77 datasets found
  1. i

    Population and Household Census 2011 - Niue

    • datacatalog.ihsn.org
    • catalog.ihsn.org
    • +1more
    Updated Mar 29, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Niue Statistics (2019). Population and Household Census 2011 - Niue [Dataset]. https://datacatalog.ihsn.org/catalog/3173
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset authored and provided by
    Niue Statistics
    Time period covered
    2011
    Area covered
    Niue
    Description

    Abstract

    The main aim and objectives of the census is to provide benchmark statistics and a comprehensive profile of the population and households of Niue at a given time. This information obtained from the census is very crucial and useful in providing evidence to decision making and policy formulation for the Government, Business Community, Local Communities or Village Councils, Non Government Organisations of Niue and The International Communities who have an interest in Niue and its people.

    Geographic coverage

    National

    Analysis unit

    • Household
    • Individual/Person
    • Members Oversea

    Universe

    All households in Niue and all persons in the household including those temporarily overseas and those absent for not more than 12 months.

    Kind of data

    Census/enumeration data [cen]

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The questionaire was published in English, a translated questionnaire was on hand when on demand by the respondent.

    The questionnaire design differed slightly from the design of previous census questionnaires. As usual, government departments were asked to submit a list of questions on any specific topic they would like to add. Responses were not forthcoming in this census, although a few new questions were included.

    There were two types of questionaires used in the census: the household questionaire and the individual questionnaire. An enumerator manual was prepared to assist the enumerators in their duties.

    The questionnaire was pre-tested by the enumerators before they were to go out for field enumeration.

    Cleaning operations

    Census processing began as soon as questionaires were checked and coded. Forms were checked, edited and coded before being entered into the computer database.

    Data processing was assisted by the Secretariat of the Pacific Community (SPC) using the computer software program CSPro for data entry and for generating tables. Tables were then exported to Excel for analysis.

    Occupation and Industry were coded using the United Nations International Standard Classification of Occupation and International Standard Industrial Classification.

    It is standard practice that as each area was completed the forms were first checked by the field supervisors for missing information and obvious inconsistencies. Omissions and errors identified at this stage were corrected by the enumerators.

    The next stage was for the field supervisors to go through the completed forms again in the office to check in more detail for omissions and logical inconsistencies. Where they were found, the supervisors were responsible to take the necessary action.

    Once the questionnaires had been thoroughly checked and edited, they were then coded in preparation for data processing.

    Checking, editing and coding of the questionnaires in office were done after normal working hours as to ensure that the confidentiality of the survey is well observed.

  2. Historic US Census - 1910

    • redivis.com
    application/jsonl +7
    Updated Jan 10, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stanford Center for Population Health Sciences (2020). Historic US Census - 1910 [Dataset]. http://doi.org/10.57761/n3ks-0444
    Explore at:
    spss, csv, parquet, arrow, stata, avro, sas, application/jsonlAvailable download formats
    Dataset updated
    Jan 10, 2020
    Dataset provided by
    Redivis Inc.
    Authors
    Stanford Center for Population Health Sciences
    Time period covered
    Jan 1, 1910 - Dec 31, 1910
    Area covered
    United States
    Description

    Abstract

    The Integrated Public Use Microdata Series (IPUMS) Complete Count Data include more than 650 million individual-level and 7.5 million household-level records. The microdata are the result of collaboration between IPUMS and the nation’s two largest genealogical organizations—Ancestry.com and FamilySearch—and provides the largest and richest source of individual level and household data.

    Before Manuscript Submission

    All manuscripts (and other items you'd like to publish) must be submitted to

    phsdatacore@stanford.edu for approval prior to journal submission.

    We will check your cell sizes and citations.

    For more information about how to cite PHS and PHS datasets, please visit:

    https:/phsdocs.developerhub.io/need-help/citing-phs-data-core

    Documentation

    Historic data are scarce and often only exists in aggregate tables. The key advantage of historic US census data is the availability of individual and household level characteristics that researchers can tabulate in ways that benefits their specific research questions. The data contain demographic variables, economic variables, migration variables and family variables. Within households, it is possible to create relational data as all relations between household members are known. For example, having data on the mother and her children in a household enables researchers to calculate the mother’s age at birth. Another advantage of the Complete Count data is the possibility to follow individuals over time using a historical identifier.

    In sum: the historic US census data are a unique source for research on social and economic change and can provide population health researchers with information about social and economic determinants.Historic data are scarce and often only exists in aggregate tables. The key advantage of historic US census data is the availability of individual and household level characteristics that researchers can tabulate in ways that benefits their specific research questions. The data contain demographic variables, economic variables, migration variables and family variables. Within households, it is possible to create relational data as all relations between household members are known. For example, having data on the mother and her children in a household enables researchers to calculate the mother’s age at birth. Another advantage of the Complete Count data is the possibility to follow individuals over time using a historical identifier. In sum: the historic US census data are a unique source for research on social and economic change and can provide population health researchers with information about social and economic determinants.

    The historic US 1910 census data was collected in April 1910. Enumerators collected data traveling to households and counting the residents who regularly slept at the household. Individuals lacking permanent housing were counted as residents of the place where they were when the data was collected. Household members absent on the day of data collected were either listed to the household with the help of other household members or were scheduled for the last census subdivision.

    Section 2

    This dataset was created on 2020-01-10 23:47:27.924 by merging multiple datasets together. The source datasets for this version were:

    IPUMS 1910 households: The Integrated Public Use Microdata Series (IPUMS) Complete Count Data are historic individual and household census records and are a unique source for research on social and economic change.

    IPUMS 1910 persons: This dataset includes all individuals from the 1910 US census.

  3. p

    Population and Housing Census 2000 - Palau

    • microdata.pacificdata.org
    • catalog.ihsn.org
    • +1more
    Updated May 16, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office of Planning and Statistics (2019). Population and Housing Census 2000 - Palau [Dataset]. https://microdata.pacificdata.org/index.php/catalog/232
    Explore at:
    Dataset updated
    May 16, 2019
    Dataset authored and provided by
    Office of Planning and Statistics
    Time period covered
    2000
    Area covered
    Palau
    Description

    Abstract

    The 2000 Republic of Palau Census of Population and Housing was the second census collected and processed entirely by the republic itself. This monograph provides analyses of data from the most recent census of Palau for decision makers in the United States and Palau to understand current socioeconomic conditions. The 2005 Census of Population and Housing collected a wide range of information on the characteristics of the population including demographics, educational attainments, employment status, fertility, housing characteristics, housing characteristics and many others.

    Geographic coverage

    National

    Analysis unit

    • Household;
    • Individual.

    Universe

    The 1990, 1995 and 2000 censuses were all modified de jure censuses, counting people and recording selected characteristics of each individual according to his or her usual place of residence as of census day. Data were collected for each enumeration district - the households and population in each enumerator assignment - and these enumeration districts were then collected into hamlets in Koror, and the 16 States of Palau.

    Kind of data

    Census/enumeration data [cen]

    Sampling procedure

    No sampling - whole universe covered

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The 2000 censuses of Palau employed a modified list-enumerate procedure, also known as door-to-door enumeration. Beginning in mid-April 2000, enumerators began visiting each housing unit and conducted personal interviews, recording the information collected on the single questionnaire that contained all census questions. Follow-up enumerators visited all addresses for which questionnaires were missing to obtain the information required for the census.

    Cleaning operations

    The completed questionnaires were checked for completeness and consistency of responses, and then brought to OPS for processing. After checking in the questionnaires, OPS staff coded write-in responses (e.g., ethnicity or race, relationship, language). Then data entry clerks keyed all the questionnaire responses. The OPS brought the keyed data to the U.S. Census Bureau headquarters near Washington, DC, where OPS and Bureau staff edited the data using the Consistency and Correction (CONCOR) software package prior to generating tabulations using the Census Tabulation System (CENTS) package. Both packages were developed at the Census Bureau's International Programs Center (IPC) as part of the Integrated Microcomputer Processing System (IMPS).

