The Unified Infrastructure for Canadian Census Research, or UNI·CEN, is a comprehensive database of historical and contemporary Canadian aggregate Census data, digital boundary files, and ancillary material, all provided in modern data formats. The goal of the project is to liberate Canadian Census data so that it can be easily used by academic researchers, students, and the public. The UNI·CEN Standardized Census Data Tables series contains reformatted versions of all publicly available digital Census data. This documentation report describes the data sources, tabular formats, and file types used. Citation: Taylor, Zack. 2022. "UNI·CEN Documentation Report 2: Standardized Census Data Tables.” London, Canada: Network for Economic and Social Trends, Western University. https://ir.lib.uwo.ca/nest_observatory_docs/3 Available at: https://ir.lib.uwo.ca/nest_observatory_docs/3
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Note: For information on data collection, confidentiality protection, nonsampling error, subject definitions, and guidance on using the data, visit the 2020 Census 118th Congressional District Summary File (CD118) Technical Documentation webpage..To protect respondent confidentiality, data have undergone disclosure avoidance methods which add "statistical noise" - small, random additions or subtractions - to the data so that no one can reliably link the published data to a specific person or household. The Census Bureau encourages data users to aggregate small populations and geographies to improve accuracy and diminish implausible results..For 2020 Group Quarters Definitions and Code List, see Appendix B in the "2020 Census 118th Congressional District Summary File (CD118) Technical Documentation.".Source: U.S. Census Bureau, 2020 Census 118th Congressional District Summary File (CD118)
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Note: For information on data collection, confidentiality protection, nonsampling error, subject definitions, and guidance on using the data, visit the 2020 Census Demographic and Housing Characteristics File (DHC) Technical Documentation webpage..To protect respondent confidentiality, data have undergone disclosure avoidance methods which add "statistical noise" - small, random additions or subtractions - to the data so that no one can reliably link the published data to a specific person or household. The Census Bureau encourages data users to aggregate small populations and geographies to improve accuracy and diminish implausible results..For 2020 Group Quarters Definitions and Code List, see Appendix B in the 2020 Census Demographic and Housing Characteristics File (DHC) Technical Documentation..Source: U.S. Census Bureau, 2020 Census Demographic and Housing Characteristics File (DHC)
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This dataset provides Census 2021 estimates that classify schoolchildren and full-time students aged 5 years and over in England and Wales by student accommodation and by age. The estimates are as at Census Day, 21 March 2021.
Estimates for single year of age between ages 90 and 100+ are less reliable than other ages. Estimation and adjustment at these ages was based on the age range 90+ rather than five-year age bands. Read more about this quality notice.
Area type
Census 2021 statistics are published for a number of different geographies. These can be large, for example the whole of England, or small, for example an output area (OA), the lowest level of geography for which statistics are produced.
For higher levels of geography, more detailed statistics can be produced. When a lower level of geography is used, such as output areas (which have a minimum of 100 persons), the statistics produced have less detail. This is to protect the confidentiality of people and ensure that individuals or their characteristics cannot be identified.
Coverage
Census 2021 statistics are published for the whole of England and Wales. Data are also available in these geographic types:
Student accommodation type
Combines the living situation of students and school children in full-time education, whether they are living:
It also includes whether these households contain one or multiple families.
This variable is comparable with the student accommodation variable but splits the communal establishment type into “university” and “other” categories.
Age
A person’s age on Census Day, 21 March 2021 in England and Wales. Infants aged under 1 year are classified as 0 years of age.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the University Place median household income by race. The dataset can be utilized to understand the racial distribution of University Place income.
The dataset will have the following datasets when applicable
Please note: The 2020 1-Year ACS estimates data was not reported by the Census Bureau due to the impact on survey collection and analysis caused by COVID-19. Consequently, median household income data for 2020 is unavailable for large cities (population 65,000 and above).
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
Explore our comprehensive data analysis and visual representations for a deeper understanding of University Place median household income by race. You can refer the same here
UNI-CEN Standardized Census Data Tables contain Census data that have been reformatted into a common table format with standardized variable names and codes. The data are provided in two tabular formats for different use cases. "Long" tables are suitable for use in statistical environments, while "wide" tables are commonly used in GIS environments. The long tables are provided in Stata Binary (dta) format, which is readable by all statistics software. The wide tables are provided in comma-separated values (csv) and dBase 3 (dbf) formats with codebooks. The wide tables are easily joined to the UNI-CEN Digital Boundary Files. For the csv files, a .csvt file is provided to ensure that column data formats are correctly formatted when importing into QGIS. A schema.ini file does the same when importing into ArcGIS environments. As the DBF file format supports a maximum of 250 columns, tables with a larger number of variables are divided into multiple DBF files. For more information about file sources, the methods used to create them, and how to use them, consult the documentation at https://borealisdata.ca/dataverse/unicen_docs. For more information about the project, visit https://observatory.uwo.ca/unicen.
