CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau's Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units for states and counties..Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Technical Documentation section.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2021 American Community Survey 1-Year Estimates.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..The Census Bureau introduced a new set of disability questions in the 2008 ACS questionnaire. Accordingly, comparisons of disability data from 2008 or later with data from prior years are not recommended. For more information on these questions and their evaluation in the 2006 ACS Content Test, see the Evaluation Report Covering Disability..For cognitive difficulty, ambulatory difficulty, and self-care difficulty, the 'Population under 18 years' includes persons aged 5 to 17. Children under 5 are not included in these measures..The 2021 American Community Survey (ACS) data generally reflect the March 2020 Office of Management and Budget (OMB) delineations of metropolitan and micropolitan statistical areas. In certain instances the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB delineations due to differences in the effective dates of the geographic entities..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on Census 2010 data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.
Age, Sex, Race, Ethnicity, Total Housing Units, and Voting Age Population. This service is updated annually with American Community Survey (ACS) 5-year data. Contact: District of Columbia, Office of Planning. Email: planning@dc.gov. Geography: Census Tracts. Current Vintage: 2019-2023. ACS Table(s): DP05. Data downloaded from: Census Bureau's API for American Community Survey. Date of API call: January 2, 2025. National Figures: data.census.gov. Please cite the Census and ACS when using this data. Data Note from the Census: Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables. Data Processing Notes: This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2020 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page. Data processed using R statistical package and ArcGIS Desktop. Margin of Error was not included in this layer but is available from the Census Bureau. Contact the Office of Planning for more information about obtaining Margin of Error values.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Description: Since 2009, the departmental directorate of the Marne territories has been carrying out a census of the land resources available within the main urban areas of the Marne. This census concerns land rights of way for known or probable brownfields of all types (industrial, railway, military, etc.). The area retained for brownfields is 2 000 m², threshold defined as potentially an issue. This census is not exhaustive. Census conducted until October 2018. Genealogy: A first census of brownfields was carried out from the databases of the Ministry of Ecology, Sustainable Development and Energy “BASIAS” and “Basol”, listing polluted sites. Visits by the territorial referents (RT) of the departmental directorate of the territories were then carried out on site and made it possible to complete the first census. The data is geolocated in the form of polygons using the parcelal cD (default of digitised cadastre). Metadata: ID: identification of wasteland by number ENTITE: current state (fridge or wasteland converted) CD_INSEE: INSEE code NOM_COM: name of the municipality DESCRIPTION: current state of land or built at census date ACTIV: past or new activity for brownfields ENTER: name of company and/or owner, who is or was installed ADDRESS: address of the wasteland PROJECT: project in progress at census date if known COMMENT: further information on the situation of the wasteland at the last date of its census. SOURCE: Source of information. Date_MAJ: date of update The geolocation data is in the form of a polygon.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Description: Since 2009, the departmental directorate of the Marne territories has been carrying out a census of the land resources available within the main urban areas of the Marne. This census concerns land rights of way for known or probable brownfields of all types (industrial, railway, military, etc.). The area retained for brownfields is 2 000 m², threshold defined as potentially an issue. This census is not exhaustive. Census conducted until October 2018. Genealogy: A first census of brownfields was carried out from the databases of the Ministry of Ecology, Sustainable Development and Energy “BASIAS” and “Basol”, listing polluted sites. Visits by the territorial referents (RT) of the departmental directorate of the territories were then carried out on site and made it possible to complete the first census. The data is geolocated in the form of polygons using the parcelal cD (default of digitised cadastre). Metadata: ID: identification of wasteland by number ENTITE: current state (fridge or wasteland converted) CD_INSEE: INSEE code NOM_COM: name of the municipality DESCRIPTION: current state of land or built at census date ACTIV: past or new activity for brownfields ENTER: name of company and/or owner, who is or was installed ADDRESS: address of the wasteland PROJECT: project in progress at census date if known COMMENT: further information on the situation of the wasteland at the last date of its census. SOURCE: Source of information. Date_MAJ: date of update The geolocation data is in the form of a polygon.