    The goal of census data processing is to produce a set of data that described the population as clearly and accurately as possible. To meet this objective, crew leaders reviewed and edited questionnaires during field data collection to ensure consistency, completeness, and acceptability. Census clerks also reviewed questionnaires for omissions, certain inconsistencies, and population coverage. Census personnel conducted a telephone or personal visit follow-up to obtain missing information. The follow-ups considered potential coverage errors as well as questionnaires with omissions or inconsistencies beyond the completeness and quality tolerances specified in the review procedures.

    Following field operations, census staff assigned remaining incomplete information and corrected inconsistent information on the questionnaires using imputation procedures during the final automated edit of the data. The use of allocations, or computer assignments of acceptable data, occurred most often when an entry for a given item was lacking or when the information reported for a person or housing unit on an item was inconsistent with other information for that same person or housing unit. In all of Palau’s censuses, the general procedure for changing unacceptable entries was to assign an entry for a person or housing unit that was consistent with entries for persons or housing units with similar characteristics. The assignment of acceptable data in place of blanks or unacceptable entries enhanced the usefulness of the data.

    Sampling error estimates

    Human and machine-related errors occur in any large-scale statistical operation. Researchers generally refer to these problems as non-sampling errors. These errors include the failure to enumerate every household or every person in a population, failure to obtain all required information from residents, collection of incorrect or inconsistent information, and incorrect recording of information. In addition, errors can occur during the field review of the enumerators' work, during clerical handling of the census questionnaires, or during the electronic processing of the questionnaires. To reduce various types of non-sampling errors, Census office personnel used several techniques during planning, data collection, and data processing activities. Quality assurance methods were used throughout the data collection and processing phases of the census to improve the quality of the data.

    Census staff implemented several coverage improvement programs during the development of census enumeration and processing strategies to minimize under-coverage of the population and housing units. A quality assurance program improved coverage in each census. Telephone and personal visit follow-ups also helped improve coverage. Computer and clerical edits emphasized improving the quality and consistency of the data. Local officials participated in post-census local reviews. Census enumerators conducted additional re-canvassing where appropriate.

  4. c

    Data from: Census Enumerators' Returns for Kingston upon Thames, 1851, 1861,...

    • datacatalogue.cessda.eu
    Updated Nov 28, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    French, C., Kingston University; Warren, J., Kingston University; Sullivan, A., Kingston University; Tilley, P., Kingston University (2024). Census Enumerators' Returns for Kingston upon Thames, 1851, 1861, 1871 and 1891 [Dataset]. http://doi.org/10.5255/UKDA-SN-4710-1
    Explore at:
    Dataset updated
    Nov 28, 2024
    Dataset provided by
    Centre for Local History Studies
    Authors
    French, C., Kingston University; Warren, J., Kingston University; Sullivan, A., Kingston University; Tilley, P., Kingston University
    Time period covered
    Apr 1, 1996 - Feb 28, 2003
    Area covered
    Kingston upon Thames, United Kingdom
    Variables measured
    Individuals, Families/households, Subnational
    Measurement technique
    Transcription of existing materials
    Description

    Abstract copyright UK Data Service and data collection copyright owner.


    This study arose out of the Kingston Local History Project. The purpose of this project is to construct a database detailing major aspects of Kingston's economic and social evolution during the second half of the nineteenth century. The study contains complete census enumerator' books for the census years 1851, 1861, 1871, 1891.

    Main Topics:

    With one or two slight variations from census to census, the subject content of this data collection was virtually the same for each of the census years 1851, 1861, 1871 and 1891. Covering the census area of Kingston upon Thames (including Kingston, Surbiton, New Malden, Ham, Hook and Chessington) the census enumerators' returns provide the following information on all individuals within all households on census night: address; forename and surname of each individual; relationship to head of household; marital status; age; sex; rank, profession or occupation; where born; and disability. The data collection also contains details of where each individual appears in the census returns by giving the number of the enumeration district, the page number in the census returns and the line number of the page.

  5. c

    Census Enumerators' Books, Keighley, West Yorkshire, 1851-1881

    • datacatalogue.cessda.eu
    Updated Nov 28, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Garrett, E. M., University of Sheffield (2024). Census Enumerators' Books, Keighley, West Yorkshire, 1851-1881 [Dataset]. http://doi.org/10.5255/UKDA-SN-2592-1
    Explore at:
    Dataset updated
    Nov 28, 2024
    Dataset provided by
    Department of Geography
    Authors
    Garrett, E. M., University of Sheffield
    Time period covered
    Jan 1, 1983 - Jan 1, 1984
    Area covered
    England
    Variables measured
    Individuals, Families/households, Subnational, Census data, Households, Women
    Measurement technique
    Transcription from microfilm copies of enumerators' books.
    Description

    Abstract copyright UK Data Service and data collection copyright owner.


    The focus of the study was the inter-relationship between women's work, particularly that of married women working outside the home, and low levels of fertility in mid-nineteenth century textile communities. Although the data were collected for the purpose of studying fertility patterns, they may be of interest to a wider range of specialists, including social and economic historians, sociologists, geographers and genealogists.
    Main Topics:

    Variables
    Date of census, address code, enumerator's household number, letter denoting type of household living arrangements, e.g. shared homes, surname, forename, relationship to head of household, marital status, sex, age, occupation (name), occupation (numeric code), birthplace (code).

  6. p

    Population and Housing Census 2006 - Tonga

    • microdata.pacificdata.org
    Updated May 20, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Population and Housing Census 2006 - Tonga [Dataset]. https://microdata.pacificdata.org/index.php/catalog/183
    Explore at:
    Dataset updated
    May 20, 2019
    Dataset authored and provided by
    Tonga Statistics Department
    Time period covered
    2006
    Area covered
    Tonga
    Description

    Abstract

    The Census is the official count of population and dwellings in Tonga, providing a ‘snapshot’ of the society and its most precious resource, its people, at a point in time. The official reference period of the census was midnight, the 30th of November, 2006.

    The census provides a unique source of detailed demographic, social and economic data relating the entire population at a single point in time. Census information is used for policy setting and implementation, research, planning and other decision-making. The census is often the primary source of information used for the allocation of public funding, especially in areas such as health, education and social policy. The main users of this information are the government, local authorities, education facilities (such as schools and tertiary organizations), businesses, community organizations and the public in general.

    The 2006 Census was taken under the authority of Section 8 of Statistical Act Chap. 53 of 1978 which empowers the Minister of Finance to make regulations necessary to conduct the population Census. This regulation was approved by the Cabinet and cited as Census Regulation 2006. The Census regulations also indicate that the Government Statistician would be responsible for the administration and completion of the Census. In addition, the regulations enabled the Statistics Department to carry out the necessary activities required to plan, manage and implement all the necessary Census activities.

    Census planning and management

    From a planning and management perspective, the Census had two main objectives. Firstly, it was to ensure that the process of collecting, compiling, evaluating, analyzing and disseminating of demographic, economic and social data was conducted in a timely and accurate manner. The development of procedures and processes for the 2006 Census of Population and Housing made use of the lessons learned in previous censuses, and built upon recommendations for improvements.

    Secondly, it was a valuable opportunity for building the capacities of employees of the Statistics Department (SD), thus resulting in enhancing the image, credibility and reputation of the Department and at the same time, strengthening its infrastructure. Emphasis was placed on having a senior staff with a wide perspective and leadership qualities. Through the use of vision, planning, coordination, delegation of responsibility and a strong team spirit, the census work was conducted in an effective and efficient manner. Staffs at all levels were encouraged to have an innovative mindset in addressing issues. Incentives for other parties to participate, both within Statistics Department Tonga Tonga 2006 Census of Population and Housing viii and outside the government, were encouraged. As a result, the wider community including donors such as AusAID, the Secretariat of the Pacific Community (SPC) in Noumea, that provided the technical assistance and the general public, were able to support the census project.

