100+ datasets found
  1. 2024 American Community Survey: DP04 | Selected Housing Characteristics (ACS...

    • data.census.gov
    Updated Apr 21, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS (2024). 2024 American Community Survey: DP04 | Selected Housing Characteristics (ACS 1-Year Estimates Data Profiles) [Dataset]. https://data.census.gov/cedsci/table?q=median%20home%20value%20&
    Explore at:
    Dataset updated
    Apr 21, 2024
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2024
    Description

    Key Table Information.Table Title.Selected Housing Characteristics.Table ID.ACSDP1Y2024.DP04.Survey/Program.American Community Survey.Year.2024.Dataset.ACS 1-Year Estimates Data Profiles.Source.U.S. Census Bureau, 2024 American Community Survey, 1-Year Estimates.Dataset Universe.The dataset universe of the American Community Survey (ACS) is the U.S. resident population and housing. For more information about ACS residence rules, see the ACS Design and Methodology Report. Note that each table describes the specific universe of interest for that set of estimates..Methodology.Unit(s) of Observation.American Community Survey (ACS) data are collected from individuals living in housing units and group quarters, and about housing units whether occupied or vacant. For more information about ACS sampling and data collection, see the ACS Design and Methodology Report..Geography Coverage.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year.Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Sampling.The ACS consists of two separate samples: housing unit addresses and group quarters facilities. Independent housing unit address samples are selected for each county or county-equivalent in the U.S. and Puerto Rico, with sampling rates depending on a measure of size for the area. For more information on sampling in the ACS, see the Accuracy of the Data document..Confidentiality.The Census Bureau has modified or suppressed some estimates in ACS data products to protect respondents' confidentiality. Title 13 United States Code, Section 9, prohibits the Census Bureau from publishing results in which an individual's data can be identified. For more information on confidentiality protection in the ACS, see the Accuracy of the Data document..Technical Documentation/Methodology.Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables.Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Weights.ACS estimates are obtained from a raking ratio estimation procedure that results in the assignment of two sets of weights: a weight to each sample person record and a weight to each sample housing unit record. Estimates of person characteristics are based on the person weight. Estimates of family, household, and housing unit characteristics are based on the housing unit weight. For any given geographic area, a characteristic total is estimated by summing the weights assigned to the persons, households, families or housing units possessing the characteristic in the geographic area. For more information on weighting and estimation in the ACS, see the Accuracy of the Data document.Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of ...

  2. 2023 Census main means of travel to work by statistical area 3

    • datafinder.stats.govt.nz
    csv, dbf (dbase iii) +4
    Updated Jun 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stats NZ (2025). 2023 Census main means of travel to work by statistical area 3 [Dataset]. https://datafinder.stats.govt.nz/table/122496-2023-census-main-means-of-travel-to-work-by-statistical-area-3/
    Explore at:
    mapinfo mif, csv, dbf (dbase iii), geodatabase, mapinfo tab, geopackage / sqliteAvailable download formats
    Dataset updated
    Jun 11, 2025
    Dataset provided by
    Statistics New Zealandhttp://www.stats.govt.nz/
    Authors
    Stats NZ
    License

    https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/

    Description

    Dataset shows an individual’s statistical area 3 (SA3) of usual residence and the SA3 of their workplace address, for the employed census usually resident population count aged 15 years and over, by main means of travel to work from the 2018 and 2023 Censuses.

    The main means of travel to work categories are:

    • Work at home
    • Drive a private car, truck, or van
    • Drive a company car, truck, or van
    • Passenger in a car, truck, van, or company bus
    • Public bus
    • Train
    • Bicycle
    • Walk or jog
    • Ferry
    • Other.

    Main means of travel to work is the usual method which an employed person aged 15 years and over used to travel the longest distance to their place of work.

    Workplace address refers to where someone usually works in their main job, that is the job in which they worked the most hours. For people who work at home, this is the same address as their usual residence address. For people who do not work at home, this could be the address of the business they work for or another address, such as a building site.

    Workplace address is coded to the most detailed geography possible from the available information. This dataset only includes travel to work information for individuals whose workplace address is available at SA3 level. The sum of the counts for each region in this dataset may not equal the total employed census usually resident population count aged 15 years and over for that region. Workplace address – 2023 Census: Information by concept has more information.

    This dataset can be used in conjunction with the following spatial files by joining on the SA3 code values:

    Download data table using the instructions in the Koordinates help guide.

    Footnotes

    Geographical boundaries

    Statistical standard for geographic areas 2023 (updated December 2023) has information about geographic boundaries as of 1 January 2023. Address data from 2013 and 2018 Censuses was updated to be consistent with the 2023 areas. Due to the changes in area boundaries and coding methodologies, 2013 and 2018 counts published in 2023 may be slightly different to those published in 2013 or 2018.

    Subnational census usually resident population

    The census usually resident population count of an area (subnational count) is a count of all people who usually live in that area and were present in New Zealand on census night. It excludes visitors from overseas, visitors from elsewhere in New Zealand, and residents temporarily overseas on census night. For example, a person who usually lives in Christchurch city and is visiting Wellington city on census night will be included in the census usually resident population count of Christchurch city. 

    Population counts

    Stats NZ publishes a number of different population counts, each using a different definition and methodology. Population statistics – user guide has more information about different counts. 

    Caution using time series

    Time series data should be interpreted with care due to changes in census methodology and differences in response rates between censuses. The 2023 and 2018 Censuses used a combined census methodology (using census responses and administrative data).

    Workplace address time series

    Workplace address time series data should be interpreted with care at lower geographic levels, such as statistical area 2 (SA2). Methodological improvements in 2023 Census resulted in greater data accuracy, including a greater proportion of people being counted at lower geographic areas compared to the 2018 Census. Workplace address – 2023 Census: Information by concept has more information.

    Working at home

    In the census, working at home captures both remote work, and people whose business is at their home address (e.g. farmers or small business owners operating from their home). The census asks respondents whether they ‘mostly’ work at home or away from home. It does not capture whether someone does both, or how frequently they do one or the other.

    Rows excluded from the dataset

    Rows show SA3 of usual residence by SA3 of workplace address. Rows with a total population count of less than six have been removed to reduce the size of the dataset, given only a small proportion of SA3-SA3 combinations have commuter flows.

    About the 2023 Census dataset

    For information on the 2023 dataset see Using a combined census model for the 2023 Census. We combined data from the census forms with administrative data to create the 2023 Census dataset, which meets Stats NZ's quality criteria for population structure information. We added real data about real people to the dataset where we were confident the people who hadn’t completed a census form (which is known as admin enumeration) will be counted. We also used data from the 2018 and 2013 Censuses, administrative data sources, and statistical imputation methods to fill in some missing characteristics of people and dwellings.

    Data quality

    The quality of data in the 2023 Census is assessed using the quality rating scale and the quality assurance framework to determine whether data is fit for purpose and suitable for release. Data quality assurance in the 2023 Census has more information.