Annual County Resident Population Estimates for 5 Race Groups (5 Race Alone or in Combination Groups) by Five-Year Age Groups, Sex, and Hispanic Origin: April 1, 2010 to July 1, 2013 // File: 7/1/2013 County Characteristics Resident Population Estimates // Source: U.S. Census Bureau, Population Division // Release Date: June 2014 // Note: 'In combination' means in combination with one or more other races. The sum of the five race groups adds to more than the total population because individuals may report more than one race. The estimates are based on the 2010 Census and reflect changes to the April 1, 2010 population due to the Count Question Resolution program and geographic program revisions. Hispanic origin is considered an ethnicity, not a race. Hispanics may be of any race. Responses of 'Some Other Race' from the 2010 Census are modified. This results in differences between the population for specific race categories shown for the 2010 Census population in this file versus those in the original 2010 Census data. For more information, see http://www.census.gov/popest/data/historical/files/MRSF-01-US1.pdf. // For detailed information about the methods used to create the population estimates, see http://www.census.gov/popest/methodology/index.html. // Each year, the Census Bureau's Population Estimates Program (PEP) utilizes current data on births, deaths, and migration to calculate population change since the most recent decennial census, and produces a time series of estimates of population. The annual time series of estimates begins with the most recent decennial census data and extends to the vintage year. The vintage year (e.g., V2013) refers to the final year of the time series. The reference date for all estimates is July 1, unless otherwise specified. With each new issue of estimates, the Census Bureau revises estimates for years back to the last census. As each vintage of estimates includes all years since the most recent decennial census, the latest vintage of data available supersedes all previously produced estimates for those dates. The Population Estimates Program provides additional information including historical and intercensal estimates, evaluation estimates, demographic analysis, and research papers on its website: http://www.census.gov/popest/index.html.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Key Table Information.Table Title.Public Elementary-Secondary Education School System Finances by Enrollment-Size Groups - Expenditure: 2012 - 2023.Table ID.GOVSTIMESERIES.GS00SS10B.Survey/Program.Public Sector.Year.2024.Dataset.PUB Public Sector Annual Surveys and Census of Governments.Source.U.S. Census Bureau, Public Sector.Release Date.2025-05-01.Release Schedule.The Annual Survey of School System Finances occurs every year. Data are typically released in early May. There are approximately two years between the reference period and data release..Dataset Universe.Census of Governments - Organization (CG):The universe of this file is all federal, state, and local government units in the United States. In addition to the federal government and the 50 state governments, the Census Bureau recognizes five basic types of local governments. The government types are: County, Municipal, Township, Special District, and School District. Of these five types, three are categorized as General Purpose governments: County, municipal, and township governments are readily recognized and generally present no serious problem of classification. However, legislative provisions for school district and special district governments are diverse. These two types are categorized as Special Purpose governments. Numerous single-function and multiple-function districts, authorities, commissions, boards, and other entities, which have varying degrees of autonomy, exist in the United States. The basic pattern of these entities varies widely from state to state. Moreover, various classes of local governments within a particular state also differ in their characteristics. Refer to the Individual State Descriptions report for an overview of all government entities authorized by state.The Public Use File provides a listing of all independent government units, and dependent school districts active as of fiscal year ending June 30, 2024. The Annual Surveys of Public Employment & Payroll (EP) and State and Local Government Finances (LF):The target population consists of all 50 state governments, the District of Columbia, and a sample of local governmental units (counties, cities, townships, special districts, school districts). In years ending in '2' and '7' the entire universe is canvassed. In intervening years, a sample of the target population is surveyed. Additional details on sampling are available in the survey methodology descriptions for those years.The Annual Survey of Public Pensions (PP):The target population consists of state- and locally-administered defined benefit funds and systems of all 50 state governments, the District of Columbia, and a sample of local governmental units (counties, cities, townships, special districts, school districts). In years ending in '2' and '7' the entire universe is canvassed. In intervening years, a sample of the target population is surveyed. Additional details on sampling are available in the survey methodology descriptions for those years.The Annual Surveys of State Government Finance (SG) and State Government Tax Collections (TC):The target population consists of all 50 state governments. No local governments are included. For the purpose of Census Bureau statistics, the term "state government" refers not only to the executive, legislative, and judicial branches of a given state, but it also includes agencies, institutions, commissions, and public authorities that operate separately or somewhat autonomously from the central state government but where the state government maintains administrative or fiscal control over their activities as defined by the Census Bureau. Additional details are available in the survey methodology description.The Annual Survey of School System Finances (SS):The Annual Survey of School System Finances targets all public school systems providing elementary and/or secondary education in all 50 states and the District of Columbia..Methodology.Data Items and Other Identifying Records.Fall enrollmentTotal expenditure Total current spending Current spending - Instruction - TotalCurrent spending - Support services - TotalCurrent spending - Support services - Pupil support servicesCurrent spending - Support services - Instructional staff supportCurrent spending - Support services - General administrationCurrent spending - Support services - School administrationCurrent spending - Support services - Operation and maintenance of plantCurrent spending - Support services - Pupil transportationCurrent spending - Support services - Other and nonspecified support servicesCurrent spending - Other current spendingCurrent spending - All functions - Salaries and wagesCurrent spending - Instruction - Salaries and wagesCurrent spending - Support services - Salaries and wagesCurrent spending - All functions - Employee benefitsCurrent spending - Instruction - Employee benefitsCurrent spending - Support services - Employee benefitsTotal capital outlay expenditure Capital outlay expenditu...
