https://www.icpsr.umich.edu/web/ICPSR/studies/36312/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/36312/terms
The Quarterly Census of Employment and Wages (QCEW) program is a cooperative program involving the Bureau of Labor Statistics (BLS) of the United States Department of Labor and the State Employment Security Agencies (SESAs). The QCEW program produces a comprehensive tabulation of employment and wage information for workers covered by State unemployment insurance (UI) laws and Federal workers covered by the Unemployment Compensation for Federal Employees (UCFE) program. Publicly available data files include information on the number of establishments, monthly employment, and quarterly wages, by NAICS industry, by county, by ownership sector, for the entire United States. These data are aggregated to annual levels, to higher industry levels (NAICS industry groups, sectors, and supersectors), and to higher geographic levels (national, State, and Metropolitan Statistical Area (MSA)). To download and analyze QCEW data, users can begin on the QCEW Databases page. Downloadable data are available in formats such as text and CSV. Data for the QCEW program that are classified using the North American Industry Classification System (NAICS) are available from 1990 forward, and on a more limited basis from 1975 to 1989. These data provide employment and wage information for arts-related NAICS industries, such as: Arts, entertainment, and recreation (NAICS Code 71) Performing arts and spectator sports Museums, historical sites, zoos, and parks Amusements, gambling, and recreation Professional, scientific, and technical services (NAICS Code 54) Architectural services Graphic design services Photographic services Retail trade (NAICS Code 44-45) Sporting goods, hobby, book and music stores Book, periodical, and music stores Art dealers For years 1975-2000, data for the QCEW program provide employment and wage information for arts-related industries are based on the Standard Industrial Classification (SIC) system. These arts-related SIC industries include the following: Book stores (SIC 5942) Commercial photography (SIC Code 7335) Commercial art and graphic design (SIC Code 7336) Museums, Botanical, Zoological Gardens (SIC Code 84) Dance studios, schools, and halls (SIC Code 7911) Theatrical producers and services (SIC Code 7922) Sports clubs, managers, & promoters (SIC Code 7941) Motion Picture Services (SIC Code 78) The QCEW program serves as a near census of monthly employment and quarterly wage information by 6-digit NAICS industry at the national, state, and county levels. At the national level, the QCEW program provides employment and wage data for almost every NAICS industry. At the State and area level, the QCEW program provides employment and wage data down to the 6-digit NAICS industry level, if disclosure restrictions are met. Employment data under the QCEW program represent the number of covered workers who worked during, or received pay for, the pay period including the 12th of the month. Excluded are members of the armed forces, the self-employed, proprietors, domestic workers, unpaid family workers, and railroad workers covered by the railroad unemployment insurance system. Wages represent total compensation paid during the calendar quarter, regardless of when services were performed. Included in wages are pay for vacation and other paid leave, bonuses, stock options, tips, the cash value of meals and lodging, and in some States, contributions to deferred compensation plans (such as 401(k) plans). The QCEW program does provide partial information on agricultural industries and employees in private households. Data from the QCEW program serve as an important source for many BLS programs. The QCEW data are used as the benchmark source for employment by the Current Employment Statistics program and the Occupational Employment Statistics program. The UI administrative records collected under the QCEW program serve as a sampling frame for BLS establishment surveys. In addition, data from the QCEW program serve as a source to other Federal and State programs. The Bureau of Economic Analysis (BEA) of the Department of Commerce uses QCEW data as the base for developing the wage and salary component of personal income. The Employment and Training Administration (ETA) of the Department of Labor and the SESAs use QCEW data to administer the employment security program. The QCEW data accurately reflect the ex
Attribution 2.5 (CC BY 2.5)https://creativecommons.org/licenses/by/2.5/
License information was derived automatically
LGA based data for Unpaid Domestic Work: Number of Hours by Age by Sex, in General Community Profile (GCP), 2016 Census. Count of persons aged 15 years and over. It includes work that the person did without pay, in their own home and in other places, for themselves, their family and other people in the household, in the week prior to Census night. G20 is broken up into 2 sections (G20a - G20b), this section contains 'Males 15-19 years Did unpaid domestic work Less than 5 hours' - 'Persons 85 years and over Did unpaid domestic work 30 hours or more'.The data is by LGA 2016 boundaries. Periodicity: 5-Yearly. Note: There are small random adjustments made to all cell values to protect the confidentiality of data. These adjustments may cause the sum of rows or columns to differ by small amounts from table totals. For more information visit the data source: http://www.abs.gov.au/census.
VITAL SIGNS INDICATOR
Jobs (LU2)
FULL MEASURE NAME
Employment estimates by place of work
LAST UPDATED
October 2022
DESCRIPTION
Jobs refers to the number of employees in a given area by place of work. These estimates do not include self-employed and private household employees.