    Extensive and detailed planning is needed to conduct a successful census. Areas that required planning include: enumeration procedures and fieldwork, public communication, data processing and output systems, mapping and the design of census block boundaries, dissemination procedures, content determination and questionnaire development and training. These aspects, and how they interacted with each other, played a crucial role in determining the quality of all of the census outputs. Each phase therefore required careful, methodical planning and testing. The details of such activities, and their implementation and responsibilities were assigned to 5 subcommittees composed of staff members of the SD.

    Organizational structure of the Census

    A census organizational structure is designed to implement a number of interrelated activities. Each of these activities was assigned to a specific sub-committee. The census manuals provided guidelines on processes, organizational structures, controls for quality assurance and problem solving. The challenge for managers was developing a work environment that enabled census personnel to perform all these tasks with a common goal in mind. Each sub-committee was responsible for its own outputs, and specific decisions for specific situations were delegated to the lowest level possible. Problem situations beyond the scope of the sub-committee were escalated to the next higher level.

    The organizational structure of the census was as follows: a) The Steering Committee (consisting of the Head of both Government and nongovernment organizations), chaired by Secretary for Finance with the Government Statistician (GS) as secretary. b) The Census Committee (consisted of all sub-committee leaders plus the GS, and chaired by the Assistant Government Statistician (AGS) who was the officer in charge of all management and planning of the Census 2006 operations. c) There were five Sub-committees (each sub-committee consisted of about 5 members and were chaired by their Sub-committee leader). These committees included: Mapping, Publicity, Fieldwork, Training and Data Processing. In this way, every staff member of the SD was involved with the census operation through their participation on these committees.

    The census steering committee was a high level committee that approved and endorsed the plans and activities of the census. Policy issues that needed to be addressed were submitted to the steering committee for approval prior to the census team and sub-committees designation of the activities necessary to address the tasks.

    Part of the initial planning of the 2006 Census involved the establishment of a work-plan with specific time frames. This charted all activities that were to be undertaken and, their impact and dependencies on other activities. These time frames were an essential part of the overall exercise, as they provided specific guides to the progress of each area, and alerted subcommittees’ team leaders (TL) to areas where problems existed and needed to be addressed. These also provided the SD staff with a clear indication of where and how their roles impacted the overall Census process.

    Monitoring of the timeframe was an essential part of the management of the Census program. Initially, weekly meetings were held which involved the GS, AGS and team leaders (TL) of the Census committee. As the Census projects progressed, the AGS and TL’s met regularly with their sub-committees to report on the progress of each area. Decisions were made on necessary actions in order to meet the designated dates. Potential risks that could negatively affect the deadlines and actions were also considered at these meetings.

    For the 5 sub-committees, one of their first tasks was to verify and amend their terms of reference using the “Strengths, Weaknesses, Opportunities and Threats” (SWOT) analysis methodology, as it applied to past censuses. Each committee then prepared a work-plan and listed all activities for which that particular sub-committee was responsible. This listing included the assignment of a responsible person, together with the timeline indicating the start and end dates required to complete that particular activity. These work-plans, set up by all the 5 sub-committees, were then used by the AGS to develop a detailed operational plan for all phases of the census, the activities required to complete these phases, start and end dates, the person responsible and the dependencies, - all in a Ghant chart format. These combined work-plans were further discussed and amended in the Census team and reported to the Steering committee on regular basis as required.

    Geographic coverage

    National coverage, which includes the 5 Divisions and both Urban and Rural Areas of Tonga.

    Analysis unit

    Individual and Households.

    Universe

    All individuals in private and institutional households.

    Kind of data

    Census/enumeration data [cen]

    Sampling procedure

    The National Population Census was a complete enumeration census, hence no sampling procedure was employed. A Mapping Sub-committee was formed to ensure complete coverage of the country.

    The Mapping Sub-committee

    Led by Mr. Winston Fainga'anuku, this committee's mandate was to ensure that good quality maps were produced. The objective was to ensure that the maps provided complete coverage of the country, were designed to accommodate a reasonable workload of one census enumerator and, that geographic identifiers could be used for dissemination purposes by the PopGIS system. Collaborations with the Ministry of Land, Survey and Natural Resources (MLSNR) began in 2004 to ensure that digitized maps for Tonga could be used for 2006 Census. Mr. Fainga'anuku was attached to the MLSNR in April 2005 to assist 'Atelea Kautoke, Samuela Mailau, Lilika and others to complete the task of digitizing the maps for Tonga. In addition, frequent visits by Mr. Scott Pontifex from the Secretariat of the Pacific Community (SPC) in Noumea, assisted to ensure that quality digitized maps were prepared. SPC also assisted by lending its digitizer which was used in this mapping project. The staff of the Statistics Department (SD) visited household sites throughout Tongatapu and the main outer islands. This exercise was to redesign the Census Block boundaries by amalgamating or splitting existing census blocks to achieve an average of 50 households per census block. Various updates within the census block maps were made. These included the names of the head of household; roads and other landmarks to ensure that current and accurate information was provided to the enumerators. Reliable maps, both for enumerators and supervisors are necessary ingredients to assist in avoiding any under or over - counting during

  7. a

    Worker Type (by Census Tract) 2019

    • hub.arcgis.com
    • gisdata.fultoncountyga.gov
    • +1more
    Updated Feb 26, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2021). Worker Type (by Census Tract) 2019 [Dataset]. https://hub.arcgis.com/datasets/33ff517c0d4e4cfa8ec6ecb5c2bba3e1
    Explore at:
    Dataset updated
    Feb 26, 2021
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This dataset was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau.For a deep dive into the data model including every specific metric, see the Infrastructure Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics.Naming conventions:Prefixes: None Countp Percentr Ratem Mediana Mean (average)t Aggregate (total)ch Change in absolute terms (value in t2 - value in t1)pch Percent change ((value in t2 - value in t1) / value in t1)chp Change in percent (percent in t2 - percent in t1)s Significance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computed Suffixes: _e19 Estimate from 2014-19 ACS_m19 Margin of Error from 2014-19 ACS_00_v19 Decennial 2000, re-estimated to 2019 geography_00_19 Change, 2000-19_e10_v19 2006-10 ACS, re-estimated to 2019 geography_m10_v19 Margin of Error from 2006-10 ACS, re-estimated to 2019 geography_e10_19 Change, 2010-19The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2015-2019). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2015-2019Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the manifest: https://www.arcgis.com/sharing/rest/content/items/3d489c725bb24f52a987b302147c46ee/data

  8. F

    Output per Worker for Private Nonfarm in the Northeast Census Region

    • fred.stlouisfed.org
    json
    Updated May 31, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Output per Worker for Private Nonfarm in the Northeast Census Region [Dataset]. https://fred.stlouisfed.org/series/IPUZNW000981000
    Explore at:
    jsonAvailable download formats
    Dataset updated
    May 31, 2024
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    Northeastern United States
    Description

    Graph and download economic data for Output per Worker for Private Nonfarm in the Northeast Census Region (IPUZNW000981000) from 2007 to 2023 about Northeast Census Region, output, nonfarm, private, employment, and USA.

  9. i

    Census of Population and Housing 2006 - Tonga

    • catalog.ihsn.org
    • dev.ihsn.org
    Updated Mar 29, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Department (2019). Census of Population and Housing 2006 - Tonga [Dataset]. https://catalog.ihsn.org/index.php/catalog/3202
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset authored and provided by
    Statistics Department
    Time period covered
    2006
    Area covered
    Tonga
    Description

    Abstract

    The Census is the official count of population and dwellings in Tonga, providing a ‘snapshot’ of the society and its most precious resource, its people, at a point in time. The official reference period of the census was midnight, the 30th of November, 2006.