    Quality rating of a variable

    The quality rating of a variable provides an overall evaluation of data quality for that variable, usually at the highest levels of classification. The quality ratings shown are for the 2023 Census unless stated. There is variability in the quality of data at smaller geographies. Data quality may also vary between censuses, for subpopulations, or when cross tabulated with other variables or at lower levels of the classification. Data quality ratings for 2023 Census variables has more information on quality ratings by variable.

    Main means of travel to work quality rating

    Main means of travel to work is rated as moderate quality.

    Main means of travel to work – 2023 Census: Information by concept has more information, for example, definitions and data quality.

    Workplace address quality rating

    Workplace address is rated as moderate quality.

    Workplace address – 2023 Census: Information by concept has more information, for example, definitions and data quality.

    Using data for good

    Stats NZ expects that, when working with census data, it is done so with a positive purpose, as outlined in the Māori Data Governance Model (Data Iwi Leaders Group, 2023). This model states that "data should support transformative outcomes and should uplift and strengthen our relationships with each other and with our environments. The avoidance of harm is the minimum expectation for data use. Māori data should also contribute to iwi and hapū tino rangatiratanga”.

    Confidentiality

    The 2023 Census confidentiality rules have been applied to 2013, 2018, and 2023 data. These rules protect the confidentiality of individuals, families, households, dwellings, and undertakings in 2023 Census data. Counts are calculated using fixed random rounding to base 3 (FRR3) and suppression of ‘sensitive’ counts less than six, where tables report multiple geographic variables and/or small populations. Individual figures may not always sum to stated totals. Applying confidentiality rules to 2023 Census data and summary of changes since 2018 and 2013 Censuses has more information about 2023 Census confidentiality rules.

    Percentages

    To calculate percentages, divide the figure for the category of interest by the figure for ‘Total stated’ where this applies.

    Symbol

    -999 Confidential

    Inconsistencies in definitions

    Please note that there may be differences in definitions between census classifications and those used for other data collections.

  3. V

    Virginia Means of Transportation to Work by Vehicles Available by Census...

    • data.virginia.gov
    csv
    Updated Dec 27, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office of INTERMODAL Planning and Investment (2024). Virginia Means of Transportation to Work by Vehicles Available by Census Tract (ACS 5-Year) [Dataset]. https://data.virginia.gov/dataset/virginia-means-of-transportation-to-work-by-vehicles-available-by-census-tract-acs-5-year
    Explore at:
    csv(6661949)Available download formats
    Dataset updated
    Dec 27, 2024
    Dataset authored and provided by
    Office of INTERMODAL Planning and Investment
    Description

    2013-2023 Virginia Population by Means of Transportation to Work by Number of Vehicles Available by Census Tract. Contains estimates and margins of error.

    U.S. Census Bureau; American Community Survey, American Community Survey 5-Year Estimates, Table B08141 Data accessed from: Census Bureau's API for American Community Survey (https://www.census.gov/data/developers/data-sets.html)

    The United States Census Bureau's American Community Survey (ACS): -What is the American Community Survey? (https://www.census.gov/programs-surveys/acs/about.html) -Geography & ACS (https://www.census.gov/programs-surveys/acs/geography-acs.html) -Technical Documentation (https://www.census.gov/programs-surveys/acs/technical-documentation.html)

    Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Technical Documentation section. (https://www.census.gov/programs-surveys/acs/technical-documentation/code-lists.html)

    Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section. (https://www.census.gov/acs/www/methodology/sample_size_and_data_quality/)

    Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau's Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units for states and counties.

    Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation https://www.census.gov/programs-surveys/acs/technical-documentation.html). The effect of nonsampling error is not represented in these tables.

  4. d

    ACS 5-Year Economic Characteristics DC Census Tract

    • opendata.dc.gov
    • catalog.data.gov
    • +3more
    Updated Feb 28, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Washington, DC (2025). ACS 5-Year Economic Characteristics DC Census Tract [Dataset]. https://opendata.dc.gov/datasets/a53c0f02804a484b87027ce3ef3ff38b
    Explore at:
    Dataset updated
    Feb 28, 2025
    Dataset authored and provided by
    City of Washington, DC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Employment, Commuting, Occupation, Income, Health Insurance, Poverty, and more. This service is updated annually with American Community Survey (ACS) 5-year data. Contact: District of Columbia, Office of Planning. Email: planning@dc.gov. Geography: Census Tracts. Current Vintage: 2019-2023. ACS Table(s): DP03. Data downloaded from: Census Bureau's API for American Community Survey. Date of API call: January 2, 2025. National Figures: data.census.gov. Please cite the Census and ACS when using this data. Data Note from the Census: Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables. Data Processing Notes: This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2020 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page. Data processed using R statistical package and ArcGIS Desktop. Margin of Error was not included in this layer but is available from the Census Bureau. Contact the Office of Planning for more information about obtaining Margin of Error values.

  5. 2020 Decennial Census: DP1 | PROFILE OF GENERAL POPULATION AND HOUSING...

    • data.census.gov
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DEC, 2020 Decennial Census: DP1 | PROFILE OF GENERAL POPULATION AND HOUSING CHARACTERISTICS (DEC Demographic Profile) [Dataset]. https://data.census.gov/table/DECENNIALDP2020.DP1
    Explore at:
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    DEC
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2020
    Description

    Note: For information on data collection, confidentiality protection, nonsampling error, subject definitions, and guidance on using the data, visit the 2020 Census Demographic and Housing Characteristics File (DHC) Technical Documentation webpage..To protect respondent confidentiality, data have undergone disclosure avoidance methods which add "statistical noise" - small, random additions or subtractions - to the data so that no one can reliably link the published data to a specific person or household. The Census Bureau encourages data users to aggregate small populations and geographies to improve accuracy and diminish implausible results..An "(X)" means not applicable..An "-" means the statistic could not be computed because there were an insufficient number of observations..[1] The alone or in combination categories are tallies of responses rather than respondents. That is, the alone or in combination categories are not mutually exclusive. Individuals who reported two races were counted in two separate and distinct alone or in combination race categories, while those who reported three races were counted in three categories, and so on. For example, a respondent who indicated "White and Black or African American" was counted in the White alone or in combination category as well as in the Black or African American alone or in combination category. Consequently, the sum of all alone or in combination categories equals the number of races reported (i.e., responses), which exceeds the total population..[2] "Child" includes biological, adopted, and stepchildren of the householder..[3] "Own children" includes biological, adopted, and stepchildren of the householder..[4] The homeowner vacancy rate is the proportion of the homeowner inventory that is vacant "for sale." It is computed by dividing the total number of vacant units "for sale only" by the sum of owner-occupied units, vacant units that are "for sale only," and vacant units that have been sold but not yet occupied; and then multiplying by 100..[5] The rental vacancy rate is the proportion of the rental inventory that is vacant "for rent." It is computed by dividing the total number of vacant units "for rent" by the sum of the renter-occupied units, vacant units that are "for rent," and vacant units that have been rented but not yet occupied; and then multiplying by 100..Source: U.S. Census Bureau, 2020 Census Demographic Profile

  6. 2019 American Community Survey: S0801 | COMMUTING CHARACTERISTICS BY SEX...