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Key Table Information.Table Title.Population, Enrollment, and Personal Income: U.S. and State: 2012 - 2023.Table ID.GOVSTIMESERIES.GS00SS16.Survey/Program.Public Sector.Year.2024.Dataset.PUB Public Sector Annual Surveys and Census of Governments.Source.U.S. Census Bureau, Public Sector.Release Date.2025-05-01.Release Schedule.The Annual Survey of School System Finances occurs every year. Data are typically released in early May. There are approximately two years between the reference period and data release..Dataset Universe.Census of Governments - Organization (CG):The universe of this file is all federal, state, and local government units in the United States. In addition to the federal government and the 50 state governments, the Census Bureau recognizes five basic types of local governments. The government types are: County, Municipal, Township, Special District, and School District. Of these five types, three are categorized as General Purpose governments: County, municipal, and township governments are readily recognized and generally present no serious problem of classification. However, legislative provisions for school district and special district governments are diverse. These two types are categorized as Special Purpose governments. Numerous single-function and multiple-function districts, authorities, commissions, boards, and other entities, which have varying degrees of autonomy, exist in the United States. The basic pattern of these entities varies widely from state to state. Moreover, various classes of local governments within a particular state also differ in their characteristics. Refer to the Individual State Descriptions report for an overview of all government entities authorized by state.The Public Use File provides a listing of all independent government units, and dependent school districts active as of fiscal year ending June 30, 2024. The Annual Surveys of Public Employment & Payroll (EP) and State and Local Government Finances (LF):The target population consists of all 50 state governments, the District of Columbia, and a sample of local governmental units (counties, cities, townships, special districts, school districts). In years ending in '2' and '7' the entire universe is canvassed. In intervening years, a sample of the target population is surveyed. Additional details on sampling are available in the survey methodology descriptions for those years.The Annual Survey of Public Pensions (PP):The target population consists of state- and locally-administered defined benefit funds and systems of all 50 state governments, the District of Columbia, and a sample of local governmental units (counties, cities, townships, special districts, school districts). In years ending in '2' and '7' the entire universe is canvassed. In intervening years, a sample of the target population is surveyed. Additional details on sampling are available in the survey methodology descriptions for those years.The Annual Surveys of State Government Finance (SG) and State Government Tax Collections (TC):The target population consists of all 50 state governments. No local governments are included. For the purpose of Census Bureau statistics, the term "state government" refers not only to the executive, legislative, and judicial branches of a given state, but it also includes agencies, institutions, commissions, and public authorities that operate separately or somewhat autonomously from the central state government but where the state government maintains administrative or fiscal control over their activities as defined by the Census Bureau. Additional details are available in the survey methodology description.The Annual Survey of School System Finances (SS):The Annual Survey of School System Finances targets all public school systems providing elementary and/or secondary education in all 50 states and the District of Columbia..Methodology.Data Items and Other Identifying Records.State population (in thousands)Fall enrollmentPersonal income (prior calendar year, in million dollars)Definitions can be found by clicking on the column header in the table or by accessing the Glossary.For detailed information, see Government Finance and Employment Classification Manual..Unit(s) of Observation.The basic reporting unit is the governmental unit, defined as an organized entity which in addition to having governmental character, has sufficient discretion in the management of its own affairs to distinguish it as separate from the administrative structure of any other governmental unit.The reporting units for the Annual Survey of School System Finances are public school systems that provide elementary and/or secondary education. The term "public school systems" includes two types of government entities with responsibility for providing education services: (1) school districts that are administratively and fiscally independent of any other government and are counted as separate governments; and (2) public school system...