    The census provides a unique source of detailed demographic, social and economic data relating the entire population at a single point in time. Census information is used for policy setting and implementation, research, planning and other decision-making. The census is often the primary source of information used for the allocation of public funding, especially in areas such as health, education and social policy. The main users of this information are the government, local authorities, education facilities (such as schools and tertiary organizations), businesses, community organizations and the public in general.

    The 2006 Census was taken under the authority of Section 8 of Statistical Act Chap. 53 of 1978 which empowers the Minister of Finance to make regulations necessary to conduct the population Census. This regulation was approved by the Cabinet and cited as Census Regulation 2006. The Census regulations also indicate that the Government Statistician would be responsible for the administration and completion of the Census. In addition, the regulations enabled the Statistics Department to carry out the necessary activities required to plan, manage and implement all the necessary Census activities.

    Census Planning and Management From a planning and management perspective, the Census had two main objectives. Firstly, it was to ensure that the process of collecting, compiling, evaluating, analyzing and disseminating of demographic, economic and social data was conducted in a timely and accurate manner. The development of procedures and processes for the 2006 Census of Population and Housing made use of the lessons learned in previous censuses, and built upon recommendations for improvements.

    Secondly, it was a valuable opportunity for building the capacities of employees of the Statistics Department (SD), thus resulting in enhancing the image, credibility and reputation of the Department and at the same time, strengthening its infrastructure. Emphasis was placed on having a senior staff with a wide perspective and leadership qualities. Through the use of vision, planning, coordination, delegation of responsibility and a strong team spirit, the census work was conducted in an effective and efficient manner. Staffs at all levels were encouraged to have an innovative mindset in addressing issues. Incentives for other parties to participate, both within Statistics Department Tonga Tonga 2006 Census of Population and Housing viii and outside the government, were encouraged. As a result, the wider community including donors such as AusAID, the Secretariat of the Pacific Community (SPC) in Noumea, that provided the technical assistance and the general public, were able to support the census project.

    Extensive and detailed planning is needed to conduct a successful census. Areas that required planning include: enumeration procedures and fieldwork, public communication, data processing and output systems, mapping and the design of census block boundaries, dissemination procedures, content determination and questionnaire development and training. These aspects, and how they interacted with each other, played a crucial role in determining the quality of all of the census outputs. Each phase therefore required careful, methodical planning and testing. The details of such activities, and their implementation and responsibilities were assigned to 5 subcommittees composed of staff members of the SD.

    Organizational Structure of the Census A census organizational structure is designed to implement a number of interrelated activities. Each of these activities was assigned to a specific sub-committee. The census manuals provided guidelines on processes, organizational structures, controls for quality assurance and problem solving. The challenge for managers was developing a work environment that enabled census personnel to perform all these tasks with a common goal in mind. Each sub-committee was responsible for its own outputs, and specific decisions for specific situations were delegated to the lowest level possible. Problem situations beyond the scope of the sub-committee were escalated to the next higher level.

    The organizational structure of the census was as follows: a) The Steering Committee (consisting of the Head of both Government and nongovernment organizations), chaired by Secretary for Finance with the Government Statistician (GS) as secretary. b) The Census Committee (consisted of all sub-committee leaders plus the GS, and chaired by the Assistant Government Statistician (AGS) who was the officer in charge of all management and planning of the Census 2006 operations. c) There were five Sub-committees (each sub-committee consisted of about 5 members and were chaired by their Sub-committee leader). These committees included: Mapping, Publicity, Fieldwork, Training and Data Processing. In this way, every staff member of the SD was involved with the census operation through their participation on these committees.

    The census steering committee was a high level committee that approved and endorsed the plans and activities of the census. Policy issues that needed to be addressed were submitted to the steering committee for approval prior to the census team and sub-committees designation of the activities necessary to address the tasks.

    Part of the initial planning of the 2006 Census involved the establishment of a work-plan with specific time frames. This charted all activities that were to be undertaken and, their impact and dependencies on other activities. These time frames were an essential part of the overall exercise, as they provided specific guides to the progress of each area, and alerted subcommittees’ team leaders (TL) to areas where problems existed and needed to be addressed. These also provided the SD staff with a clear indication of where and how their roles impacted the overall Census process.

    Monitoring of the timeframe was an essential part of the management of the Census program. Initially, weekly meetings were held which involved the GS, AGS and team leaders (TL) of the Census committee. As the Census projects progressed, the AGS and TL’s met regularly with their sub-committees to report on the progress of each area. Decisions were made on necessary actions in order to meet the designated dates. Potential risks that could negatively affect the deadlines and actions were also considered at these meetings.

    For the 5 sub-committees, one of their first tasks was to verify and amend their terms of reference using the “Strengths, Weaknesses, Opportunities and Threats” (SWOT) analysis methodology, as it applied to past censuses. Each committee then prepared a work-plan and listed all activities for which that particular sub-committee was responsible. This listing included the assignment of a responsible person, together with the timeline indicating the start and end dates required to complete that particular activity. These work-plans, set up by all the 5 sub-committees, were then used by the AGS to develop a detailed operational plan for all phases of the census, the activities required to complete these phases, start and end dates, the person responsible and the dependencies, - all in a Ghant chart format. These combined work-plans were further discussed and amended in the Census team and reported to the Steering committee on regular basis as required.

    Geographic coverage

    The Population Census covers the whole of the Kingdom of Tonga, which includes the 5 Divisions and both Urban and Rural Areas.

    Analysis unit

    Individuals, families and private households

    Universe

    All individuals in private and institutional households.

    Kind of data

    Census/enumeration data [cen]

    Sampling procedure

    The National Population Census was a complete enumeration census, hence no sampling procedure was employed. A Mapping Sub-committee was formed to ensure complete coverage of the country.

    The Mapping Sub-committee Led by Mr. Winston Fainga'anuku, this committee's mandate was to ensure that good quality maps were produced. The objective was to ensure that the maps provided complete coverage of the country, were designed to accommodate a reasonable workload of one census enumerator and, that geographic identifiers could be used for dissemination purposes by the PopGIS system. Collaborations with the Ministry of Land, Survey and Natural Resources (MLSNR) began in 2004 to ensure that digitized maps for Tonga could be used for 2006 Census. Mr. Fainga'anuku was attached to the MLSNR in April 2005 to assist 'Atelea Kautoke, Samuela Mailau, Lilika and others to complete the task of digitizing the maps for Tonga. In addition, frequent visits by Mr. Scott Pontifex from the Secretariat of the Pacific Community (SPC) in Noumea, assisted to ensure that quality digitized maps were prepared. SPC also assisted by lending its digitizer which was used in this mapping project. The staff of the Statistics Department (SD) visited household sites throughout Tongatapu and the main outer islands. This exercise was to redesign the Census Block boundaries by amalgamating or splitting existing census blocks to achieve an average of 50 households per census block. Various updates within the census block maps were made. These included the names of the head of household; roads and other landmarks to ensure that current and accurate information was provided to the enumerators. Reliable maps, both for enumerators and supervisors are necessary ingredients to assist in

  10. Agricultural Census, 2006 - Brazil

    • microdata.fao.org
    Updated Nov 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Brazilian Institute of Gography and Statistics (IBGE) (2020). Agricultural Census, 2006 - Brazil [Dataset]. https://microdata.fao.org/index.php/catalog/1612
    Explore at:
    Dataset updated
    Nov 24, 2020
    Dataset provided by
    Brazilian Institute of Geography and Statisticshttps://www.ibge.gov.br/
    Authors
    Brazilian Institute of Gography and Statistics (IBGE)
    Time period covered
    2007
    Area covered
    Brazil
    Description

    Abstract

    The Census of Agriculture investigates information on agricultural establishments and agricultural activities developed inside them, including characteristics of the producers and establishments, economy and employment in the rural area, livestock, cropping and agribusiness. Its data collection unit is every production unit dedicated, either entirely or partially, to agricultural, forest or aquaculture activities, subordinated to a single administration – producer or administrator –, regardless of its size, legal nature or location, aiming at producing either for living or sales.