    • data.census.gov
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS, 2019 American Community Survey: S0801 | COMMUTING CHARACTERISTICS BY SEX (ACS 5-Year Estimates Subject Tables) [Dataset]. https://data.census.gov/cedsci/table?text=commute&t=Commuting&tid=ACSST5Y2019.S0801&hidePreview=false
    Explore at:
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2019
    Description

    Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau's Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units for states and counties..Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Technical Documentation section.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2015-2019 American Community Survey 5-Year Estimates.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..The 12 selected states are Connecticut, Maine, Massachusetts, Michigan, Minnesota, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Vermont, and Wisconsin..Workers include members of the Armed Forces and civilians who were at work last week..When information is missing or inconsistent, the Census Bureau logically assigns an acceptable value using the response to a related question or questions. If a logical assignment is not possible, data are filled using a statistical process called allocation, which uses a similar individual or household to provide a donor value. The "Allocated" section is the number of respondents who received an allocated value for a particular subject..2019 ACS data products include updates to several categories of the existing means of transportation question. For more information, see: Change to Means of Transportation..The 2015-2019 American Community Survey (ACS) data generally reflect the September 2018 Office of Management and Budget (OMB) delineations of metropolitan and micropolitan statistical areas. In certain instances, the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB delineation lists due to differences in the effective dates of the geographic entities..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on Census 2010 data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:An "**" entry in the margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.An "-" entry in the estimate column indicates that either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution, or the margin of error associated with a median was larger than the median itself.An "-" following a median estimate means the median falls in the lowest interval of an open-ended distribution.An "+" following a median estimate means the median falls in the upper interval of an open-ended distribution.An "***" entry in the margin of error column indicates that the median falls in the lowest interval or upper interval of an open-ended distribution. A statistical test is not appropriate.An "*****" entry in the margin of error column indicates that the estimate is controlled. A statistical test for sampling variability is not appropriate. An "N" entry in the estimate and margin of error columns indicates that data for this geographic area cannot be displayed because the number of sample cases is too small.An "(X)" means that the estimate is not applicable or not available.

  7. 2017 Census of Agriculture - Census Data Query Tool (CDQT)

    • agdatacommons.nal.usda.gov
    bin
    Updated Nov 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    USDA National Agricultural Statistics Service (2025). 2017 Census of Agriculture - Census Data Query Tool (CDQT) [Dataset]. https://agdatacommons.nal.usda.gov/articles/dataset/2017_Census_of_Agriculture_-_Census_Data_Query_Tool_CDQT_/24663345
    Explore at:
    binAvailable download formats
    Dataset updated
    Nov 21, 2025
    Dataset provided by
    National Agricultural Statistics Servicehttp://www.nass.usda.gov/
    United States Department of Agriculturehttp://usda.gov/
    Authors
    USDA National Agricultural Statistics Service
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    The Census of Agriculture is a complete count of U.S. farms and ranches and the people who operate them. Even small plots of land - whether rural or urban - growing fruit, vegetables or some food animals count if $1,000 or more of such products were raised and sold, or normally would have been sold, during the Census year. The Census of Agriculture, taken only once every five years, looks at land use and ownership, operator characteristics, production practices, income and expenditures. For America's farmers and ranchers, the Census of Agriculture is their voice, their future, and their opportunity. The Census Data Query Tool (CDQT) is a web-based tool that is available to access and download table level data from the Census of Agriculture Volume 1 publication. The data found via the CDQT may also be accessed in the NASS Quick Stats database. The CDQT is unique in that it automatically displays data from the past five Census of Agriculture publications. The CDQT is presented as a "2017 centric" view of the Census of Agriculture data. All data series that are present in the 2017 dataset are available within the CDQT, and any matching data series from prior Census years will also display (back to 1997). If a data series is not included in the 2017 dataset, then data cells will remain blank in the tool. For example, one of the data series had a label change from "Operator" to "Producer." This means that data from prior Census years labelled "Operator" will not show up where the label has changed to “Producer” for 2017. The new Census Data Query Tool application can be used to query Census data from 1997 through 2017. Data are searchable by Census table and are downloadable as CSV or PDF files. 2017 Census Ag Atlas Maps are also available for download. Resources in this dataset:Resource Title: 2017 Census of Agriculture - Census Data Query Tool (CDQT). File Name: Web Page, url: https://www.nass.usda.gov/Quick_Stats/CDQT/chapter/1/table/1 The Census Data Query Tool (CDQT) is a web based tool that is available to access and download table level data from the Census of Agriculture Volume 1 publication. The data found via the CDQT may also be accessed in the NASS Quick Stats database. The CDQT is unique in that it automatically displays data from the past five Census of Agriculture publications. The CDQT is presented as a "2017 centric" view of the Census of Agriculture data. All data series that are present in the 2017 dataset are available within the CDQT, and any matching data series from prior Census years will also display (back to 1997). If a data series is not included in the 2017 dataset, then data cells will remain blank in the tool. For example, one of the data series had a label change from "Operator" to "Producer." This means that data from prior Census years labelled "Operator" will not show up where the label has changed to "Producer" for 2017. Using CDQT:

    Upon entering the CDQT, a data table is present. Changing the parameters at the top of the data table will retrieve different combinations of Census Chapter, Table, State, or County (when selecting Chapter 2). For the U.S., Volume 1, US/State Chapter 1 will include only U.S. data; Chapter 2 will include U.S. and State level data. For a State, Volume 1 US/State Level Data Chapter 1 will include only the State level data; Chapter 2 will include the State and county level data. Once a selection is made, press the “Update Grid” button to retrieve the new data table. Comma-separated values (CSV) download, compatible with most spreadsheet and database applications: to download a CSV file of the data as it is currently presented in the data grid, press the "CSV" button in the "Export Data" section of the toolbar. When CSV is chosen, data will be downloaded as numeric. To view the source PDF file for the data table, press the "View PDF" button in the toolbar.

  8. 2018 Census Main means of travel to work by Statistical Area 2

    • datafinder.stats.govt.nz
    csv, dbf (dbase iii) +4
    Updated Jun 14, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stats NZ (2020). 2018 Census Main means of travel to work by Statistical Area 2 [Dataset]. https://datafinder.stats.govt.nz/table/104720-2018-census-main-means-of-travel-to-work-by-statistical-area-2/
    Explore at:
    csv, geodatabase, mapinfo mif, geopackage / sqlite, mapinfo tab, dbf (dbase iii)Available download formats
    Dataset updated
    Jun 14, 2020
    Dataset provided by
    Statistics New Zealandhttp://www.stats.govt.nz/
    Authors
    Stats NZ
    License

    https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/

    Description

    The 2018 Census commuter view dataset contains the employed census usually resident population count aged 15 years and over by statistical area 2 for the main means of travel to work variable from the 2018 Census. The geography corresponds to 2018 boundaries.

    This dataset is the base data for the ‘There and back again: our daily commute’ competition.

    This 2018 Census commuter view dataset is displayed by statistical area 2 geography and contains from-to (journey) information on an individual's usual residence and workplace address* by main means of travel to work.