The Unified Infrastructure for Canadian Census Research, or UNI·CEN, is a comprehensive database of historical and contemporary Canadian aggregate Census data, digital boundary files, and ancillary material, all provided in modern data formats. The goal of the project is to liberate Canadian Census data so that it can be easily used by academic researchers, students, and the public. The documentation describes the processes used to digitize the 1951, 1956, 1961, and 1966 Census Tract boundaries and associated datasets. Citation: Taylor, Zack and Christopher Macdonald Hewitt. 2022. "UNI·CEN Documentation Report 4: Early Postwar Census Tract Digitization Project.” London, Canada: Network for Economic and Social Trends, Western University. https://ir.lib.uwo.ca/nest_observatory_docs/1 Available at: https://ir.lib.uwo.ca/nest_observatory_docs/1
As of 1/13/2022, this dataset is no longer being updated and has been replaced with a new dataset, which can be accessed here: https://data.ct.gov/Health-and-Human-Services/COVID-19-Vaccinations-by-Census-Tract/ekim-wqrr COVID-19 Vaccinations by Census Tract and Age Groups, including Ages 16+, Ages 16-44, Ages 45-64, and Ages 65+. CT Vaccination Program (COVP) data obtained from CTWiZ. COVP Coverage data suppressed if the any of the following conditions were met: -Coefficient of Variation of Denominator is > 30% -Numerator is 30%). Coverage estimates over 100% are shown as 100%. We suggest that the data are used primarily to identify areas that require additional attention rather than to establish and track the exact level of vaccine coverage. All analyses are provisional and subject to change. Caution should be used when interpreting coverage estimates for towns with large college/university populations since coverage may be underestimated. In the census, college/university students who live on or just off campus would be counted in the college/university town. However, if a student was vaccinated while studying remotely in his/her hometown, the student may be counted as a vaccine recipient in that town.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
In 2001, the proportion of the population (individuals aged 15 and older) with non-university post-secondary credentials had more than doubled since 1971 to 36%. This, added to the 15% with university qualifications, meant that more than one-half (51%) of all Canadians aged 15 and over had post-secondary qualifications in 2001.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Census Tree is the largest-ever database of record links among the historical U.S. censuses, with over 700 million links for people living in the United States between 1850 and 1940. These links allow researchers to construct a longitudinal dataset that is highly representative of the population, and that includes women, Black Americans, and other under-represented populations at unprecedented rates. Each .csv file consists of a crosswalk between the two years indicated in the filename, using the IPUMS histids. For more information, consult the included Read Me file, and visit https://censustree.org.
The Unified Infrastructure for Canadian Census Research, or UNI·CEN, is a comprehensive database of historical and contemporary Canadian aggregate Census data, digital boundary files, and ancillary material, all provided in modern data formats. The goal of the project is to liberate Canadian Census data so that it can be easily used by academic researchers, students, and the public. The UNI·CEN Digital Boundary Files series contains versions of all publicly available digital boundary files with shorelines harmonized, at five levels of Census geography. This documentation report describes the procedures used to create the files, as well as data sources and available file formats. Citation: Taylor, Zack and Christopher Macdonald Hewitt. 2022. "UNI·CEN Documentation Report 3: Digital Boundary Files.” London, Canada: Network for Economic and Social Trends, Western University. https://ir.lib.uwo.ca/nest_observatory_docs/2 Available at: https://ir.lib.uwo.ca/nest_observatory_docs/2
NOTE: As of 2/16/2023, this page is not being updated. For data on updated (bivalent) COVID-19 booster vaccination click here: https://app.powerbigov.us/view?r=eyJrIjoiODNhYzVkNGYtMzZkMy00YzA3LWJhYzUtYTVkOWFlZjllYTVjIiwidCI6IjExOGI3Y2ZhLWEzZGQtNDhiOS1iMDI2LTMxZmY2OWJiNzM4YiJ9 This table shows the number and percent of people that have initiated COVID-19 vaccination and are fully vaccinated by CT census tract (including residents of all ages). It also shows the number of people who have not received vaccine and who are not yet fully vaccinated. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. A person who has received at least one dose of any vaccine is considered to have initiated vaccination. A person is considered fully vaccinated if they have completed a primary series by receiving 2 doses of the Pfizer, Novavax or Moderna vaccines or 1 dose of the Johnson & Johnson vaccine. The fully vaccinated are a subset of the number who have received at least one dose. The percent with at least one dose many be over-estimated and the percent fully vaccinated may be under-estimated because of vaccine administration records for individuals that cannot be linked because of differences in how names or date of birth are reported. Population data obtained from the 2019 Census ACS (www.census.gov) Geocoding is used to determine the census tract in which a person lives. People for who a census tract cannot be determined based on available address data are not included in this table. DPH recommends that these data are primarily used to identify areas that require additional attention rather than to establish and track the exact level of vaccine coverage. Census tract coverage estimates can play an important role in planning and