A census gives a complete and comprehensive picture of the nation as well as groups of people living in specific areas. In what type of buildings and housing units are we living? What are the amenities and facilities that are available therein? How many rooms are there and what is the extent of overcrowding? How many people live in a given town or locality? How many children are there? How many women are there? How many are old enough to vote? What kind of jobs are we doing? What is our level of education? Do we have the required qualifications or skills to satisfy the needs of the labour market? The census helps to answer these questions and many others.
It provides up-to-date and disaggregated data on the housing conditions, the spatial distribution, and the demographic and socio-economic characteristics of the population. These data are essential for assessing the country's demographic, social and economic performance and for developing sound policies and programmes aimed at fostering the welfare of the country and its population.
Census data are also useful to business, industrial and commercial organisations to estimate and forecast demand for their products and services, and to assess the supply of manpower with the relevant skills to run their activities.
Furthermore, census data are used in the derivation of many important and meaningful social indicators that are needed by local and international organizations. Thus, many social indicators, as defined in the set of indicators recommended by the United Nations Statistics Division, can only be worked out from census data.
Legal framework Census 2000 was conducted according to provisions of the Statistics Act of 7 April 1951. The underlying procedures are given in Sections 5, 6 and 13 of the Act. In March 1998, the Cabinet agreed to the conduct of a housing and population census in year 2000. In June 1999, it gave its approval to the census dates and to the topics to be investigated. The regulations for the Housing Census, prescribing the particulars and information to be collected, were subsequently prepared and approved by the President in November 1999. The regulations were published as Government Notice 170 of 1999. In December 1999, the President made an order to the effect that a census of the population be taken between 19 June and 16 July 2000 in respect of all persons alive at midnight on 2 July 2000. The Order was gazetted in December 1999. The regulations for the Population Census, prescribing the particulars and information to be collected were approved by the President in April 2000 and published as Government Notice 57 of 2000.
Housing and population enumerations were conducted on the Islands of Mauritius, Rodrigues and Agalega. As regards St Brandon islands, only a count of persons spending census night on the islands was made, these islands being fishing stations with no resident population.
The Housing Census enumerated all buildings, housing units, households, commercial and industrial establishments, hotels and boarding houses as well as fruit trees of bearing age on residential premises.
The Population Census enumerated all persons present on census night in all households and communal establishments, as well as usual residents who were away on census night.
Census/enumeration data [cen]
Self administered and face to face
Questionnaire Design Consultation with stakeholders from Government Ministries and Departments started in 1998. Heads of Government Ministries and Departments were invited via a circular letter to submit a list of demographic, social and economic data they considered essential for administration, planning and policy-making and which could be collected at the census. The proposals received were discussed at various levels. In the light of these discussions and taking into account recommendations of the United Nations Statistics Division on subject matters that can be investigated at a census, final selection of topics was made at a meeting with subject matter specialists from our parent Ministry.
The main considerations in the final selection of topics were: - the importance of the topics to the country - the cost for collecting and processing data on a given item - where it was possible by other means to obtain satisfactory information more cheaply, the topic was not selected - the suitability of topics - sensitive and controversial issues as well as questions that were too complicated or difficult for the average respondent to answer were avoided - whether the census was the appropriate method for data collection - topics that required detailed investigation or highly qualified staff were not included since they would be best canvassed by sample surveys.
Housing Census Questionnaire All topics investigated at the 1990 Census were included in the 2000 Housing Census questionnaire. Three new items were however added. These were: “Availability of domestic water tank/reservoir”, “Principal fuel used in bathroom” and “Fruit trees on premises”.