    * Workplace address is coded from information supplied by respondents about their workplaces. Where respondents do not supply sufficient information, their responses are coded to ‘not further defined’. The 2018 Census commuter view datasets excludes these ‘not further defined’ areas, as such the sum of the counts for each region in this dataset may not be equal to the total employed census usually resident population count aged 15 years and over for that region.

    It is recommended that this dataset be downloaded as either a CSV or a file geodatabase.

    This dataset can be used in conjunction with the following spatial files by joining on the statistical area 2 code values:

    · Statistical Area 2 2018 (generalised)

    · Statistical Area 2 2018 (Centroid Inside)

    The data uses fixed random rounding to protect confidentiality. Counts of less than 6 are suppressed according to 2018 confidentiality rules. Values of -999 indicate suppressed data.

    Data quality ratings for 2018 Census variables, summarising the quality rating and priority levels for 2018 Census variables, are available.

    For information on the statistical area 2 geography please refer to the Statistical standard for geographic areas 2018.

  9. Population Estimates: Estimates by Age Group, Sex, Race, and Hispanic Origin...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Jul 19, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Census Bureau (2023). Population Estimates: Estimates by Age Group, Sex, Race, and Hispanic Origin [Dataset]. https://catalog.data.gov/dataset/population-estimates-estimates-by-age-group-sex-race-and-hispanic-origin
    Explore at:
    Dataset updated
    Jul 19, 2023
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Description

    Annual Resident Population Estimates by Age Group, Sex, Race, and Hispanic Origin; for the United States, States, Counties; and for Puerto Rico and its Municipios: April 1, 2010 to July 1, 2019 // Source: U.S. Census Bureau, Population Division // The contents of this file are released on a rolling basis from December through June. // Note: 'In combination' means in combination with one or more other races. The sum of the five race-in-combination groups adds to more than the total population because individuals may report more than one race. Hispanic origin is considered an ethnicity, not a race. Hispanics may be of any race. Responses of 'Some Other Race' from the 2010 Census are modified. This results in differences between the population for specific race categories shown for the 2010 Census population in this file versus those in the original 2010 Census data. The estimates are based on the 2010 Census and reflect changes to the April 1, 2010 population due to the Count Question Resolution program and geographic program revisions. // Current data on births, deaths, and migration are used to calculate population change since the 2010 Census. An annual time series of estimates is produced, beginning with the census and extending to the vintage year. The vintage year (e.g., Vintage 2019) refers to the final year of the time series. The reference date for all estimates is July 1, unless otherwise specified. With each new issue of estimates, the entire estimates series is revised. Additional information, including historical and intercensal estimates, evaluation estimates, demographic analysis, research papers, and methodology is available on website: https://www.census.gov/programs-surveys/popest.html.

  10. o

    2020 Census Tracts

    • geohub.oregon.gov
    • data.oregon.gov
    • +3more
    Updated Jul 1, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Oregon (2020). 2020 Census Tracts [Dataset]. https://geohub.oregon.gov/datasets/2020-census-tracts/about
    Explore at:
    Dataset updated
    Jul 1, 2020
    Dataset authored and provided by
    State of Oregon
    Area covered
    Description

    This data layer is an element of the Oregon GIS Framework. The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation.

    Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2020 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some States and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census and beyond, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.

  11. 2023 Census totals by topic for individuals by statistical area 2 – part 2

    • datafinder.stats.govt.nz
    csv, dwg, geodatabase +6
    Updated Nov 25, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stats NZ (2024). 2023 Census totals by topic for individuals by statistical area 2 – part 2 [Dataset]. https://datafinder.stats.govt.nz/layer/120898-2023-census-totals-by-topic-for-individuals-by-statistical-area-2-part-2/
    Explore at:
    dwg, mapinfo tab, pdf, mapinfo mif, geodatabase, shapefile, kml, geopackage / sqlite, csvAvailable download formats
    Dataset updated
    Nov 25, 2024
    Dataset provided by
    Statistics New Zealandhttp://www.stats.govt.nz/
    Authors
    Stats NZ
    License

    https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/

    Area covered
    Description

    Dataset contains counts and measures for individuals from the 2013, 2018, and 2023 Censuses. Data is available by statistical area 2.

    The variables included in this dataset are for the census usually resident population count (unless otherwise stated). All data is for level 1 of the classification.

    The variables for part 2 of the dataset are:

    • Individual home ownership for the census usually resident population count aged 15 years and over
    • Usual residence 1 year ago indicator
    • Usual residence 5 years ago indicator
    • Years at usual residence
    • Average years at usual residence
    • Years since arrival in New Zealand for the overseas-born census usually resident population count
    • Average years since arrival in New Zealand for the overseas-born census usually resident population count
    • Study participation
    • Main means of travel to education, by usual residence address for the census usually resident population who are studying
    • Main means of travel to education, by education address for the census usually resident population who are studying
    • Highest qualification for the census usually resident population count aged 15 years and over
    • Post-school qualification in New Zealand indicator for the census usually resident population count aged 15 years and over
    • Highest secondary school qualification for the census usually resident population count aged 15 years and over
    • Post-school qualification level of attainment for the census usually resident population count aged 15 years and over
    • Sources of personal income (total responses) for the census usually resident population count aged 15 years and over
    • Total personal income for the census usually resident population count aged 15 years and over
    • Median ($) total personal income for the census usually resident population count aged 15 years and over
    • Work and labour force status for the census usually resident population count aged 15 years and over
    • Job search methods (total responses) for the unemployed census usually resident population count aged 15 years and over
    • Status in employment for the employed census usually resident population count aged 15 years and over
    • Unpaid activities (total responses) for the census usually resident population count aged 15 years and over
    • Hours worked in employment per week for the employed census usually resident population count aged 15 years and over
    • Average hours worked in employment per week for the employed census usually resident population count aged 15 years and over
    • Industry, by usual residence address for the employed census usually resident population count aged 15 years and over
    • Industry, by workplace address for the employed census usually resident population count aged 15 years and over
    • Occupation, by usual residence address for the employed census usually resident population count aged 15 years and over
    • Occupation, by workplace address for the employed census usually resident population count aged 15 years and over
    • Main means of travel to work, by usual residence address for the employed census usually resident population count aged 15 years and over
    • Main means of travel to work, by workplace address for the employed census usually resident population count aged 15 years and over
    • Sector of ownership for the employed census usually resident population count aged 15 years and over
    • Individual unit data source.

    Download lookup file from Stats NZ ArcGIS Online or embedded attachment in Stats NZ geographic data service. Download data table (excluding the geometry column for CSV files) using the instructions in the Koordinates help guide.

    Footnotes

    Te Whata

    Under the Mana Ōrite Relationship Agreement, Te Kāhui Raraunga (TKR) will be publishing Māori descent and iwi affiliation data from the 2023 Census in partnership with Stats NZ. This will be available on Te Whata, a TKR platform.

    Geographical boundaries

    Statistical standard for geographic areas 2023 (updated December 2023) has information about geographic boundaries as of 1 January 2023. Address data from 2013 and 2018 Censuses was updated to be consistent with the 2023 areas. Due to the changes in area boundaries and coding methodologies, 2013 and 2018 counts published in 2023 may be slightly different to those published in 2013 or 2018.