    The first Census of Agriculture dates back to 1920, and it was conducted as part of the General Census. It did not take place in the 1930s due to reasons of political and institutional nature. From 1940 onward, the survey was decennial up to 1970 and quinquennial later on, taking place in the beginning of the years ending in 1 and 6 and relating to the years ending in 0 and 5. In the 1995-1996 Census of Agriculture, the information was related to the crop year (August 1995 to July 1996). In the 2006 Census of Agriculture, the reference for the data returned to be the calendar year. The 2006 edition was characterized both by the technological innovation introduced in the field operation, in which the paper questionnaire was replaced by the electronic questionnaire developed in Personal Digital Assistants - PDAs and by the methodological refinement, particularly concerning the redesign of its contents and incorporation of new concepts. That edition also implemented the National Address List for Statistical Purposes - Cnefe, which gathers the detailed description of the addresses of housing units and agricultural establishments, geographic coordinates of every housing unit and establishment (agricultural, religious, education, health and other) in the rural area, bringing subsidies for the planning of future IBGE surveys. The 2017 Census of Agriculture returned to reference the crop year – October 2016 to September 2017 –, though in a different period than that adopted in the 1995-1996 Census of Agriculture. New technologies were introduced in the 2017 survey to control the data collection, like: previous address list, use of satellite images in the PDAs to better locate the enumerator in relation to the terrain, and use of coordinates of the address and location where the questionnaire is open, which allowed a better coverage and assessment of the work.

    The survey provides information on the total agricultural establishments; total area of those establishments; characteristics of the producers; characteristics of the establishments (use of electricity, agricultural practices, use of fertilization, use of agrotoxins, use of organic farming, land use, existence of water resources, existence of warehouses and silos, existence of tractors, machinery and agricultural implements, and vehicles, among other aspects); employed personnel; financial transactions; livestock (inventories and animal production); aquaculture and forestry (silviculture, forestry, floriculture, horticulture, permanent crops, temporary crops and rural agribusiness).

    The periodicity of the survey is quinquennial, though the surveys in 1990, 1995, 2000 and 2005, 2010 and 2015 were not carried out due to budget restrictions from the government; the 1990 Census of Agriculture did not take place; the 1995 survey was carried out in 1996 together with the Population Counting; the 2000 survey did not take place; that of 2005 was carried out in 2007, together with the Population Counting once again; that of 2010 did not take place and that of 2015 was carried out in 2017. Its geographic coverage is national, with results disclosed for Brazil, Major Regions, Federation Units, Mesoregions, Microregions and Municipalities. The results of the 2006 Census of Agriculture, which has the calendar year as the reference period, are not strictly comparable with those from the 1995-1996 Census of Agriculture and 2017 Census of Agriculture, whose reference period is the crop year in both cases.

    Geographic coverage

    National coverage

    Analysis unit

    Households

    Universe

    The statistical unit was the agricultural holding, defined as any production unit dedicated wholly or partially to agricultural, forestry and aquaculture activities, subject to a single management, with the objective of producing for sale or subsistence, regardless of size, legal form (own, partnership, lease, etc.) or location (rural or urban). The agricultural holdings were classified according to the legal status of the producer as: individual holder, condominium, consortium or partnership; cooperative; incorporated or limited liability company; public utility institutions (church, NGO, hospital), or government.

    Kind of data

    Census/enumeration data [cen]

    Sampling procedure

    (a) Frame The 2000 Population and Housing Census and the cartographic documentation constituted the source of the AC 2006 frame. No list frames were available in digital media with georeferenced addresses of the holdings. Census coverage was ensured on the basis of the canvassing of the EAs by enumerators.

    (b) Complete and/or sample enumeration methods The AC 2006 was a complete enumeration operation of all agricultural holdings in the country.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    An electronic questionnaire was used for data collection on:

    Total agricultural establishments Total area of agricultural establishments Total area of crops Area of pastures Area of woodlands Total tractors Implements Machinery and vehicles Characteristics of the establishment and of the producer Total staff employed Total cattle, buffallo, goats, Sheep, pigs, poultry (chickens, fowls, chickens and chicks) Other birds (ducks, geese, teals, turkeys, quails, ostriches, partridges, pheasants and others) Plant production

    The AC 2006 covered all 16 items recommended by FAO under the WCA 2010.

    Cleaning operations

    (a) DATA PROCESSING AND ARCHIVING The entire data collection and supervision software was developed in house by IBGE, using the Visual Studio platform in the Microsoft Operations Manager 2005 environment and Microsoft SQL Server 2000, with the assistance of Microsoft Brazil consulting. In addition, the GEOPAD application was installed to view, navigate and view maps and use GPS guidance. Updated versions of the software were installed automatically as soon as census enumerators connected the PDAs to the central server to transmit the data collected. Once internally validated by the device, the data were immediately transmitted to the database at the IBGE state unit. The previous AC (1996) served as the basis for defining the parameter values for the electronic editing process.

    (b) CENSUS DATA QUALITY Automatic validation was incorporated into PDAs. Previously programmed skip patterns and real-time edits, performed during enumeration, ensured faster and more reliable interviews. In addition, the Bluetooth® technology incorporated into the PDAs allowed for direct data transmission to IBGE's central mainframe by each of enumerators on a weekly basis.

    Data appraisal

    The preliminary census results were published in 2007. The final results were released in 2009 through a printed volume and CD-ROMs. The census results were disseminated at the national and subnational scope (country, state and municipality) and are available online at IBGE's website.

  11. Census of Agriculture, 2007 - United States Virgin Islands

    • microdata.fao.org
    Updated Nov 16, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States Department of Agriculture, National Agriculture Statistical Service (USDA/NASS) (2020). Census of Agriculture, 2007 - United States Virgin Islands [Dataset]. https://microdata.fao.org/index.php/catalog/1608
    Explore at:
    Dataset updated
    Nov 16, 2020
    Dataset provided by
    National Agricultural Statistics Servicehttp://www.nass.usda.gov/
    United States Department of Agriculturehttp://usda.gov/
    Authors
    United States Department of Agriculture, National Agriculture Statistical Service (USDA/NASS)
    Time period covered
    2007
    Area covered
    U.S. Virgin Islands
    Description

    Abstract

    For more than 150 years, the U.S. Department of Commerce, Bureau of the Census, conducted the census of agriculture. However, the 2002 Appropriations Act transferred the responsibility from the Bureau of the Census to the U.S. Department of Agriculture (USDA), National Agricultural Statistics Service (NASS). The 2007 Census of Agriculture for the U.S. Virgin Islands is the second census in the U.S. Virgin Islands conducted by NASS. The census of agriculture is taken to obtain agricultural statistics for each county, State (including territories and protectorates), and the Nation. The first U.S. agricultural census data were collected in 1840 as a part of the sixth decennial census. From 1840 to 1920, an agricultural census was taken as a part of each decennial census. Since 1920, a separate national agricultural census has been taken every 5 years. The 2007 census is the 14th census of agriculture of the U.S. Virgin Islands. The first, taken in 1920, was a special census authorized by the Secretary of Commerce. The next agriculture census was taken in 1930 in conjunction with the decennial census, a practice that continued every 10 years through 1960. The 1964 Census of Agriculture was the first quinquennial (5-year) census to be taken in the U.S. Virgin Islands. In 1976, Congress authorized the census of agriculture to be taken for 1978 and 1982 to adjust the data-reference year to coincide with the 1982 Economic Censuses covering manufacturing, mining, construction, retail trade, wholesale trade, service industries, and selected transportation activities. After 1982, the agriculture census reverted to a 5-year cycle. Data in this publication are for the calendar year 2007, and inventory data reflect what was on hand on December 31, 2007. This is the same reference period used in the 2002 census. Prior to the 2002 census, data was collected in the summer for the previous 12 months, with inventory items counted as what was on hand as of July 1 of the year the data collection was done.