DATA SOURCE
Bureau of Labor Statistics, Quarterly Census of Employment and Wages - https://www.bls.gov/cew/downloadable-data-files.htm
1990-2021
U.S. Census Bureau: LODES Data - http://lehd.ces.census.gov/
Longitudinal Employer-Household Dynamics Program
2002-2018
METHODOLOGY NOTES (across all datasets for this indicator)
Quarterly Census of Employment and Wages (QCEW) monthly employment data represent the number of covered workers who worked during, or received pay for, the pay period that included the 12th day of the month. Covered employees in the private-sector and in the state and local government include most corporate officials, all executives, all supervisory personnel, all professionals, all clerical workers, many farmworkers, all wage earners, all piece workers and all part-time workers. Workers on paid sick leave, paid holiday, paid vacation and the like are also covered.
Besides excluding the aforementioned national security agencies, QCEW excludes proprietors, the unincorporated self-employed, unpaid family members, certain farm and domestic workers exempted from having to report employment data and railroad workers covered by the railroad unemployment insurance system. Excluded as well are workers who earned no wages during the entire applicable pay period because of work stoppages, temporary layoffs, illness or unpaid vacations.
For measuring jobs below the county level, Vital Signs assigns collections of incorporated cities and towns to sub-county areas. For example, the cities of East Palo Alto, Menlo Park, Portola Valley, Redwood City and Woodside are considered South San Mateo County. Because Bay Area counties differ in footprint, the number of cities included in a sub-county is one for San Francisco and San Jose and more than one for all other sub-counties. Estimates for sub-county areas are the sums of Census block-level estimates from the U.S. Census Bureau: LEHD data.
The following incorporated cities and towns are included in each sub-county area:
- North Alameda County: Alameda, Albany, Berkeley, Emeryville, Oakland, Piedmont
- East Alameda County: Dublin, Livermore, Pleasanton
- South Alameda County: Fremont, Hayward, Newark, San Leandro, Union City
- Central Contra Costa County: Clayton, Concord, Danville, Lafayette, Martinez, Moraga, Orinda, Pleasant Hill, San Ramon, Walnut Creek
- East Contra Costa County: Antioch, Brentwood, Oakley, Pittsburg
- West Contra Costa County: El Cerrito, Hercules, Pinole, Richmond, San Pablo
- Marin County: Belvedere, Corte Madera, Fairfax, Larkspur, Mill Valley, Novato, Ross, San Anselmo, San Rafael, Sausalito, Tiburon
- Napa County: American Canyon, Calistoga, Napa, St. Helena, Yountville
- San Francisco County: San Francisco
- North San Mateo County: Brisbane, Colma, Daly City, Millbrae, Pacifica, San Bruno, South San Francisco
- Central San Mateo County: Belmont, Burlingame, Foster City, Half Moon Bay, Hillsborough, San Carlos, San Mateo
- South San Mateo County: East Palo Alto, Menlo Park, Portola Valley, Redwood City, Woodside, Atherton
- North Santa Clara County: Los Altos, Los Altos Hills, Milpitas, Mountain View, Palo Alto, Santa Clara, Sunnyvale
- San Jose: San Jose
- Southwest Santa Clara County: Campbell, Cupertino, Los Gatos, Monte Sereno, Saratoga
- South Santa Clara County: Gilroy, Morgan Hill
- East Solano County: Dixon, Fairfield, Rio Vista, Suisun City, Vacaville
- South Solano County: Benicia, Vallejo
- North Sonoma County: Cloverdale, Healdsburg, Windsor
- South Sonoma County: Cotati, Petaluma, Rohnert Park, Santa Rosa, Sebastopol, Sonoma
The Quarterly Census of Employment and Wages (QCEW) program (also known as ES-202) collects employment and wage data from employers covered by New York State's Unemployment Insurance (UI) Law. This program is a cooperative program with the U.S. Bureau of Labor Statistics. QCEW data encompass approximately 97 percent of New York's nonfarm employment, providing a virtual census of employees and their wages as well as the most complete universe of employment and wage data, by industry, at the State, regional and county levels. "Covered" employment refers broadly to both private-sector employees as well as state, county, and municipal government employees insured under the New York State Unemployment Insurance (UI) Act. Federal employees are insured under separate laws, but are considered covered for the purposes of the program. Employee categories not covered by UI include some agricultural workers, railroad workers, private household workers, student workers, the self-employed, and unpaid family workers. QCEW data are similar to monthly Current Employment Statistics (CES) data in that they reflect jobs by place of work; therefore, if a person holds two jobs, he or she is counted twice. However, since the QCEW program, by definition, only measures employment covered by unemployment insurance laws, its totals will not be the same as CES employment totals due to the employee categories excluded by UI.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Forest Home township. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.