    Subnational census usually resident population

    The census usually resident population count of an area (subnational count) is a count of all people who usually live in that area and were present in New Zealand on census night. It excludes visitors from overseas, visitors from elsewhere in New Zealand, and residents temporarily overseas on census night. For example, a person who usually lives in Christchurch city and is visiting Wellington city on census night will be included in the census usually resident population count of Christchurch city.

    Population counts

    Stats NZ publishes a number of different population counts, each using a different definition and methodology. Population statistics – user guide has more information about different counts.

    Caution using time series

    Time series data should be interpreted with care due to changes in census methodology and differences in response rates between censuses. The 2023 and 2018 Censuses used a combined census methodology (using census responses and administrative data), while the 2013 Census used a full-field enumeration methodology (with no use of administrative data).

    Study participation time series

    In the 2013 Census study participation was only collected for the census usually resident population count aged 15 years and over.

    About the 2023 Census dataset

    For information on the 2023 dataset see Using a combined census model for the 2023 Census. We combined data from the census forms with administrative data to create the 2023 Census dataset, which meets Stats NZ's quality criteria for population structure information. We added real data about real people to the dataset where we were confident the people who hadn’t completed a census form (which is known as admin enumeration) will be counted. We also used data from the 2018 and 2013 Censuses, administrative data sources, and statistical imputation methods to fill in some missing characteristics of people and dwellings.

    Data quality

    The quality of data in the 2023 Census is assessed using the quality rating scale and the quality assurance framework to determine whether data is fit for purpose and suitable for release. Data quality assurance in the 2023 Census has more information.

    Concept descriptions and quality ratings

    Data quality ratings for 2023 Census variables has additional details about variables found within totals by topic, for example, definitions and data quality.

    Disability indicator

    This data should not be used as an official measure of disability prevalence. Disability prevalence estimates are only available from the 2023 Household Disability Survey. Household Disability Survey 2023: Final content has more information about the survey.

    Activity limitations are measured using the Washington Group Short Set (WGSS). The WGSS asks about six basic activities that a person might have difficulty with: seeing, hearing, walking or climbing stairs, remembering or concentrating, washing all over or dressing, and communicating. A person was classified as disabled in the 2023 Census if there was at least one of these activities that they had a lot of difficulty with or could not do at all.

    Using data for good

    Stats NZ expects that, when working with census data, it is done so with a positive purpose, as outlined in the Māori Data Governance Model (Data Iwi Leaders Group, 2023). This model states that "data should support transformative outcomes and should uplift and strengthen our relationships with each other and with our environments. The avoidance of harm is the minimum expectation for data use. Māori data should also contribute to iwi and hapū tino rangatiratanga”.

    Confidentiality

    The 2023 Census confidentiality rules have been applied to 2013, 2018, and 2023 data. These rules protect the confidentiality of individuals, families, households, dwellings, and undertakings in 2023 Census data. Counts are calculated using fixed random rounding to base 3 (FRR3) and suppression of ‘sensitive’ counts less than six, where tables report multiple geographic variables and/or small populations. Individual figures may not always sum to stated totals. Applying confidentiality rules to 2023 Census data and summary of changes since 2018 and 2013 Censuses has more information about 2023 Census confidentiality rules.

    Measures

    Measures like averages, medians, and other quantiles are calculated from unrounded counts, with input noise added to or subtracted from each contributing value during measures

  12. N

    Income Distribution by Quintile: Mean Household Income in Black Earth, WI

    • neilsberg.com
    csv, json
    Updated Jan 11, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Income Distribution by Quintile: Mean Household Income in Black Earth, WI [Dataset]. https://www.neilsberg.com/research/datasets/9462be0b-7479-11ee-949f-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Jan 11, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Black Earth, Wisconsin
    Variables measured
    Income Level, Mean Household Income
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. It delineates income distributions across income quintiles (mentioned above) following an initial analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series via current methods (R-CPI-U-RS). For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the mean household income for each of the five quintiles in Black Earth, WI, as reported by the U.S. Census Bureau. The dataset highlights the variation in mean household income across quintiles, offering valuable insights into income distribution and inequality.

    Key observations

    • Income disparities: The mean income of the lowest quintile (20% of households with the lowest income) is 17,947, while the mean income for the highest quintile (20% of households with the highest income) is 162,641. This indicates that the top earners earn 9 times compared to the lowest earners.
    • *Top 5%: * The mean household income for the wealthiest population (top 5%) is 197,891, which is 121.67% higher compared to the highest quintile, and 1102.64% higher compared to the lowest quintile.

    https://i.neilsberg.com/ch/black-earth-wi-mean-household-income-by-quintiles.jpeg" alt="Mean household income by quintiles in Black Earth, WI (in 2022 inflation-adjusted dollars))">

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Income Levels:

    • Lowest Quintile
    • Second Quintile
    • Third Quintile
    • Fourth Quintile
    • Highest Quintile
    • Top 5 Percent

    Variables / Data Columns

    • Income Level: This column showcases the income levels (As mentioned above).
    • Mean Household Income: Mean household income, in 2022 inflation-adjusted dollars for the specific income level.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Black Earth median household income. You can refer the same here

  13. Low and Moderate Income Areas

    • catalog.data.gov
    • s.cnmilf.com
    • +1more
    Updated Mar 1, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Housing and Urban Development (2024). Low and Moderate Income Areas [Dataset]. https://catalog.data.gov/dataset/hud-low-and-moderate-income-areas
    Explore at:
    Dataset updated
    Mar 1, 2024
    Dataset provided by
    United States Department of Housing and Urban Developmenthttp://www.hud.gov/
    Description

    This dataset and map service provides information on the U.S. Housing and Urban Development's (HUD) low to moderate income areas. The term Low to Moderate Income, often referred to as low-mod, has a specific programmatic context within the Community Development Block Grant (CDBG) program. Over a 1, 2, or 3-year period, as selected by the grantee, not less than 70 percent of CDBG funds must be used for activities that benefit low- and moderate-income persons. HUD uses special tabulations of Census data to determine areas where at least 51% of households have incomes at or below 80% of the area median income (AMI). This dataset and map service contains the following layer.

  14. C

    Travel Time to Work

    • data.ccrpc.org
    csv
    Updated Nov 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Champaign County Regional Planning Commission (2025). Travel Time to Work [Dataset]. https://data.ccrpc.org/dataset/travel-time-to-work
    Explore at:
    csvAvailable download formats
    Dataset updated
    Nov 19, 2025
    Dataset authored and provided by
    Champaign County Regional Planning Commission
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Description

    The Travel Time to Work indicator compares the mean, or average, commute time for Champaign County residents to the mean commute time for residents of Illinois and the United States as a whole. On its own, mean travel time of all commuters on all mode types could be reflective of a number of different conditions. Congestion, mode choice, changes in residential patterns, changes in the location of major employment centers, and changes in the transit network can all impact travel time in different and often conflicting ways. Since the onset of the COVID-19 pandemic in 2020, the workplace location (office vs. home) is another factor that can impact the mean travel time of an area. We don’t recommend trying to draw any conclusions about conditions in Champaign County, or anywhere else, based on mean travel time alone.