    Objectives: The census of agriculture is the leading source of statistics about the U.S. Virgin Islands’s agricultural production and the only source of consistent, comparable data at the island level. Census statistics are used to measure agricultural production and to identify trends in an ever changing agricultural sector. Many local programs use census data as a benchmark for designing and evaluating surveys. Private industry uses census statistics to provide a more effective production and distribution system for the agricultural community.

    Geographic coverage

    National coverage

    Analysis unit

    Households

    Universe

    The statistical unit was a farm, defined as "any place from which USD 500 or more of agricultural products were produced and sold, or normally would had been sold, during the calendar year 2007". According to the census definition, a farm is essentially an operating unit, not an ownership tract. All land operated or managed by one person or partnership represents one farm. In the case of tenants, the land assigned to each tenant is considered a separate farm, even though the landlord may consider the entire landholding to be one unit rather than several separate units.

    Kind of data

    Census/enumeration data [cen]

    Sampling procedure

    (a) Method of Enumeration As in the previous censuses of the U.S. Virgin Islands, a direct enumeration procedure was used in the 2007 Census of Agriculture. Enumeration was based on a list of farm operators compiled by the U.S. Virgin Islands Department of Agriculture. This list was compiled with the help of the USDA Farm Services Agency located in St. Croix. The statistics in this report were collected from farm operators beginning in January of 2003. Each enumerator was assigned a list of individuals or farm operations from a master enumeration list. The enumerators contacted persons or operations on their list and completed a census report form for all farm operations. If the person on the list was not operating a farm, the enumerator recorded whether the land had been sold or rented to someone else and was still being used for agriculture. If land was sold or rented out, the enumerator got the name of the new operator and contacted that person to ensure that he or she was included in the census.

    (b) Frame The census frame consisted of a list of farm operators compiled by the U.S. Virgin Islands DA. This list was compiled with the help of the USDA Farm Services Agency, located in St. Croix.

    (c) Complete and/or sample enumeration methods The census was a complete enumeration of all farm operators registered in the list compiled by the United States of America in the CA 2007.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The questionnaire (report form) for the CA 2007 was prepared by NASS, in cooperation with the DA of the U.S. Virgin Islands. Only one questionnaire was used for data collection covering topics on:

    • Land owned
    • Land use
    • Irrigation
    • Conservation programs and crop insurance
    • Field crops
    • Bananas, coffee, pineapples and plantain crops
    • Hay and forage crops
    • Nursery, Greenhouse, Floriculture, Sod and tree seedlings
    • Vegetables and melons
    • Hydroponic crops
    • Fruit
    • Root crops
    • Cattle and calves
    • Poultry
    • Hogs and pigs
    • Aquaculture
    • Other animals and livestock products
    • Value of sales
    • Organic agriculture
    • Federal and commonwealth agricultural program payments
    • Income from farm-related sources
    • Production expenses
    • Farm labour
    • Fertilizer and chemicals applied
    • Market value of land and buildings
    • Machinery, equipment and buildings
    • Practices
    • Type of organization
    • Operator characteristics

    The questionnaire of the 2007 CA covered 12 of the 16 core items' recommended for the WCA 2010 round.

    Cleaning operations

    DATA PROCESSING The processing of the 2007 Census of Agriculture for the U.S. Virgin Islands was done in St. Croix. Each report form was reviewed and coded prior to data keying. Report forms not meeting the census farm definition were voided. The remaining report forms were examined for clarity and completeness. Reporting errors in units of measures, illegible entries, and misplaced entries were corrected. After all the report forms had been reviewed and coded, the data were keyed and subjected to a thorough computer edit. The edit performed comprehensive checks for consistency and reasonableness, corrected erroneous or inconsistent data, supplied missing data based on similar farms, and assigned farm classification codes necessary for tabulating the data. All substantial changes to the data generated by the computer edits were reviewed and verified by analysts. Inconsistencies identified, but not corrected by the computer, were reviewed, corrected, and keyed to a correction file. The corrected data were then tabulated by the computer and reviewed by analysts. Prior to publication, tabulated totals were reviewed by analysts to identify inconsistencies and potential coverage problems. Comparisons were made with previous census data, as well as other available data. The computer system provided the capability to review up-to-date tallies of all selected data items for various sets of criteria which included, but were not limited to, geographic levels, farm types, and sales levels. Data were examined for each set of criteria and any inconsistencies or potential problems were then researched by examining individual data records contributing to the tabulated total. W hen necessary, data inconsistencies were resolved by making corrections to individual data records.

    Sampling error estimates

    The accuracy of these tabulated data is determined by the joint effects of the various nonsampling errors. No direct measures of these effects have been obtained; however, precautionary steps were taken in all phases of data collection, processing, and tabulation of the data in an effort to minimize the effects of nonsampling errors.

  12. HSRC National Survey 1999 - South Africa

    • catalog.ihsn.org
    • dev.ihsn.org
    • +1more
    Updated Mar 29, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Human Sciences Research Council (2019). HSRC National Survey 1999 - South Africa [Dataset]. https://catalog.ihsn.org/index.php/catalog/2836
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset authored and provided by
    Human Sciences Research Councilhttps://hsrc.ac.za/
    Time period covered
    1999
    Area covered
    South Africa
    Description

    Abstract

    This study was undertaken to investigate public attitudes on national priorities, social issues, political parties and the South African government’s service delivery programme. It also aimed to reflect the extent of and attitudes towards the transition from the previous apartheid system to a constitutional democracy. The survey was a project of the HSRC’s Public Opinion Analysis Programme, which aimed to provide regular and reliable data and analysis of national social priority issues.

    Geographic coverage

    The survey had national coverage

    Analysis unit

    Units of analysis in the survey were individuals 18 years and older.

    Universe

    The survey covered all people in the country, 18 years and older.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The population was stratified according to nine socio-economic area types. The allocation was roughly proportional to the adjusted 1991 population census figures. Multistage cluster (probability) sampling was used to draw the respondents, using the adjusted 1991 population census figures as a sampling frame. Census enumerator areas and similar areas were used as the clusters in the penultimate sampling stage, from which an equal number of households were drawn. All the clusters were drawn from the final clusters with equal probability (systematically). The respondents were drawn at random from qualifying household members.

    Mode of data collection

    Face-to-face [f2f]

  13. U.S. employer costs for private industry worker compensation 2021, by census...

    • statista.com
    Updated Jul 31, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). U.S. employer costs for private industry worker compensation 2021, by census region [Dataset]. https://www.statista.com/statistics/1127061/us-employer-costs-for-private-industry-workers-by-region/
    Explore at:
    Dataset updated
    Jul 31, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jun 2021
    Area covered
    United States
    Description

    As of June 2021, it was calculated that the southern census region hosted the lowest average employer cost at 32.78 U.S. dollars per hour for private industry workers. Adversely, employers in the western part of the U.S. had to pay an average of 40.74 U.S. dollars an hour per private industry worker.