The housing census questionnaire was divided into seven parts. A list of topics and items included in the questionnaire is given below:
Part I - Location
Part II - Type of Building
Part III - Characteristics of buildings
- Storeys above ground floor
- Year of completion
- Principal material of construction used for roof and walls
Part IV - Characteristics of housing units
- Ownership
- Occupancy
- Water supply
- Domestic water tank/reservoir
- Availability of electricity
- Toilet facilities
- Bathing facilities
- Availability of kitchen
- Refuse disposal
Part V - Characteristics of households
- Household type
- Name and address of head of household
- Number of persons by sex
- Tenure
- Number of rooms for living purposes
- Number of rooms for business or profession
- Monthly rent
- Principal fuel used for cooking
- Principal fuel used in bathroom
Part VI - Commercial and industrial establishments, hotels and boarding houses
- Name and address of establishment or working proprietor/manager
- Main activity in which the establishment is engaged
- Number of persons engaged at the time of enumeration
Part VII - Fruit-trees on premises
- Number of fruit trees of bearing age by type
Population Census Questionnaire The 2000 Population Census questionnaire covered most of the topics investigated at the 1990 Population Census. A question on income was added while the questions on education were reviewed to include qualifications, other than those of the primary and secondary levels, of the respondent. The topic, main activity status of person during the year, which was investigated at the previous census was not included.
Topics and items included in the population census questionnaire are given below: (i) Location (ii) Names of persons These information were asked only to ensure that all members of the household were enumerated. Also, the listing of names of each person facilitated the checking for accuracy and completeness of each entry at the time of enumeration and later, if errors or missing information still persisted on the form. It should be pointed out that names were not captured at the data entry stage, so that data collected could not be identified with any individual person, in line with the requirements of the Statistics Act. (iii) Demographic and social characteristics - Relationship to head (only one head is allowed for each household) - Sex - Age - Date of birth (This question served as a verification to the age reported earlier) - Citizenship - Marital Status - Religion - Linguistic group - Language usually spoken (iv) Whether disabled or not - Type of disability, if disabled (v) Migration characteristics - Whereabouts on Census night - Usual address - Usual address five years ago (vi) Fertility - For persons not single: - Age at first marriage - Whether married more than once - Number of children ever born (for women only) (vii) Education characteristics - For persons 2 years and above: - Languages read and written - School attendance - Primary and secondary education (viii) Current economic characteristics (ix) Income
Census Guide and Instructions A census guide and instructions booklet was prepared and distributed to all heads of households. The booklet contained extensive explanations on how to fill in the census form and answered questions that people usually asked about censuses. Thus the objectives of the census, what happened to the census forms once the enumeration was over, the confidential aspect of collected information as well as the usefulness of each item were explained.
Printing of Census Questionnaires and Guides
The census questionnaires, and the census guide and instructions booklets were printed by the Government Printer. The numbers printed were as follows:
(i) Housing Census questionnaires - 16,000 booklets of 25 questionnaires
(ii) Population Census questionnaires - 375,000
(iii) Census guide and instructions booklets - 312,000
Recruitment and Training of Editors and Coders About 15 clerical officers who were previously engaged in the various units of the Office and 10 newly recruited statistical officers were called on to the editing and coding of the census forms while a request for the services of 50 additional clerical officers was made to the Ministry for Civil Service Affairs and Administrative Reform. Between March 2000 and May 2001, small groups of clerical officers from the ministry joined the
https://www.broward.org/Terms/Pages/Default.aspxhttps://www.broward.org/Terms/Pages/Default.aspx
This layer shows Hispanic or Latino origin by specific origin. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the percentage of the population with Hispanic or Latino origins. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2016-2020ACS Table(s): B03001 Data downloaded from: Census Bureau's API for American Community Survey Date of API call: March 17, 2022The United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.
Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
This layer shows poverty status by age group. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. Poverty status is based on income in past 12 months of survey. This layer is symbolized to show the percentage of the population whose income falls below the Federal poverty line. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2018-2022ACS Table(s): B17020, C17002Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 7, 2023The United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2022 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.