    However, when combined with other indicators in the Mobility category (and other categories), mean travel time to work is a valuable measure of transportation behaviors in Champaign County.

    Champaign County’s mean travel time to work is lower than the mean travel time to work in Illinois and the United States. Based on this figure, the state of Illinois has the longest commutes of the three analyzed areas.

    The year-to-year fluctuations in mean travel time have been statistically significant in the United States since 2014, and in Illinois most recently in 2021 and 2022. Champaign County’s year-to-year fluctuations in mean travel time were statistically significant from 2021 to 2022, the first time since this data first started being tracked in 2005.

    Mean travel time data was sourced from the U.S. Census Bureau’s American Community Survey (ACS) 1-Year Estimates, which are released annually.

    As with any datasets that are estimates rather than exact counts, it is important to take into account the margins of error (listed in the column beside each figure) when drawing conclusions from the data.

    Due to the impact of the COVID-19 pandemic, instead of providing the standard 1-year data products, the Census Bureau released experimental estimates from the 1-year data in 2020. This includes a limited number of data tables for the nation, states, and the District of Columbia. The Census Bureau states that the 2020 ACS 1-year experimental tables use an experimental estimation methodology and should not be compared with other ACS data. For these reasons, and because data is not available for Champaign County, no data for 2020 is included in this Indicator.

    For interested data users, the 2020 ACS 1-Year Experimental data release includes a dataset on Travel Time to Work.

    Sources: U.S. Census Bureau; American Community Survey, 2024 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using data.census.gov; (18 November 2025).; U.S. Census Bureau; American Community Survey, 2023 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using data.census.gov; (16 October 2024).; U.S. Census Bureau; American Community Survey, 2022 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using data.census.gov; (10 October 2023).; U.S. Census Bureau; American Community Survey, 2021 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using data.census.gov; (17 October 2022).; U.S. Census Bureau; American Community Survey, 2019 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using data.census.gov; (29 March 2021).; U.S. Census Bureau; American Community Survey, 2018 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using data.census.gov; (29 March 2021).; U.S. Census Bureau; American Community Survey, 2017 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2016 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (14 September 2017).; U.S. Census Bureau; American Community Survey, 2015 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (19 September 2016).; U.S. Census Bureau; American Community Survey, 2014 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2013 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2012 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2011 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2010 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2009 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2008 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2007 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2006 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2005 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).

  15. (Appendix 1) Census data of planktic foraminiferal faunas together with...

    • doi.pangaea.de
    html, tsv
    Updated 2008
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bruce William Hayward; George H Scott; Martin P Crundwell; James P Kennett; Lionel Carter; Helen L Neil; Ashwaq T Sabaa; Kate Wilson; J Stuart Rodger; Grace Schaefer; Hugh R Grenfell; Qianyu Li (2008). (Appendix 1) Census data of planktic foraminiferal faunas together with estimates of mean annual SST for ODP Site 181-1119 [Dataset]. http://doi.org/10.1594/PANGAEA.742592
    Explore at:
    tsv, htmlAvailable download formats
    Dataset updated
    2008
    Dataset provided by
    PANGAEA
    Authors
    Bruce William Hayward; George H Scott; Martin P Crundwell; James P Kennett; Lionel Carter; Helen L Neil; Ashwaq T Sabaa; Kate Wilson; J Stuart Rodger; Grace Schaefer; Hugh R Grenfell; Qianyu Li
    License

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Time period covered
    Aug 5, 1998 - Aug 26, 1998
    Area covered
    Variables measured
    AGE, Reference/source, Orbulina universa, Sample code/label, Globigerinita uvula, DEPTH, sediment/rock, Globigerinoides spp., Globoconella inflata, Globorotalia scitula, Globigerina bulloides, and 13 more
    Description

    Depth is composite depth (mcd), age after the Lisiecki and Ramyo (2005) stack (datasets: doi:10.1594/PANGAEA.704257). ODP 1119 data consists of 152 census counts from a 234 m spliced composite section for the last 0.9 myr (MIS 22-1). These comprise 96 faunas spread over the entire interval (~10 kyr resolution) and studied by Wilson et al. (2005), and 56 faunas from the interval 25-0 mcd (MIS 3-1; Q. Li, unpublished data).

  16. 2023 Census main means of travel to education by statistical area 3

    • datafinder.stats.govt.nz
    csv, dbf (dbase iii) +4
    Updated Jun 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stats NZ (2025). 2023 Census main means of travel to education by statistical area 3 [Dataset]. https://datafinder.stats.govt.nz/table/122495-2023-census-main-means-of-travel-to-education-by-statistical-area-3/
    Explore at:
    csv, geopackage / sqlite, dbf (dbase iii), mapinfo tab, mapinfo mif, geodatabaseAvailable download formats
    Dataset updated
    Jun 11, 2025
    Dataset provided by
    Statistics New Zealandhttp://www.stats.govt.nz/
    Authors
    Stats NZ
    License

    https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/

    Description

    Dataset shows an individual’s statistical area 3 (SA3) of usual residence and the SA3 of their place of study, for the census usually resident population count who are studying (part time or full time), by main means of travel to education from the 2018 and 2023 Censuses.

    The main means of travel to education categories are:

    • Study at home
    • Drive a car, truck, or van
    • Passenger in a car, truck, or van
    • Bicycle
    • Walk or jog
    • School bus
    • Public bus
    • Train
    • Ferry
    • Other.

    Main means of travel to education is the usual method a person used to travel the longest distance to their place of study.

    Educational institution address is the physical location of the individual’s place of study. Educational institutions include early childhood education, primary school, secondary school, and tertiary education institutions. For individuals who study at home, their educational institution address is the same as their usual residence address.

    Educational institution address is coded to the most detailed geography possible from the available information. This dataset only includes travel to education information for individuals whose educational institution address is available at SA3 level. The sum of the counts for each region in this dataset may not equal the census usually resident population count who are studying (part time or full time) for that region. Educational institution address – 2023 Census: Information by concept has more information.

    This dataset can be used in conjunction with the following spatial files by joining on the SA3 code values:

    Download data table using the instructions in the Koordinates help guide.

    Footnotes

    Geographical boundaries

    Statistical standard for geographic areas 2023 (updated December 2023) has information about geographic boundaries as of 1 January 2023. Address data from 2013 and 2018 Censuses was updated to be consistent with the 2023 areas. Due to the changes in area boundaries and coding methodologies, 2013 and 2018 counts published in 2023 may be slightly different to those published in 2013 or 2018.

    Subnational census usually resident population

    The census usually resident population count of an area (subnational count) is a count of all people who usually live in that area and were present in New Zealand on census night. It excludes visitors from overseas, visitors from elsewhere in New Zealand, and residents temporarily overseas on census night. For example, a person who usually lives in Christchurch city and is visiting Wellington city on census night will be included in the census usually resident population count of Christchurch city. 