Key observations: Insights from 2023
Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Forest Home township, the median income for all workers aged 15 years and older, regardless of work hours, was $56,000 for males and $37,850 for females.
These income figures highlight a substantial gender-based income gap in Forest Home township. Women, regardless of work hours, earn 68 cents for each dollar earned by men. This significant gender pay gap, approximately 32%, underscores concerning gender-based income inequality in the township of Forest Home township.
- Full-time workers, aged 15 years and older: In Forest Home township, among full-time, year-round workers aged 15 years and older, males earned a median income of $59,318, while females earned $53,125, resulting in a 10% gender pay gap among full-time workers. This illustrates that women earn 90 cents for each dollar earned by men in full-time positions. While this gap shows a trend where women are inching closer to wage parity with men, it also exhibits a noticeable income difference for women working full-time in the township of Forest Home township.Interestingly, when analyzing income across all roles, including non-full-time employment, the gender pay gap percentage was higher for women compared to men. It appears that full-time employment presents a more favorable income scenario for women compared to other employment patterns in Forest Home township.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.
Gender classifications include:
Employment type classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Forest Home township median household income by race. You can refer the same here
Attribution 2.5 (CC BY 2.5)https://creativecommons.org/licenses/by/2.5/
License information was derived automatically
SA2 based data for Unpaid Domestic Work: Number of Hours by Age by Sex, in General Community Profile (GCP), 2016 Census. Count of persons aged 15 years and over. It includes work that the person did without pay, in their own home and in other places, for themselves, their family and other people in the household, in the week prior to Census night. G20 is broken up into 2 sections (G20a - G20b), this section contains 'Males 15-19 years Did unpaid domestic work Less than 5 hours' - 'Persons 85 years and over Did unpaid domestic work 30 hours or more'.The data is by SA2 2016 boundaries. Periodicity: 5-Yearly. Note: There are small random adjustments made to all cell values to protect the confidentiality of data. These adjustments may cause the sum of rows or columns to differ by small amounts from table totals. For more information visit the data source: http://www.abs.gov.au/census.
https://www.icpsr.umich.edu/web/ICPSR/studies/6219/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/6219/terms
These data from the 1990 Census comprise a sample of households with at least one person 60 years and older, plus a sample of persons 60 years and older in group quarters. The data are grouped into housing variables and person variables. Housing variables include area type, state and area of residence, farm/nonfarm status, type of structure, year structure was built, vacancy and boarded-up status, number of rooms and bedrooms, presence or absence of a telephone, presence or absence of complete kitchen and plumbing facilities, type of sewage facilities, type of water source, type of heating fuel used, property value, tenure, year moved into house/apartment, type of household/family, type of group quarters, household language, number of persons in the household, number of persons and workers in the family, status of mortgage, second mortgage, and home equity loan, number of vehicles available, household income, sales of agricultural products, payments for rent, mortgage and property tax, condominium fees, mobile home costs, and cost of electricity, water, heating fuel, and flood/fire/hazard insurance. Person variables cover age, sex, relationship to householder, educational attainment, school enrollment, race, Hispanic origin, ancestry, language spoken at home, citizenship, place of birth, year of immigration, place of residence in 1985, marital status, number of children ever born, military service, mobility and personal care limitation, work limitation status, employment status, occupation, industry, class of worker, hours worked last week, weeks worked in 1989, usual hours worked per week, temporary absence from work, place of work, time of departure for work, travel time to work, means of transportation to work, total earnings, total income, wages and salary income, farm and nonfarm self-employment income, Social Security income, public assistance income, retirement income, and rent, dividends, and net rental income.
A dataset that combines federal and state administrative data on employers and employees with core Census Bureau censuses and surveys, while protecting the confidentiality of people and firms that provide the data. This data infrastructure facilitates longitudinal research applications in both the household / individual and firm / establishment dimensions. The specific research is targeted at filling an important gap in the available data on older workers by providing information on the demand side of the labor market. These datasets comprise Title 13 protected data from the Current Population Surveys, Surveys of Income and Program Participation, Surveys of Program Dynamics, American Community Surveys, the Business Register, and Economic Censuses and Surveys. With few exceptions, states have partnered with the Census Bureau to share data. As of December 2008, Connecticut, Massachusetts, New Hampshire and Puerto Rico have not signed a partnership agreement, while a partnership with the Virgin Islands is pending. LEHD's second method of developing employer-employee data relations through the use of federal tax data has been completed. LEHD has produced summary tables on accessions, separation, job creation, destruction and earnings by age and sex of worker by industry and geographic area. The data files consist of longitudinal datasets on all firms in each participating state (quarterly data, 1991- 2003), with information on age, sex, turnover, and skill level of the workforce as well as standard information on employment, payroll, sales and location. These data can be accessed for all available states from the Project Website. Data Availability: Research conducted on the LEHD data and other products developed under this proposal at the Census Bureau takes place under a set of rules and limitations that are considerably more constraining than those prevailing in typical research environments. If state data are requested, the successful peer-reviewed proposals must also be approved by the participating state. If federal tax data are requested, the successful peer-reviewed proposals must also be approved by the Internal Revenue Service. Researchers using the LEHD data will be required to obtain Special Sworn Status from the Census Bureau and be subject to the same legal penalties as regular Census Bureau employees for disclosure of confidential information. Basic instructions on how to download the data files and restrictions can be found on the Project Website. * Dates of Study: 1991-present * Study Features: Longitudinal * Sample Size: 48 States or U.S. territories
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Home township. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.
