and community development plans. The information is contained in five compressed (zipped) dbf tables for each state. When uncompressed the tables are ready for use with FoxPro and they can be imported into ACCESS, EXCEL, and other spreadsheet, GIS and database software. The data are at the block group summary level. The first two characters of the file name are the state abbreviation. The next two letters are BG for block group. Each record is labeled with the code and name of the city and county in which it is located so that the data can be summarized to higher-level geography. The last part of the file name describes the contents . The GEO file contains standard Census Bureau geographic identifiers for each block group, such as the metropolitan area code and congressional district code. The only data included in this table is total population and total housing units. POP1 and POP2 contain selected population variables and selected housing items are in the HU file. The MA05 table data is only for use by State CDBG grantees for the reporting of the racial composition of beneficiaries of Area Benefit activities. The complete package for a state consists of the dictionary file named TABLES, and the five data files for the state. The logical record number (LOGRECNO) links the records across tables.