    Population counts

    Stats NZ publishes a number of different population counts, each using a different definition and methodology. Population statistics – user guide has more information about different counts. 

    Caution using time series

    Time series data should be interpreted with care due to changes in census methodology and differences in response rates between censuses. The 2023 and 2018 Censuses used a combined census methodology (using census responses and administrative data).

    Educational institution address time series

    Educational institution address time series data should be interpreted with care at lower geographic levels, such as statistical area 2 (SA2). Methodological improvements in 2023 Census resulted in greater data accuracy, including a greater proportion of people being counted at lower geographic areas compared to the 2018 Census. Educational institution address – 2023 Census: Information by concept has more information.

    Rows excluded from the dataset

    Rows show SA3 of usual residence by SA3 of educational institution address. Rows with a total population count of less than six have been removed to reduce the size of the dataset, given only a small proportion of SA3-SA3 combinations have commuter flows.

    About the 2023 Census dataset

    For information on the 2023 dataset see Using a combined census model for the 2023 Census. We combined data from the census forms with administrative data to create the 2023 Census dataset, which meets Stats NZ's quality criteria for population structure information. We added real data about real people to the dataset where we were confident the people who hadn’t completed a census form (which is known as admin enumeration) will be counted. We also used data from the 2018 and 2013 Censuses, administrative data sources, and statistical imputation methods to fill in some missing characteristics of people and dwellings.

    Data quality

    The quality of data in the 2023 Census is assessed using the quality rating scale and the quality assurance framework to determine whether data is fit for purpose and suitable for release. Data quality assurance in the 2023 Census has more information.

    Quality rating of a variable

    The quality rating of a variable provides an overall evaluation of data quality for that variable, usually at the highest levels of classification. The quality ratings shown are for the 2023 Census unless stated. There is variability in the quality of data at smaller geographies. Data quality may also vary between censuses, for subpopulations, or when cross tabulated with other variables or at lower levels of the classification. Data quality ratings for 2023 Census variables has more information on quality ratings by variable.

    Main means of travel to education quality rating

    Main means of travel to education is rated as moderate quality.

    Main means of travel to education – 2023 Census: Information by concept has more information, for example, definitions and data quality.

    Educational institution address quality rating

    Educational institution address is rated as moderate quality.

    Educational institution address – 2023 Census: Information by concept has more information, for example, definitions and data quality.

    Using data for good

    Stats NZ expects that, when working with census data, it is done so with a positive purpose, as outlined in the Māori Data Governance Model (Data Iwi Leaders Group, 2023). This model states that "data should support transformative outcomes and should uplift and strengthen our relationships with each other and with our environments. The avoidance of harm is the minimum expectation for data use. Māori data should also contribute to iwi and hapū tino rangatiratanga”.

    Confidentiality

    The 2023 Census confidentiality rules have been applied to 2013, 2018, and 2023 data. These rules protect the confidentiality of individuals, families, households, dwellings, and undertakings in 2023 Census data. Counts are calculated using fixed random rounding to base 3 (FRR3) and suppression of ‘sensitive’ counts less than six, where tables report multiple geographic variables and/or small populations. Individual figures may not always sum to stated totals. Applying confidentiality rules to 2023 Census data and summary of changes since 2018 and 2013 Censuses has more information about 2023 Census confidentiality rules.

    Percentages

    To calculate percentages, divide the figure for the category of interest by the figure for ‘Total stated’ where this applies.

    Symbol

    -999 Confidential

    Inconsistencies in definitions

    Please note that there may be differences in definitions between census classifications and those used for other data collections.

  17. 2020 Decennial Census of Island Areas: CT56 | Veteran Status, Period of...

    • data.census.gov
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DEC, 2020 Decennial Census of Island Areas: CT56 | Veteran Status, Period of Military Service and Service-Connected Disability Rating Status by Educational Attainment (DECIA Guam Detailed Crosstabulations) [Dataset]. https://data.census.gov/table/DECENNIALCROSSTABGU2020.CT56?q=Mediated+Divorce+Services
    Explore at:
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    DEC
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2020
    Description

    Note: For information on data collection, confidentiality protection, nonsampling error, and definitions, see the 2020 Island Areas Censuses Technical Documentation..Due to operational changes for military installation enumeration, the 2020 Census of Guam data tables reporting housing, social, and economic characteristics do not include housing units or populations living on Guam's U.S. military installations in the table universe. As a result, impacted 2020 data tables should not be compared to 2010 and other past census data tables reporting the same characteristics. The Census Bureau advises data users to verify table universes are the same before comparing data across census years. For more information about operational changes and the impacts on Guam's data products, see the 2020 Island Areas Censuses Technical Documentation..Due to COVID-19 restrictions impacting data collection for the 2020 Census of Guam, data tables reporting social and economic characteristics do not include the group quarters population in the table universe. As a result, impacted 2020 data tables should not be compared to 2010 and other past census data tables reporting the same characteristics. The Census Bureau advises data users to verify table universes are the same before comparing data across census years. For more information about data collection limitations and the impacts on Guam's data products, see the 2020 Island Areas Censuses Technical Documentation..Explanation of Symbols: 1.An "-" means the statistic could not be computed because there were an insufficient number of observations. 2. An "-" following a median estimate means the median falls in the lowest interval of an open-ended distribution.3. An "+" following a median estimate means the median falls in the upper interval of an open-ended distribution.4. An "N" means data are not displayed for the selected geographic area due to concerns with statistical reliability or an insufficient number of cases.5. An "(X)" means not applicable..Source: U.S. Census Bureau, 2020 Census, Guam.

  18. N

    Income Distribution by Quintile: Mean Household Income in Miami-Dade County,...

    • neilsberg.com
    csv, json
    Updated Jan 11, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Income Distribution by Quintile: Mean Household Income in Miami-Dade County, FL [Dataset]. https://www.neilsberg.com/research/datasets/94c75d38-7479-11ee-949f-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Jan 11, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Miami-Dade County, Florida
    Variables measured
    Income Level, Mean Household Income
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. It delineates income distributions across income quintiles (mentioned above) following an initial analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series via current methods (R-CPI-U-RS). For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the mean household income for each of the five quintiles in Miami-Dade County, FL, as reported by the U.S. Census Bureau. The dataset highlights the variation in mean household income across quintiles, offering valuable insights into income distribution and inequality.