Key observations: Insights from 2023
Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Home township, the median income for all workers aged 15 years and older, regardless of work hours, was $32,699 for males and $17,438 for females.
These income figures highlight a substantial gender-based income gap in Home township. Women, regardless of work hours, earn 53 cents for each dollar earned by men. This significant gender pay gap, approximately 47%, underscores concerning gender-based income inequality in the township of Home township.
- Full-time workers, aged 15 years and older: In Home township, among full-time, year-round workers aged 15 years and older, males earned a median income of $57,986, while females earned $40,926, leading to a 29% gender pay gap among full-time workers. This illustrates that women earn 71 cents for each dollar earned by men in full-time roles. This analysis indicates a widening gender pay gap, showing a substantial income disparity where women, despite working full-time, face a more significant wage discrepancy compared to men in the same roles.Surprisingly, the gender pay gap percentage was higher across all roles, including non-full-time employment, for women compared to men. This suggests that full-time employment offers a more equitable income scenario for women compared to other employment patterns in Home township.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.
Gender classifications include:
Employment type classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Home township median household income by race. You can refer the same here
The U.S. Census's 2010 LEHD Origin-Destination Employment Statistcs (LODES) Dataset was used to map job and worker density in throughout the Twin Cities Metropolitan Area, Minnesota. The LODES data is part of the U.S. Census's Longitudinal Employer-Household Dynamics program which records the number of jobs by workplace location and the number of workers by household location at the census block level. LEHD data is derived from data provided by the Minnesota Department of Employment and Economic Development's (MNDEED) Quarterly Census of Employment and Wages (QCEW) and the U.S. Social Security Administration.
The U.S. Cenus Bureau protects the confidentiality of the original data by using a system of multiplicative noise infusion, whereby all released data are "fuzzed." Although the positional accuracy of the data is not as good as the original MNDEED QCEW data, a more robust dataset is produced that allows allows users to not only map a general representation of job density (see LEHD Job Density), but also map jobs by income level (LEHD Low-Wage Job Density) and workers' residence (see LEHD Worker Household Density or LEHD Low-Wage Worker Household Density).
Jobs and workers are classified into three earning categories: <= $1,250/month, $1,251 to $3,333/month, and > $3,333/month. The census block level data was converted to a smoothly tapered surface of calculated census block value. The resulting data surface provides a general representation of density of low-wage jobs ($3,333/month or less: approx. $40,000 or less annually) in the Twin Cities Metropolitan Area, Minnesota.
IPUMS-International is an effort to inventory, preserve, harmonize, and disseminate census microdata from around the world. The project has collected the world's largest archive of publicly available census samples. The data are coded and documented consistently across countries and over time to facillitate comparative research. IPUMS-International makes these data available to qualified researchers free of charge through a web dissemination system.
The IPUMS project is a collaboration of the Minnesota Population Center, National Statistical Offices, and international data archives. Major funding is provided by the U.S. National Science Foundation and the Demographic and Behavioral Sciences Branch of the National Institute of Child Health and Human Development. Additional support is provided by the University of Minnesota Office of the Vice President for Research, the Minnesota Population Center, and Sun Microsystems.
National coverage
Dwelling and person
UNITS IDENTIFIED: - Dwellings: No - Vacant units: No - Households: Yes - Individuals: Yes - Group quarters: Yes
UNIT DESCRIPTIONS: - Dwellings: Every separate and independent structure that has been constructed or converted for use as temporary or permanent housing. This includes any class of fixed or mobile shelter used as a place of lodging at the time of enumeration. A dwelling can be a) a private house, apartment, floor in a house, room or group of rooms, ranch, etc. designed to give lodging to one person or a group of people or b) a boat, vehicle, railroad car, barn, shed, or any other type of shelter occupied as a place of lodging at the time of enumeration. - Households: All the occupying members of a family or private dwelling that live together as family. In most cases, a household is made up of a head of the family, relatives of this person (wife or partner, children, grand-children, nieces and nephews, etc.), close friends, guests, lodgers, domestic employees and all other occupants. Households with five or fewer lodgers are considered private,but households with six or more lodgers are considered a non-family group. - Group quarters: Accommodation for a group of people who are not usually connected by kinship ties who live together for reasons of discipline, healthcare, education, mlitary activity, religion, work or other dwellings such as reform schools, boarding schools, barracks, hopsitals, guest houses, nursing homes, workers camps, etc.