evaluating vaccination strategies. However, inaccuracies in the data that are inherent to population surveillance may be magnified when analyses are performed down to the census tract level. We make every effort to provide accurate data, but inaccuracies may result from things like incomplete or inaccurate addresses, duplicate records, and sampling error in the American Community Survey that is used to estimate census tract population size and composition. These things may result in overestimates or underestimates of vaccine coverage. Some census tracts are suppressed. This is done if the number of people vaccinated is less than 5 or if the census population estimate is considered unreliable (coefficient of variance > 30%). Coverage estimates over 100% are shown as 100%. Connecticut COVID-19 Vaccine Program providers are required to report information on all COVID-19 vaccine doses administered to CT WiZ, the Connecticut Immunization Information System. Data on doses administered to CT residents out-of-state are being added to CT WiZ jurisdiction-by-jurisdiction. Doses administered by some Federal entities (including Department of Defense, Department of Correction, Department of Veteran’s Affairs, Indian Health Service) are not yet reported to CT WiZ. Data reported here reflect the vaccination records currently reported to CT WiZ. Caution should be used when interpreting coverage estimates in towns with large college/university populations since coverage may be underestimated. In the census, college/university students who live on or just off campus would be counted in the college/university town. However, if a student was vaccinated while studying remotely in his/her hometown, the student may be counted as a vaccine recipient in that town. As part of continuous data quality improvement efforts, duplicate records were removed from the COVID-19 vaccination data during the weeks of 4/19/2021 and 4/26/2021. As of 1/13/2021, census tract level data are provider by town for all ages. Data by age group is no longer available.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Census Tree is the largest-ever database of record links among the historical U.S. censuses, with over 700 million links for people living in the United States between 1850 and 1940. These links allow researchers to construct a longitudinal dataset that is highly representative of the population, and that includes women, Black Americans, and other under-represented populations at unprecedented rates. Each .csv file consists of a crosswalk between the two years indicated in the filename, using the IPUMS histids. For more information, consult the included Read Me file, and visit https://censustree.org.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the University Place household income by gender. The dataset can be utilized to understand the gender-based income distribution of University Place income.
The dataset will have the following datasets when applicable
Please note: The 2020 1-Year ACS estimates data was not reported by the Census Bureau due to the impact on survey collection and analysis caused by COVID-19. Consequently, median household income data for 2020 is unavailable for large cities (population 65,000 and above).
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
Explore our comprehensive data analysis and visual representations for a deeper understanding of University Place income distribution by gender. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the University Park median household income by race. The dataset can be utilized to understand the racial distribution of University Park income.
The dataset will have the following datasets when applicable
Please note: The 2020 1-Year ACS estimates data was not reported by the Census Bureau due to the impact on survey collection and analysis caused by COVID-19. Consequently, median household income data for 2020 is unavailable for large cities (population 65,000 and above).
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
Explore our comprehensive data analysis and visual representations for a deeper understanding of University Park median household income by race. You can refer the same here
This layer contains census tract level 2020 Decennial Census redistricting data as reported by the U.S. Census Bureau for all states plus DC and Puerto Rico. The attributes come from the 2020 Public Law 94-171 (P.L. 94-171) tables.Data download date: August 12, 2021Census tables: P1, P2, P3, P4, H1, P5, HeaderDownloaded from: Census FTP siteProcessing Notes:Data was downloaded from the U.S. Census Bureau FTP site, imported into SAS format and joined to the 2020 TIGER boundaries. Boundaries are sourced from the 2020 TIGER/Line Geodatabases. Boundaries have been projected into Web Mercator and each attribute has been given a clear descriptive alias name. No alterations have been made to the vertices of the data.Each attribute maintains it's specified name from Census, but also has a descriptive alias name and long description derived from the technical documentation provided by the Census. For a detailed list of the attributes contained in this layer, view the Data tab and select "Fields". The following alterations have been made to the tabular data:Joined all tables to create one wide attribute table:P1 - RaceP2 - Hispanic or Latino, and not Hispanic or Latino by RaceP3 - Race for the Population 18 Years and OverP4 - Hispanic or Latino, and not Hispanic or Latino by Race for the Population 18 Years and OverH1 - Occupancy Status (Housing)P5 - Group Quarters Population by Group Quarters Type (correctional institutions, juvenile facilities, nursing facilities/skilled nursing, college/university student housing, military quarters, etc.)HeaderAfter joining, dropped fields: FILEID, STUSAB, CHARITER, CIFSN, LOGRECNO, GEOVAR, GEOCOMP, LSADC, BLOCK, BLKGRP, and