Provides data on Qualified Census Tracts for the Low-Income Housing Tax Credit Program for 2025.LIHTC Qualified Census Tracts, as defined under the section 42(d)(5)(B) of the of the Internal Revenue Code of 1986, include any census tract (or equivalent geographic area defined by the Bureau of the Census) in which at least 50 percent of households have an income less than 60 percent of the Area Median Gross Income (AMGI), or which has a poverty rate of at least 25 percent. To learn more about Qualified Census Tracts (QCT) visit: https://www.huduser.gov/portal/datasets/qct.html, for questions about the spatial attribution of this dataset, please reach out to us at GISHelpdesk@hud.gov. Data Dictionary: DD_Qualified Census Tracts Date of Coverage: Fiscal Year 2025Date Updated: 1/2025
Annual Resident Population Estimates by Age Group, Sex, Race, and Hispanic Origin: April 1, 2010 to July 1, 2018 // Source: U.S. Census Bureau, Population Division // The contents of this file are released on a rolling basis from December through June. // Note: 'In combination' means in combination with one or more other races. The sum of the five race-in-combination groups adds to more than the total population because individuals may report more than one race. Hispanic origin is considered an ethnicity, not a race. Hispanics may be of any race. Responses of 'Some Other Race' from the 2010 Census are modified. This results in differences between the population for specific race categories shown for the 2010 Census population in this file versus those in the original 2010 Census data. For more information, see https://www2.census.gov/programs-surveys/popest/technical-documentation/methodology/modified-race-summary-file-method/mrsf2010.pdf. // The estimates are based on the 2010 Census and reflect changes to the April 1, 2010 population due to the Count Question Resolution program and geographic program revisions. // For detailed information about the methods used to create the population estimates, see https://www.census.gov/programs-surveys/popest/technical-documentation/methodology.html. // Each year, the Census Bureau's Population Estimates Program (PEP) utilizes current data on births, deaths, and migration to calculate population change since the most recent decennial census, and produces a time series of estimates of population. The annual time series of estimates begins with the most recent decennial census data and extends to the vintage year. The vintage year (e.g., V2017) refers to the final year of the time series. The reference date for all estimates is July 1, unless otherwise specified. With each new issue of estimates, the Census Bureau revises estimates for years back to the last census. As each vintage of estimates includes all years since the most recent decennial census, the latest vintage of data available supersedes all previously produced estimates for those dates. The Population Estimates Program provides additional information including historical and intercensal estimates, evaluation estimates, demographic analysis, and research papers on its website: https://www.census.gov/programs-surveys/popest.html.
This layer contains census tract level 2020 Decennial Census redistricting data as reported by the U.S. Census Bureau for all states plus DC and Puerto Rico. The attributes come from the 2020 Public Law 94-171 (P.L. 94-171) tables.Data download date: August 12, 2021Census tables: P1, P2, P3, P4, H1, P5, HeaderDownloaded from: Census FTP siteProcessing Notes:Data was downloaded from the U.S. Census Bureau FTP site, imported into SAS format and joined to the 2020 TIGER boundaries. Boundaries are sourced from the 2020 TIGER/Line Geodatabases. Boundaries have been projected into Web Mercator and each attribute has been given a clear descriptive alias name. No alterations have been made to the vertices of the data.Each attribute maintains it's specified name from Census, but also has a descriptive alias name and long description derived from the technical documentation provided by the Census. For a detailed list of the attributes contained in this layer, view the Data tab and select "Fields". The following alterations have been made to the tabular data:Joined all tables to create one wide attribute table:P1 - RaceP2 - Hispanic or Latino, and not Hispanic or Latino by RaceP3 - Race for the Population 18 Years and OverP4 - Hispanic or Latino, and not Hispanic or Latino by Race for the Population 18 Years and OverH1 - Occupancy Status (Housing)P5 - Group Quarters Population by Group Quarters Type (correctional institutions, juvenile facilities, nursing facilities/skilled nursing, college/university student housing, military quarters, etc.)HeaderAfter joining, dropped fields: FILEID, STUSAB, CHARITER, CIFSN, LOGRECNO, GEOVAR, GEOCOMP, LSADC, BLOCK, BLKGRP, and TBLKGRP.GEOCOMP was renamed to GEOID and moved be the first column in the table, the original GEOID was dropped.Placeholder fields for future legislative districts have been dropped: CD118, CD119, CD120, CD121, SLDU22, SLDU24, SLDU26, SLDU28, SLDL22, SLDL24 SLDL26, SLDL28.P0020001 was dropped, as it is duplicative of P0010001. Similarly, P0040001 was dropped, as it is duplicative of P0030001.In addition to calculated fields, County_Name and State_Name were added.The following calculated fields have been added (see long field descriptions in the Data tab for formulas used): PCT_P0030001: Percent of Population 18 Years and OverPCT_P0020002: Percent Hispanic or LatinoPCT_P0020005: Percent White alone, not Hispanic or LatinoPCT_P0020006: Percent Black or African American alone, not Hispanic or LatinoPCT_P0020007: Percent American Indian and Alaska Native alone, not Hispanic or LatinoPCT_P0020008: Percent Asian alone, Not Hispanic or LatinoPCT_P0020009: Percent Native Hawaiian and Other Pacific Islander alone, not Hispanic or LatinoPCT_P0020010: Percent Some Other Race alone, not Hispanic or LatinoPCT_P0020011: Percent Population of Two or More Races, not Hispanic or LatinoPCT_H0010002: Percent of Housing Units that are OccupiedPCT_H0010003: Percent of Housing Units that are VacantPlease note these percentages might look strange at the individual tract level, since this data has been protected using differential privacy.