Population in private and communal housing
Census/enumeration data [cen]
MICRODATA SOURCE: National Institute of Statistics
SAMPLE DESIGN: Systematic sample of every 10th household with a random start, drawn by the Minnesota Population Center
SAMPLE UNIT: Household
SAMPLE FRACTION: 10%
SAMPLE SIZE (person records): 268,248
Face-to-face [f2f]
Single record that includes housing and population questionnaires
The Quarterly Census of Employment and Wages (QCEW) program (also known as ES-202) collects employment and wage data from employers covered by New York State's Unemployment Insurance (UI) Law. This program is a cooperative program with the U.S. Bureau of Labor Statistics. QCEW data encompass approximately 97 percent of New York's nonfarm employment, providing a virtual census of employees and their wages as well as the most complete universe of employment and wage data, by industry, at the State, regional and county levels. "Covered" employment refers broadly to both private-sector employees as well as state, county, and municipal government employees insured under the New York State Unemployment Insurance (UI) Act. Federal employees are insured under separate laws, but are considered covered for the purposes of the program. Employee categories not covered by UI include some agricultural workers, railroad workers, private household workers, student workers, the self-employed, and unpaid family workers. QCEW data are similar to monthly Current Employment Statistics (CES) data in that they reflect jobs by place of work; therefore, if a person holds two jobs, he or she is counted twice. However, since the QCEW program, by definition, only measures employment covered by unemployment insurance laws, its totals will not be the same as CES employment totals due to the employee categories excluded by UI. Industry level data from 1975 to 2000 is reflective of the Standard Industrial Classification (SIC) codes.
Attribution 2.5 (CC BY 2.5)https://creativecommons.org/licenses/by/2.5/
License information was derived automatically
SA1 based data for Unpaid Domestic Work: Number of Hours by Age by Sex, in Place of Enumeration Profile (PEP), 2016 Census. Count of persons aged 15 years and over. It includes work that the person did without pay, in their own home and in other places, for themselves, their family and other people in the household, in the week prior to Census night. P20 is broken up into 2 sections (P20a - P20b), this section contains 'Males 15-19 years Did unpaid domestic work Less than 5 hours' - 'Persons 45-54 years Total'.The data is by SA1 2016 boundaries. Periodicity: 5-Yearly. Note: There are small random adjustments made to all cell values to protect the confidentiality of data. These adjustments may cause the sum of rows or columns to differ by small amounts from table totals. For more information visit the data source: http://www.abs.gov.au/census.
Attribution 2.5 (CC BY 2.5)https://creativecommons.org/licenses/by/2.5/
License information was derived automatically
LGA based data for Unpaid Domestic Work: Number of Hours by Age by Sex, in Place of Enumeration Profile (PEP), 2016 Census. Count of persons aged 15 years and over. It includes work that the person did without pay, in their own home and in other places, for themselves, their family and other people in the household, in the week prior to Census night. P20 is broken up into 2 sections (P20a - P20b), this section contains 'Persons 55-64 years Unpaid domestic work number of hours Less than 5 hours' - 'Persons Total Total'. The data is by LGA 2016 boundaries. Periodicity: 5-Yearly. Note: There are small random adjustments made to all cell values to protect the confidentiality of data. These adjustments may cause the sum of rows or columns to differ by small amounts from table totals. For more information visit the data source: http://www.abs.gov.au/census.
PERIOD: Population census on Oct. 1,1920. SOURCE: [Survey by the Statistics Bureau, Imperial Cabinet].
VITAL SIGNS INDICATOR
Jobs by Industry (EC1)
FULL MEASURE NAME
Employment by place of work by industry sector
LAST UPDATED
December 2022
DESCRIPTION
Jobs by industry refers to both the change in employment levels by industry and the proportional mix of jobs by economic sector. This measure reflects the changing industry trends that affect our region’s workers.
DATA SOURCE
Bureau of Labor Statistics, Quarterly Census of Employment and Wages (QCEW) - https://www.bls.gov/cew/downloadable-data-files.htm
1990-2021
CONTACT INFORMATION
vitalsigns.info@bayareametro.gov
METHODOLOGY NOTES (across all datasets for this indicator)
Quarterly Census of Employment and Wages (QCEW) employment data is reported by the place of work and represent the number of covered workers who worked during, or received pay for, the pay period that included the 12th day of the month. Covered employees in the private-sector and in the state and local government include most corporate officials, all executives, all supervisory personnel, all professionals, all clerical workers, many farmworkers, all wage earners, all piece workers and all part-time workers. Workers on paid sick leave, paid holiday, paid vacation and the like are also covered.