  14. Feb 1999 Current Population Survey: Contingent Worker Supplement

    • catalog.data.gov
    • s.cnmilf.com
    Updated Jul 19, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Census Bureau (2023). Feb 1999 Current Population Survey: Contingent Worker Supplement [Dataset]. https://catalog.data.gov/dataset/feb-1999-current-population-survey-contingent-worker-supplement
    Explore at:
    Dataset updated
    Jul 19, 2023
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Description

    To obtain information about the "contingent" workforce. "Contingent" work is temporary work that a person does without expecting continuing employment from the particular employer (or source of employment) for whom they work.

  15. T

    2010 Census Jobs by Jurisdiction

    • opendata.sandag.org
    application/rdfxml +5
    Updated Jul 27, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). 2010 Census Jobs by Jurisdiction [Dataset]. https://opendata.sandag.org/Census/2010-Census-Jobs-by-Jurisdiction/sf9f-urme
    Explore at:
    csv, application/rdfxml, application/rssxml, xml, json, tsvAvailable download formats
    Dataset updated
    Jul 27, 2022
    Description

    Jobs by Job Type by Jurisdiction from the 2010 Decennial Census

  16. a

    Municipal census manual : requirements and guidelines for conducting a...

    • open.alberta.ca
    Updated Feb 1, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2015). Municipal census manual : requirements and guidelines for conducting a municipal census [2015] [Dataset]. https://open.alberta.ca/dataset/9781460121276
    Explore at:
    Dataset updated
    Feb 1, 2015
    Description

    The manual contains a list of mandatory requirements for conducting a census, as well as a number of guidelines and recommendations. The first sections of the manual describe the authority for conducting a municipal census, the role of the municipal council, and how to apply the Freedom of Information and Protection of Privacy Act (FOIP) to a municipal census. The subsequent sections describe the roles of census coordinator and the census enumerator. The final section provides a set of additional census questions that municipalities may choose to use in their census. The appendices contain various sample census materials. The methodologies, terms, and techniques for census-taking described in this manual are accepted by Alberta Municipal Affairs for determining the population of municipalities as described in the Determination of Population Regulation. The statistical concepts and principles reflected in this manual are based on those recognized by Statistics Canada and other statistical agencies.

  17. i

    Population and Housing Census 2009 - Vietnam

    • datacatalog.ihsn.org
    • catalog.ihsn.org
    Updated Mar 29, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    General Statistics Office (2019). Population and Housing Census 2009 - Vietnam [Dataset]. https://datacatalog.ihsn.org/catalog/4626
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset authored and provided by
    General Statistics Office
    Time period covered
    2009
    Area covered
    Vietnam
    Description

    Abstract

    The 2009 Population and Housing Census was implemented according to Prime Ministerial Decision No. 94/2008/QD-TTg dated 10 July, 2008. This was the fourth population census and the third housing census implemented in Vietnam since the nation was reunified in 1975. The Census aimed to collect basic data on the population and housing for the entire territory of the Socialist Republic of Vietnam, to provide data for research and analysis of population and housing developments nationally and for each locality. It responded to information needs for assessing implementation of socio-economic development plans covering the period 2001 to 2010, for developing the socio-economic development plans for 2011 to 2020 and for monitoring performance on Millennium Development Goals of the United Nations to which the Vietnamese Government is committed.

    Geographic coverage

    National

    Analysis unit

    Households Individuals Dwelling

    Universe

    The 2009 Population and Housing Census enumerated all Vietnamese regularly residing in the territory of the Socialist Republic of Vietnam at the reference point of 0:00 on 01 April, 2009; Vietnamese citizens given permission by the authorities to travel overseas and still within the authorized period; deaths (members of the household) that occurred between the first day of the Lunar Year of the Rat (07 February, 2008) to 31 March, 2009; and residential housing of the population.

    Population and housing censuses were implemented simultaneously taking the household as the survey unit. The household could include one individual who eats and resides alone or a group of individuals who eat and reside together. For household with 2 persons and over, its members may or may not share a common budget; or be related by blood or not; or marital or adoptive relationship or not; or in combination of both. The household head was the main respondent. For information of which the head of household was unaware, the enumerator was required to directly interview the survey subject. For information on labour and employment, the enumerator was required to directly interview all respondents aged 15 and older; for questions on births, the enumerator was required to directly interview women in childbearing ages (from 15 to 49 years of age) to determine the responses. For information on housing, the enumerator was required to directly survey the household head and/or combine this with direct observation to determine the information to record in the forms.

    Kind of data

    Census/enumeration data [cen]

    Sampling procedure

    Sample size In the 2009 Population and Housing Census, besides a full enumeration, some indicators were collected in a sample survey. The census sample survey was designed to: (1) expand survey contents; (2) improve survey quality, especially for sensitive and complicated questions; and (3) save on survey costs. To improve the efficiency and reliability of the census sample data, the sample size was 15% of the total population of the country. The sample of the census is a single-stage cluster sample design with stratification and systematic sample selection. Sample selection is implemented in two steps: Step 1, select the strata to determine the sample size for each district. Step 2, independently and systematically select from the sample frame of enumeration areas in each district to determine the specific enumeration areas in the sample.

    The sample size of the two census sample surveys in 1989 and 1999 was 5% and 3% respectively, only representative at the provincial level; sample survey indicators covered fertility history of women aged 15-49 years and deaths in the household in the previous 12 months. In the 2009 Census, besides the above two indicators, many other indicators were also included in the census sample survey. The census sample survey provides data representative at the district level. When determining sample size and allocation, the frequency of events was taken into account for various indicators including birth and deaths in the 12 months prior to the survey, and the number of people unemployed in urban areas, etc.; efforts were also made to ensure the ability to compare results between districts within the same province/municipality and between provinces/ municipalities.

    Stratification and sample allocation across strata To ensure representativeness of the sample for each district throughout the country and because the population size is not uniform across districts or provinces, the Central Steering Committee decided to allocate the sample directly to 682 out of 684 districts (excluding 2 island districts) throughout the country in 2 steps:

    Step 1: Determine the sampling rate f(r) for 3 regions including: - Region 1: including 132 urban districts; - Region 2: including 294 delta and coastal rural districts; - Region 3: including 256 mountainous and island districts.

    Step 2: Allocate the sample across districts in each region based on the sampling rates for each region as determined in Step 1 using the inverse sampling allocation method. Through applying to this allocation method, the number of sampling units in each small district is increased adequately to ensure representativeness. The formula used to calculate the sample rate for each district in each region is provided on page 22 of the Census Report (Part1) provided as external resources.

    Sampling unit and method The sampling unit is the enumeration area that was ascertained in the step to delimit enumeration areas. The sampling frame is the list of all enumeration areas that was made following the order of the list of administrative units at the commune level within each district. In this way, the whole country has 682 sample frames (682 strata).

    The provincial steering committee was responsible for selecting sample enumeration areas using systematic random sampling as follows: Step 1: Take the total of all enumeration areas in the district, divide by the number of enumeration areas needed in the sampleto determine the skip (k), which is calculated with precision up to 1 decimal point. Step 2: Select the first enumeration area (b, with b = k), corresponding to the first enumeration area to be selected. Each successive enumeration area to be selected will correspond to the order number: bi = b + i x k ; here i = 1, 2, 3…. Stopping when the number of enumeration areas needed has been selected.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The questionnaires and survey materials were designed and tested three times before final approval.