**To protect the privacy and confidentiality of respondents, data has been protected using differential privacy techniques by the U.S. Census Bureau. This means that some individual tracts will have values that are inconsistent or improbable. However, when aggregated up, these issues become minimized. The pop-up on this layer uses Arcade to display aggregated values for the surrounding area rather than values for the tract itself.Download Census redistricting data in this layer as a file geodatabase.Additional links:U.S. Census BureauU.S. Census Bureau Decennial CensusAbout the 2020 Census2020 Census2020 Census data qualityDecennial Census P.L. 94-171 Redistricting Data Program
Description:
Since 2009, the departmental directorate of the Marne territories has been carrying out a census of the land resources available within the main urban areas of the Marne. This census concerns land rights of way for known or probable brownfields of all types (industrial, railway, military, etc.). The area retained for brownfields is 2 000 m², threshold defined as potentially an issue. This census is not exhaustive. Census conducted until October 2018.
Genealogy:
A first census of brownfields was carried out from the databases of the Ministry of Ecology, Sustainable Development and Energy “BASIAS” and “Basol”, listing polluted sites. Visits by the territorial referents (RT) of the departmental directorate of the territories were then carried out on site and made it possible to complete the first census. The data is geolocated in the form of polygons using the parcelal cD (default of digitised cadastre).
Metadata: ID: identification of wasteland by number ENTITE: current state (fridge or wasteland converted) CD_INSEE: INSEE code NOM_COM: name of the municipality DESCRIPTION: current state of land or built at census date ACTIV: past or new activity for brownfields ENTER: name of company and/or owner, who is or was installed ADDRESS: address of the wasteland PROJECT: project in progress at census date if known COMMENT: further information on the situation of the wasteland at the last date of its census. SOURCE: Source of information. Date_MAJ: date of update
The geolocation data is in the form of a polygon.
https://www.broward.org/Terms/Pages/Default.aspxhttps://www.broward.org/Terms/Pages/Default.aspx
This layer shows Hispanic or Latino origin by specific origin. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the percentage of the population with Hispanic or Latino origins. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2016-2020ACS Table(s): B03001 Data downloaded from: Census Bureau's API for American Community Survey Date of API call: March 17, 2022The United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.
This layer shows computer ownership and internet access by age and race. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the percent of population age 18 to 64 in households with no computer. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2016-2020ACS Table(s): B28005, B28003, B28009B, B28009C, B28009D, B28009E, B28009F, B28009G, B28009H, B28009I Data downloaded from: Census Bureau's API for American Community Survey Date of API call: March 17, 2022The United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Household type, Education, Disability, Language, Computer/Internet Use, and more. This service is updated annually with American Community Survey (ACS) 5-year data. Contact: District of Columbia, Office of Planning. Email: planning@dc.gov. Geography: Census Tracts. Current Vintage: 2018-2022. ACS Table(s): DP02. Data downloaded from: Census Bureau's API for American Community Survey. Date of API call: January 2, 2024. National Figures: data.census.gov. Please cite the Census and ACS when using this data. Data Note from the Census: Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables. Data Processing Notes: This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2020 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page. Data processed using R statistical package and ArcGIS Desktop. Margin of Error was not included in this layer but is available from the Census Bureau. Contact the Office of Planning for more information about obtaining Margin of Error values.
Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
This layer shows household size by number of vehicles available. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the percentage of households with no vehicle available. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2018-2022ACS Table(s): B08201 Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 7, 2023The United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2022 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.
Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
This layer shows education level for adults 25+. Counts broken down by sex. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized by the percentage of adults (25+) who were not high school graduates. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2018-2022ACS Table(s): B15002Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 7, 2023The United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2022 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.