Besides excluding the aforementioned national security agencies, QCEW excludes proprietors, the unincorporated self-employed, unpaid family members, certain farm and domestic workers exempted from having to report employment data and railroad workers covered by the railroad unemployment insurance system. Excluded as well are workers who earned no wages during the entire applicable pay period because of work stoppages, temporary layoffs, illness or unpaid vacations.
The location quotient (LQ) is used to evaluate level of concentration or clustering of an industry within the Bay Area and within each county of the region. A location quotient greater than 1 means there is a strong concentration for of jobs in an industry sector. For the Bay Area, the LQ is calculated as the share of the region’s employment in a particular sector divided by the share of California's employment in that same sector. For each county, the LQ is calculated as the share of the county’s employment in a particular sector divided by the share of the region’s employment in that same sector.
Data is mainly pulled from aggregation level 73, which is county-level summarized at the North American Industry Classification System (NAICS) supersector level (12 sectors). This aggregation level exhibits the least loss due to data suppression, in the magnitude of 1-2 percent for regional employment, and is therefore preferred. However, the supersectors group together NAICS 11 Agriculture, Forestry, Fishing and Hunting; NAICS 21 Mining and NAICS 23 Construction. To provide a separate tally of Agriculture, Forestry, Fishing and Hunting, the aggregation level 74 data was used for NAICS codes 11, 21 and 23.
QCEW reports on employment in Public Administration as NAICS 92. However, many government activities are reported with an industry specific code - such as transportation or utilities even if those may be public governmental entities. In 2021 for the Bay Area, the largest industry groupings under public ownership are Education and health services (58%); Public administration (29%) and Trade, transportation, and utilities (29%). With the exception of Education and health services, all other public activities were coded as government/public administration, regardless of industry group.
For the county data there were some industries that reported 0 jobs or did not report jobs at the desired aggregation/NAICS level for the following counties/years:
Farm:
(aggregation level: 74, NAICS code: 11)
- Contra Costa: 2008-2010
- Marin: 1990-2006, 2008-2010, 2014-2020
- Napa: 1990-2004, 2013-2021
- San Francisco: 2019-2020
- San Mateo: 2013
Information:
(aggregation level: 73, NAICS code: 51)
- Solano: 2001
Financial Activities:
(aggregation level: 73, NAICS codes: 52, 53)
- Solano: 2001
Unclassified:
(aggregation level: 73, NAICS code: 99)
- All nine Bay Area counties: 1990-2000
- Marin, Napa, San Mateo, and Solano: 2020
- Napa: 2019
- Solano: 2001
https://www.icpsr.umich.edu/web/ICPSR/studies/6497/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/6497/terms
This dataset, prepared by the Inter-university Consortium for Political and Social Research, comprises 2 percent of the cases in the second release of CENSUS OF POPULATION AND HOUSING, 1990 [UNITED STATES]: PUBLIC USE MICRODATA SAMPLE: 5-PERCENT SAMPLE (ICPSR 9952). As 2 percent of the 5-percent Public Use Microdata Sample (PUMS), it constitutes a 1-in-1,000 sample, and contains all housing and population variables in the original 5-percent PUMS. Housing variables include area type, state and area of residence, farm/nonfarm status, type of structure, year structure was built, vacancy and boarded-up status, number of rooms and bedrooms, presence or absence of a telephone, presence or absence of complete kitchen and plumbing facilities, type of sewage, water source, and heating fuel used, property value, tenure, year moved into housing unit, type of household/family, type of group quarters, household language, number of persons, related children, own/adopted children, and stepchildren in the household, number of persons and workers in the family, status of mortgage, second mortgage, and home equity loan, number of vehicles available, household income, sales of agricultural products, payments for rent, mortgage, and property tax, condominium fees, mobile home costs, and cost of electricity, water, heating fuel, and flood/fire/hazard insurance. Person variables cover age, sex, relationship to householder, educational attainment, school enrollment, race, Hispanic origin, ancestry, language spoken at home, citizenship, place of birth, year of immigration, place of residence in 1985, marital status, number of children ever born, presence and age of own children, military service, mobility and personal care limitation, work limitation status, employment status, employment status of parents, occupation, industry, class of worker, hours worked last week, weeks worked in 1989, usual hours worked per week, temporary absence from work, place of work, time of departure for work, travel time to work, means of transportation to work, number of occupants in vehicle during ride to work, total earnings, total income, wages and salary income, farm and nonfarm self-employment income, Social Security income, public assistance income, retirement income, and rent, dividends, and net rental income.