    Cleaning operations

    The 2009 Population and Housing Census applied Intelligent Character Recognition technology/scanning technology for direct data entry from census forms to the computer to replace the traditional keyboard data entry that is commonly used in Vietnam at present. This is an advanced technology, and the first time it had been applied in a statistical survey in Vietnam. Preparatory work had to be done carefully and meticulously. Through organization of many workshops and 7 pilot applications with technical and financial assistance from the UNFPA, the new technology was mastered, and the Census Steering Committee Standing Committee approved use of this technology to process the entire results of the 2009 Population and Housing Census. The Government decided to allocate funds through the project on Modernization of the General Statistics Office using World Bank Loan funds to procure the scanning system equipment, software and technical assistance. The successful use of this technology will create a precedent for continued use of scanning technology in other statistical surveys

    After checking and coding at the Provincial/municipal steering committee office, (both the complete census and the census sample survey), forms were checked and accepted then transferred for processing to one of three Statistical Computing Centres in Hanoi, Ho Chi Minh City and Da Nang. Data processing was implemented in only a few locations, following standard procedures and a fixed timeline. The steering committee at each level and processing centres fully implemented their assigned responsibilities, especially the checking, transmitting and maintenance of survey forms in good condition. The Central Steering Committee collaborated with the Statistical Computer Centres to set up a plan for processing and compiling results, setting up tabulation plans, interpreting and synthesizing output tables, and developing options for extrapolating from sample to population estimates.

    The General Statistics Office completed the work of developing software applications and training using ReadSoft software (the one used in pilot testing), organized training on network management and training on systems and programs for logic checks and data editing, developed a data processing protocol, integrated these systems and completed data flow management programs. The General Statistics Office collaborated with the contractor, FPT, to develop software applications, train staff, testl the system and complete the programs using the new TIS and E-form software.

    Compilation of results was implemented in 2 stages. In stage 1 data were compiled from the Census Sample Survey by the end of October, 2009, and in stage 2, data were compiled from the completed census forms, with work finalized in May 2010.

    Sampling error estimates

    Estimates from the Census sample survey were affected by two types of error: (1) non-sampling error, and (2) sampling error. Non-sampling error is the result of errors in implementation of data collection and processing such as visiting the

  18. F

    Output per Worker for Private Nonfarm in the South Census Region

    • fred.stlouisfed.org
    json
    Updated May 31, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Output per Worker for Private Nonfarm in the South Census Region [Dataset]. https://fred.stlouisfed.org/series/IPUZNW000982000
    Explore at:
    jsonAvailable download formats
    Dataset updated
    May 31, 2024
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for Output per Worker for Private Nonfarm in the South Census Region (IPUZNW000982000) from 2007 to 2023 about South Census Region, output, nonfarm, private, employment, and USA.

  19. Projections 2040 by County: Jobs and Employment

    • opendata.mtc.ca.gov
    • hub.arcgis.com
    Updated Jul 17, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MTC/ABAG (2019). Projections 2040 by County: Jobs and Employment [Dataset]. https://opendata.mtc.ca.gov/datasets/20b33a1efd5e4e88b60e5f306c597046
    Explore at:
    Dataset updated
    Jul 17, 2019
    Dataset provided by
    Metropolitan Transportation Commission
    Authors
    MTC/ABAG
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    This feature set contains jobs and employment projections from Projections 2040 for the San Francisco Bay Region. This forecast represents job and employment projections resulting from Plan Bay Area 2040. Numbers are provided by county. Jobs and employment numbers are included for 2010 (two versions), 2015, 2020, 2025, 2030, 2035, and 2040. For 2010, two data points are provided:A tabulation (base year A) from the 2010 model simulation (base year A); and(Preferred) A tabulation (base year B) from the 2010 pre-run microdata, designed to approximate (but may still differ from) Census 2010 counts.Projection data is included for:Agriculture and natural resources jobsFinancial and professional service jobsHealth, educational, and recreational service jobsManufacturing, wholesale, and transportation jobsInformation, government, and construction jobsRetail jobsTotal jobsEmployed residentsThis feature set was assembled using unclipped county features. For those who prefer Projections 2040 data using county features with ocean and bay waters clipped out, the data in this feature service can be joined to San Francisco Bay Region Counties (clipped).Other Projections 2040 feature sets:Households and population per countyHouseholds and population per jurisdiction (incorporated place and unincorporated county)Households and population per Census TractJobs and employment per jurisdiction (incorporated place and unincorporated county)Jobs per Census TractFemale population, by age range, per countyFemale population, by age range, per jurisdiction (incorporated place and unincorporated county)Male population, by age range, per countyMale population, by age range, per jurisdiction (incorporated place and unincorporated county)Total population, by age range, per countyTotal population, by age range, per jurisdiction (incorporated place and unincorporated county)

  20. d

    Census 2016 Preliminary Results

    • datasalsa.com
    • cloud.csiss.gmu.edu
    • +1more
    csv, html, url
    Updated Nov 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    All-Island Research Observatory (2024). Census 2016 Preliminary Results [Dataset]. https://datasalsa.com/dataset/?catalogue=data.gov.ie&name=census-2016-preliminary-results
    Explore at:
    csv, url, htmlAvailable download formats
    Dataset updated
    Nov 26, 2024
    Dataset authored and provided by
    All-Island Research Observatory
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Nov 26, 2024
    Description

    Census 2016 Preliminary Results. Published by All-Island Research Observatory. Available under the license Creative Commons Attribution 4.0 (CC-BY-4.0).On 14th June 2016, the Central Statistics Office (CSO) released the Preliminary Report for Census 2016. The preliminary results are the initial count of the census. They are based on the summary counts for each enumeration area which were compiled by the 4,663 census enumerators and which have been returned to the CSO in advance of the census forms themselves. Further detailed results will be released in different phases as they become available during 2017, commencing with the Principal Demographic Results...

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Niue Statistics (2019). Population and Household Census 2011 - Niue [Dataset]. https://datacatalog.ihsn.org/catalog/3173

Population and Household Census 2011 - Niue

Explore at:
Dataset updated
Mar 29, 2019
Dataset authored and provided by
Niue Statistics
Time period covered
2011
Area covered
Niue
Description

Abstract

The main aim and objectives of the census is to provide benchmark statistics and a comprehensive profile of the population and households of Niue at a given time. This information obtained from the census is very crucial and useful in providing evidence to decision making and policy formulation for the Government, Business Community, Local Communities or Village Councils, Non Government Organisations of Niue and The International Communities who have an interest in Niue and its people.

Geographic coverage

National

Analysis unit

  • Household
  • Individual/Person
  • Members Oversea

Universe

All households in Niue and all persons in the household including those temporarily overseas and those absent for not more than 12 months.

Kind of data

Census/enumeration data [cen]

Mode of data collection

Face-to-face [f2f]

Research instrument

The questionaire was published in English, a translated questionnaire was on hand when on demand by the respondent.

The questionnaire design differed slightly from the design of previous census questionnaires. As usual, government departments were asked to submit a list of questions on any specific topic they would like to add. Responses were not forthcoming in this census, although a few new questions were included.

There were two types of questionaires used in the census: the household questionaire and the individual questionnaire. An enumerator manual was prepared to assist the enumerators in their duties.

The questionnaire was pre-tested by the enumerators before they were to go out for field enumeration.

Cleaning operations

Census processing began as soon as questionaires were checked and coded. Forms were checked, edited and coded before being entered into the computer database.

Data processing was assisted by the Secretariat of the Pacific Community (SPC) using the computer software program CSPro for data entry and for generating tables. Tables were then exported to Excel for analysis.

Occupation and Industry were coded using the United Nations International Standard Classification of Occupation and International Standard Industrial Classification.

It is standard practice that as each area was completed the forms were first checked by the field supervisors for missing information and obvious inconsistencies. Omissions and errors identified at this stage were corrected by the enumerators.

The next stage was for the field supervisors to go through the completed forms again in the office to check in more detail for omissions and logical inconsistencies. Where they were found, the supervisors were responsible to take the necessary action.

Once the questionnaires had been thoroughly checked and edited, they were then coded in preparation for data processing.

Checking, editing and coding of the questionnaires in office were done after normal working hours as to ensure that the confidentiality of the survey is well observed.

Search
Clear search
Close search
Google apps
Main menu