    Key observations

    • Income disparities: The mean income of the lowest quintile (20% of households with the lowest income) is 13,106, while the mean income for the highest quintile (20% of households with the highest income) is 282,078. This indicates that the top earners earn 22 times compared to the lowest earners.
    • *Top 5%: * The mean household income for the wealthiest population (top 5%) is 555,008, which is 196.76% higher compared to the highest quintile, and 4234.76% higher compared to the lowest quintile.

    https://i.neilsberg.com/ch/miami-dade-county-fl-mean-household-income-by-quintiles.jpeg" alt="Mean household income by quintiles in Miami-Dade County, FL (in 2022 inflation-adjusted dollars))">

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Income Levels:

    • Lowest Quintile
    • Second Quintile
    • Third Quintile
    • Fourth Quintile
    • Highest Quintile
    • Top 5 Percent

    Variables / Data Columns

    • Income Level: This column showcases the income levels (As mentioned above).
    • Mean Household Income: Mean household income, in 2022 inflation-adjusted dollars for the specific income level.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Miami-Dade County median household income. You can refer the same here

  19. C

    Commuter Mode Share

    • data.ccrpc.org
    csv
    Updated Nov 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Champaign County Regional Planning Commission (2025). Commuter Mode Share [Dataset]. https://data.ccrpc.org/dataset/commuter-mode-share
    Explore at:
    csvAvailable download formats
    Dataset updated
    Nov 19, 2025
    Dataset authored and provided by
    Champaign County Regional Planning Commission
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Description

    This commuter mode share data shows the estimated percentages of commuters in Champaign County who traveled to work using each of the following modes: drove alone in an automobile; carpooled; took public transportation; walked; biked; went by motorcycle, taxi, or other means; and worked at home. Commuter mode share data can illustrate the use of and demand for transit services and active transportation facilities, as well as for automobile-focused transportation projects.

    Driving alone in an automobile is by far the most prevalent means of getting to work in Champaign County, accounting for about 64 percent of all work trips in 2024. This is a statistically significant decrease since 2023, which was the first year that matched pre-COVID-19 pandemic levels of driving alone.

    The percentage of workers who commuted by all other means to a workplace outside the home also decreased from 2019 to 2021, most of these modes reaching a record low since this data first started being tracked in 2005. All of these modes except public transportation saw increases from 2023 to 2024, but they were not statistically significant. The percentage of people walking to work saw a statistically significant increase from 2022 to 2024.

    Meanwhile, the percentage of people in Champaign County who worked at home more than quadrupled from 2019 to 2021, reaching a record high over 18 percent. It is a safe assumption that this can be attributed to the increase of employers allowing employees to work at home when the COVID-19 pandemic began in 2020.

    The work from home figure decreased to 11.2 percent in 2023, but which is the first statistically significant decrease since the pandemic began. However, this figure saw a statistically significant increase from 2023 to 2024, rising back from 15.1 percent in 2024. This figure is about 3.3 times higher than 2019, despite the COVID-19 emergency ending in 2023.

    Commuter mode share data was sourced from the U.S. Census Bureau’s American Community Survey (ACS) 1-Year Estimates, which are released annually.

    As with any datasets that are estimates rather than exact counts, it is important to take into account the margins of error (listed in the column beside each figure) when drawing conclusions from the data.

    Due to the impact of the COVID-19 pandemic, instead of providing the standard 1-year data products, the Census Bureau released experimental estimates from the 1-year data in 2020. This includes a limited number of data tables for the nation, states, and the District of Columbia. The Census Bureau states that the 2020 ACS 1-year experimental tables use an experimental estimation methodology and should not be compared with other ACS data. For these reasons, and because data is not available for Champaign County, no data for 2020 is included in this Indicator.

    For interested data users, the 2020 ACS 1-Year Experimental data release includes a dataset on Means of Transportation to Work.

    Sources: U.S. Census Bureau; American Community Survey, 2024 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using data.census.gov; (19 November 2024).; U.S. Census Bureau; American Community Survey, 2023 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using data.census.gov; (18 September 2024).; U.S. Census Bureau; American Community Survey, 2022 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using data.census.gov; (10 October 2023).; U.S. Census Bureau; American Community Survey, 2021 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using data.census.gov; (14 October 2022).; U.S. Census Bureau; American Community Survey, 2019 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using data.census.gov; (26 March 2021).; U.S. Census Bureau; American Community Survey, 2018 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using data.census.gov; (26 March 2021).; U.S. Census Bureau; American Community Survey, 2017 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2016 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (14 September 2017).; U.S. Census Bureau; American Community Survey, 2015 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (19 September 2016).; U.S. Census Bureau; American Community Survey, 2014 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2013 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2012 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2011 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2010 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2009 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2008 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2007 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2006 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2005 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).

  20. F

    Median Sales Price of Houses Sold for the United States

    • fred.stlouisfed.org
    json
    Updated Jul 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Median Sales Price of Houses Sold for the United States [Dataset]. https://fred.stlouisfed.org/series/MSPUS
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jul 24, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    United States
    Description

    Graph and download economic data for Median Sales Price of Houses Sold for the United States (MSPUS) from Q1 1963 to Q2 2025 about sales, median, housing, and USA.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
ACS (2024). 2024 American Community Survey: DP04 | Selected Housing Characteristics (ACS 1-Year Estimates Data Profiles) [Dataset]. https://data.census.gov/cedsci/table?q=median%20home%20value%20&
Organization logo

2024 American Community Survey: DP04 | Selected Housing Characteristics (ACS 1-Year Estimates Data Profiles)

2024: ACS 1-Year Estimates Data Profiles

Explore at:
Dataset updated
Apr 21, 2024
Dataset provided by
United States Census Bureauhttp://census.gov/
Authors
ACS
License

CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically

Time period covered
2024
Description

Key Table Information.Table Title.Selected Housing Characteristics.Table ID.ACSDP1Y2024.DP04.Survey/Program.American Community Survey.Year.2024.Dataset.ACS 1-Year Estimates Data Profiles.Source.U.S. Census Bureau, 2024 American Community Survey, 1-Year Estimates.Dataset Universe.The dataset universe of the American Community Survey (ACS) is the U.S. resident population and housing. For more information about ACS residence rules, see the ACS Design and Methodology Report. Note that each table describes the specific universe of interest for that set of estimates..Methodology.Unit(s) of Observation.American Community Survey (ACS) data are collected from individuals living in housing units and group quarters, and about housing units whether occupied or vacant. For more information about ACS sampling and data collection, see the ACS Design and Methodology Report..Geography Coverage.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year.Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Sampling.The ACS consists of two separate samples: housing unit addresses and group quarters facilities. Independent housing unit address samples are selected for each county or county-equivalent in the U.S. and Puerto Rico, with sampling rates depending on a measure of size for the area. For more information on sampling in the ACS, see the Accuracy of the Data document..Confidentiality.The Census Bureau has modified or suppressed some estimates in ACS data products to protect respondents' confidentiality. Title 13 United States Code, Section 9, prohibits the Census Bureau from publishing results in which an individual's data can be identified. For more information on confidentiality protection in the ACS, see the Accuracy of the Data document..Technical Documentation/Methodology.Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables.Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Weights.ACS estimates are obtained from a raking ratio estimation procedure that results in the assignment of two sets of weights: a weight to each sample person record and a weight to each sample housing unit record. Estimates of person characteristics are based on the person weight. Estimates of family, household, and housing unit characteristics are based on the housing unit weight. For any given geographic area, a characteristic total is estimated by summing the weights assigned to the persons, households, families or housing units possessing the characteristic in the geographic area. For more information on weighting and estimation in the ACS, see the Accuracy of the Data document.Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of ...

Search
Clear search
Close search
Google apps
Main menu