US Census American Community Survey (ACS) 2019, 5-year estimates of the key economic characteristics of Census Tracts geographic level in Orange County, California. The data contains 397 fields for the variable groups E01: Employment status (universe: population 16 years and over, table X23, 7 fields); E02: Work status by age of worker (universe: population 16 years and over, table X23, 36 fields); E03: Commuting to work (universe: workers 16 years and over, table X8, 8 fields); E04: Travel time to work (universe: workers 16 years and over who did not work at home, table X8, 14 fields); E05: Number of vehicles available for workers (universe: workers 16 years and over in households, table X8, 8 fields); E06: Median age by means of transportation to work (universe: median age, workers 16 years and over, table X8, 7 fields); E07: Means of transportation to work by race (universe: workers 16 years and over, table X8, 64 fields); E08: Occupation (universe: civilian employed population 16 years and over, table X24, 53 fields); E09: Industry (universe: civilian employed population 16 years and over, table X24, 43 fields); E10: Class of worker (universe: civilian employed population 16 years and over, table X24, 19 fields); E11: Household income and earnings in the past 12 months (universe: total households, table X19, 37 fields); E12: Income and earnings in dollars (universe: inflation-adjusted dollars, tables X19-X20, 31 fields); E13: Family income in dollars (universe: total families, table X19, 17 fields); E14: Health insurance coverage (universe: total families, table X19, 17 fields); E15: Ratio of income to Poverty level (universe: total population for whom Poverty level is determined, table X17, 8 fields); E16: Poverty in population in the past 12 months (universe: total population for whom Poverty level is determined, table X17, 7 fields); E17: Poverty in households in the past 12 months (universe: total households, table X17, 9 fields); E18: Percentage of families and people whose income in the past 12 months is below the poverty level (universe: families, population, table X17, 8 fields), and; X19: Poverty and income deficit (dollars) in the past 12 months for families (universe: families with income below Poverty level in the past 12 months, table X17, 4 fields). The US Census geodemographic data are based on the 2019 TigerLines across multiple geographies. The spatial geographies were merged with ACS data tables. See full documentation at the OCACS project github page (https://github.com/ktalexan/OCACS-Geodemographics).
Attribution 2.5 (CC BY 2.5)https://creativecommons.org/licenses/by/2.5/
License information was derived automatically
SA2 based data for Unpaid Domestic Work: Number Of Hours by Age by Sex, for 2011 Census. Count of all persons persons aged 15 years and over on Census night based on place of usual residence. Data sourced from: http://www.abs.gov.au/census. For further information about these and related statistics, contact the National Information and Referral Services on 1300 135 070. Periodicity: 5-Yearly.
The 1980 South African Population Census was a count of all persons present on Republic of South African territory during census night (i.e. at midnight between 6 and 7 May 1980). The purpose of the population census was to collect detailed statistics on population size, composition and distribution at small area level. The 1980 South African Population Census contains data collected on HOUSEHOLDS: household goods and dwelling characteristics as well as employment of domestic workers; INDIVIDUALS: population group, citizenship/nationality, marital status, fertility and infant mortality, education, employment, religion, language and disabilities, as well as mode of transport used and participation in sport and other recreational activities
The 1980 census covered the so-called white areas of South Africa, i.e. the areas in the former four provinces of the Cape, the Orange Free State, Transvaal, and Natal. It also covered areas in the so-called National States of Ciskei, KwaZulu, Gazankulu, Lebowa, Qwaqwa, Kangwane, and Kwandebele. The 1980 South African census excluded the "independent states" of Bophuthatswana, Transkei, and Venda. A census data file for Bophuthatswana was released with the final South African Census 1980 dataset.
Households and individuals
The 1980 South African census covered all household members (usual residents).
The 1980 South African Population Census was enumerated on a de facto basis, that is, according to the place where persons were located during the census. All persons who were present on Republic of South African territory during census night (i.e. at midnight between 6 and 7 May 1980) were enumerated and included in the data. Visitors from abroad who were present in the RSA on holiday or business on the night of the census, as well as foreigners (and their families) who were studying or economically active, were not enumerated and included in the figures. Likewise, members of the Diplomatic and Consular Corps of foreign countries were not included. However, the South African personnel linked to the foreign missions including domestic workers were enumerated. Crews and passengers of ships were also not enumerated, unless they were normally resident in the Republic of South Africa. Residents of the RSA who were absent from the night were as far as possible enumerated on their return and included in the region where they normally resided. Personnel of the South African Government stationed abroad and their families were, however enumerated. Such persons were included in the Transvaal (Pretoria).
Census enumeration data
Face-to-face [f2f]
The 1980 Population Census questionnaire was administered to all household members and covered household goods and dwelling characteristics, and employment of domestic workers. Questions concerning individuals included those on citizenship/nationality, marital status, fertility and infant mortality, education, employment, religion, language and disabilities, as well as mode of transport used and participation in sport and other recreational activities.