This dataset contains information on antibody testing for COVID-19: the number of people who received a test, the number of people with positive results, the percentage of people tested who tested positive, and the rate of testing per 100,000 people, stratified by modified ZIP Code Tabulation Area (ZCTA) of residence. Modified ZCTA reflects the first non-missing address within NYC for each person reported with an antibody test result. This unit of geography is similar to ZIP codes but combines census blocks with smaller populations to allow more stable estimates of population size for rate calculation. It can be challenging to map data that are reported by ZIP Code. A ZIP Code doesn’t refer to an area, but rather a collection of points that make up a mail delivery route. Furthermore, there are some buildings that have their own ZIP Code, and some non-residential areas with ZIP Codes. To deal with the challenges of ZIP Codes, the Health Department uses ZCTAs which solidify ZIP codes into units of area. Often, data reported by ZIP code are actually mapped by ZCTA. The ZCTA geography was developed by the U.S. Census Bureau. These data can also be accessed here: https://github.com/nychealth/coronavirus-data/blob/master/totals/antibody-by-modzcta.csv Exposure to COVID-19 can be detected by measuring antibodies to the disease in a person’s blood, which can indicate that a person may have had an immune response to the virus. Antibodies are proteins produced by the body’s immune system that can be found in the blood. People can test positive for antibodies after they have been exposed, sometimes when they no longer test positive for the virus itself. It is important to note that the science around COVID-19 antibody tests is evolving rapidly and there is still much uncertainty about what individual antibody test results mean for a single person and what population-level antibody test results mean for understanding the epidemiology of COVID-19 at a population level.
These data only provide information on people tested. People receiving an antibody test do not reflect all people in New York City; therefore, these data may not reflect antibody prevalence among all New Yorkers. Increasing instances of screening programs further impact the generalizability of these data, as screening programs influence who and how many people are tested over time. Examples of screening programs in NYC include: employers screening their workers (e.g., hospitals), and long-term care facilities screening their residents.
In addition, there may be potential biases toward people receiving an antibody test who have a positive result because people who were previously ill are preferentially seeking testing, in addition to the testing of persons with higher exposure (e.g., health care workers, first responders)
Rates were calculated using interpolated intercensal population estimates updated in 2019. These rates differ from previously reported rates based on the 2000 Census or previous versions of population estimates. The Health Department produced these population estimates based on estimates from the U.S. Census Bureau and NYC Department of City Planning.
Antibody tests are categorized based on the date of specimen collection and are aggregated by full weeks starting each Sunday and ending on Saturday. For example, a person whose blood was collected for antibody testing on Wednesday, May 6 would be categorized as tested during the week ending May 9. A person tested twice in one week would only be counted once in that week. This dataset includes testing data beginning April 5, 2020.
Data are updated daily, and the dataset preserves historical records and source data changes, so each extract date reflects the current copy of the data as of that date. For example, an extract date of 11/04/2020 and extract date of 11/03/2020 will both contain all records as they were as of that extract date. Without filtering or grouping by extract date, an analysis will almost certainly be miscalculating or counting the same values multiple times. To analyze the most current data, only use the latest extract date. Antibody tests that are missing dates are not included in the dataset; as dates are identified, these events are added. Lags between occurrence and report of cases and tests can be assessed by comparing counts and rates across multiple data extract dates.
For further details, visit:
• https://www1.nyc.gov/site/doh/covid/covid-19-data.page
• https://github.com/nychealth/coronavirus-data
• https://data.cityofnewyork.us/Health/Modified-Zip-Code-Tabulation-Areas-MODZCTA-/pri4-ifjk
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau's Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units for states and counties..Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Technical Documentation section.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2021 American Community Survey 1-Year Estimates.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..The Census Bureau introduced a new set of disability questions in the 2008 ACS questionnaire. Accordingly, comparisons of disability data from 2008 or later with data from prior years are not recommended. For more information on these questions and their evaluation in the 2006 ACS Content Test, see the Evaluation Report Covering Disability..For cognitive difficulty, ambulatory difficulty, and self-care difficulty, the 'Population under 18 years' includes persons aged 5 to 17. Children under 5 are not included in these measures..The 2021 American Community Survey (ACS) data generally reflect the March 2020 Office of Management and Budget (OMB) delineations of metropolitan and micropolitan statistical areas. In certain instances the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB delineations due to differences in the effective dates of the geographic entities..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on Census 2010 data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.