TBLKGRP.GEOCOMP was renamed to GEOID and moved be the first column in the table, the original GEOID was dropped.Placeholder fields for future legislative districts have been dropped: CD118, CD119, CD120, CD121, SLDU22, SLDU24, SLDU26, SLDU28, SLDL22, SLDL24 SLDL26, SLDL28.P0020001 was dropped, as it is duplicative of P0010001. Similarly, P0040001 was dropped, as it is duplicative of P0030001.In addition to calculated fields, County_Name and State_Name were added.The following calculated fields have been added (see long field descriptions in the Data tab for formulas used): PCT_P0030001: Percent of Population 18 Years and OverPCT_P0020002: Percent Hispanic or LatinoPCT_P0020005: Percent White alone, not Hispanic or LatinoPCT_P0020006: Percent Black or African American alone, not Hispanic or LatinoPCT_P0020007: Percent American Indian and Alaska Native alone, not Hispanic or LatinoPCT_P0020008: Percent Asian alone, Not Hispanic or LatinoPCT_P0020009: Percent Native Hawaiian and Other Pacific Islander alone, not Hispanic or LatinoPCT_P0020010: Percent Some Other Race alone, not Hispanic or LatinoPCT_P0020011: Percent Population of Two or More Races, not Hispanic or LatinoPCT_H0010002: Percent of Housing Units that are OccupiedPCT_H0010003: Percent of Housing Units that are VacantPlease note these percentages might look strange at the individual tract level, since this data has been protected using differential privacy.**To protect the privacy and confidentiality of respondents, data has been protected using differential privacy techniques by the U.S. Census Bureau. This means that some individual tracts will have values that are inconsistent or improbable. However, when aggregated up, these issues become minimized. The pop-up on this layer uses Arcade to display aggregated values for the surrounding area rather than values for the tract itself.Download Census redistricting data in this layer as a file geodatabase.Additional links:U.S. Census BureauU.S. Census Bureau Decennial CensusAbout the 2020 Census2020 Census2020 Census data qualityDecennial Census P.L. 94-171 Redistricting Data Program
https://www.icpsr.umich.edu/web/ICPSR/studies/9453/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/9453/terms
Designed to facilitate analysis of the status of Blacks around the turn of the century, this oversample of Black-headed households in the United States was drawn from the 1910 manuscript census schedules. The sample complements the 1/250 Public Use Sample of the 1910 census manuscripts collected by Samuel H. Preston at the University of Pennsylvania: CENSUS OF POPULATION, 1910 [UNITED STATES]: PUBLIC USE SAMPLE (ICPSR 9166). Part 1, Household Records, contains a record for each household selected in the sample and supplies variables describing the location, type, and composition of the households. Part 2, Individual Records, contains a record for each individual residing in the sampled households and includes information on demographic characteristics, occupation, literacy, nativity, ethnicity, and fertility.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the University Heights median household income by race. The dataset can be utilized to understand the racial distribution of University Heights income.
The dataset will have the following datasets when applicable
Please note: The 2020 1-Year ACS estimates data was not reported by the Census Bureau due to the impact on survey collection and analysis caused by COVID-19. Consequently, median household income data for 2020 is unavailable for large cities (population 65,000 and above).
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
Explore our comprehensive data analysis and visual representations for a deeper understanding of University Heights median household income by race. You can refer the same here
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
U.S. Census Bureau QuickFacts statistics for University Park city, Texas. QuickFacts data are derived from: Population Estimates, American Community Survey, Census of Population and Housing, Current Population Survey, Small Area Health Insurance Estimates, Small Area Income and Poverty Estimates, State and County Housing Unit Estimates, County Business Patterns, Nonemployer Statistics, Economic Census, Survey of Business Owners, Building Permits.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The University Statistics (EU) and School Activity Statistics (EAE) operations, of a census and annual nature, allow the knowledge of the educational system and its evolution both in higher studies (third grade) and in previous studies (primary and secondary), respectively, providing the official bodies and society in general with the main figures of the education system. All schools that provide formal education included in the Register of Educational Centers of the Basque Government, whether in the public or private sector, are analysed.
The Unified Infrastructure for Canadian Census Research, or UNI·CEN, is a comprehensive database of historical and contemporary Canadian aggregate Census data, digital boundary files, and ancillary material, all provided in modern data formats. The goal of the project is to liberate Canadian Census data so that it can be easily used by academic researchers, students, and the public. The UNI·CEN Standardized Census Data Tables series contains reformatted versions of all publicly available digital Census data. This documentation report describes the data sources, tabular formats, and file types used. Citation: Taylor, Zack. 2022. "UNI·CEN Documentation Report 2: Standardized Census Data Tables.” London, Canada: Network for Economic and Social Trends, Western University. https://ir.lib.uwo.ca/nest_observatory_docs/3 Available at: https://ir.lib.uwo.ca/nest_observatory_docs/3