The following questions appear in the questionnaire but the corresponding data has not been included in the data set: PART C: PARTICULARS OF DWELLING: 2. How many separate families (i) Number of families (ii) Number of non-family persons (iii) total number of occupants [i.e. persons in families shown against (i) plus persons shown against 3. Persons employed by household Full-time, Part-time (a) How many persons employed as domestics (b) Total cash wages paid to above –mentioned persons for April 1980 4. Ownership – Do not answer this question if your dwelling is on a farm. (i) Own dwelling – (Including hire-purchase, sectional title property or property of wife): (a) Is the dwelling Fully paid Partly paid-off (b) If partly paid-off, state monthly repayment (include housing subsidy, but exclude insurance. (ii) Rented or occupied free dwelling : (a) Is the dwelling occupied free, rented furnished, rented unfurnished (b) If rented, state monthly rent (c) Is the dwelling owned by the employer? (d) Does it belong to the state, SA Railways, a provincial administration, a divisional council, or a municipality or other local authority? PART D: PARTICULARS OF THE FAMILY 1. Number of members in the family 2. Occupation. (Nature of work done) (a) Head of family (b) Wife 3. Annual income of head of family and wife. Annual income of: Head, Wife (if applicable)
https://www.icpsr.umich.edu/web/ICPSR/studies/36312/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/36312/terms
The Quarterly Census of Employment and Wages (QCEW) program is a cooperative program involving the Bureau of Labor Statistics (BLS) of the United States Department of Labor and the State Employment Security Agencies (SESAs). The QCEW program produces a comprehensive tabulation of employment and wage information for workers covered by State unemployment insurance (UI) laws and Federal workers covered by the Unemployment Compensation for Federal Employees (UCFE) program. Publicly available data files include information on the number of establishments, monthly employment, and quarterly wages, by NAICS industry, by county, by ownership sector, for the entire United States. These data are aggregated to annual levels, to higher industry levels (NAICS industry groups, sectors, and supersectors), and to higher geographic levels (national, State, and Metropolitan Statistical Area (MSA)). To download and analyze QCEW data, users can begin on the QCEW Databases page. Downloadable data are available in formats such as text and CSV. Data for the QCEW program that are classified using the North American Industry Classification System (NAICS) are available from 1990 forward, and on a more limited basis from 1975 to 1989. These data provide employment and wage information for arts-related NAICS industries, such as: Arts, entertainment, and recreation (NAICS Code 71) Performing arts and spectator sports Museums, historical sites, zoos, and parks Amusements, gambling, and recreation Professional, scientific, and technical services (NAICS Code 54) Architectural services Graphic design services Photographic services Retail trade (NAICS Code 44-45) Sporting goods, hobby, book and music stores Book, periodical, and music stores Art dealers For years 1975-2000, data for the QCEW program provide employment and wage information for arts-related industries are based on the Standard Industrial Classification (SIC) system. These arts-related SIC industries include the following: Book stores (SIC 5942) Commercial photography (SIC Code 7335) Commercial art and graphic design (SIC Code 7336) Museums, Botanical, Zoological Gardens (SIC Code 84) Dance studios, schools, and halls (SIC Code 7911) Theatrical producers and services (SIC Code 7922) Sports clubs, managers, & promoters (SIC Code 7941) Motion Picture Services (SIC Code 78) The QCEW program serves as a near census of monthly employment and quarterly wage information by 6-digit NAICS industry at the national, state, and county levels. At the national level, the QCEW program provides employment and wage data for almost every NAICS industry. At the State and area level, the QCEW program provides employment and wage data down to the 6-digit NAICS industry level, if disclosure restrictions are met. Employment data under the QCEW program represent the number of covered workers who worked during, or received pay for, the pay period including the 12th of the month. Excluded are members of the armed forces, the self-employed, proprietors, domestic workers, unpaid family workers, and railroad workers covered by the railroad unemployment insurance system. Wages represent total compensation paid during the calendar quarter, regardless of when services were performed. Included in wages are pay for vacation and other paid leave, bonuses, stock options, tips, the cash value of meals and lodging, and in some States, contributions to deferred compensation plans (such as 401(k) plans). The QCEW program does provide partial information on agricultural industries and employees in private households. Data from the QCEW program serve as an important source for many BLS programs. The QCEW data are used as the benchmark source for employment by the Current Employment Statistics program and the Occupational Employment Statistics program. The UI administrative records collected under the QCEW program serve as a sampling frame for BLS establishment surveys. In addition, data from the QCEW program serve as a source to other Federal and State programs. The Bureau of Economic Analysis (BEA) of the Department of Commerce uses QCEW data as the base for developing the wage and salary component of personal income. The Employment and Training Administration (ETA) of the Department of Labor and the SESAs use QCEW data to administer the employment security program. The QCEW data accurately reflect the ex