Website alows the public full access to the 1940 Census images, census maps and descriptions.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Census Year 1940 Census Tracts. The dataset contains polygons representing CY 1940 census tracts, created as part of the D.C. Geographic Information System (DC GIS) for the D.C. Office of the Chief Technology Officer (OCTO) and participating D.C. government agencies. Census tracts were identified from maps provided by the U.S. Census Bureau and the D.C. Office of Planning. The tract polygons were created by selecting street arcs from the WGIS planimetric street centerlines. Where necessary, polygons were also heads-up digitized from 1995/1999 orthophotographs.
The 1940 Census Public Use Microdata Sample Project was assembled through a collaborative effort between the United States Bureau of the Census and the Center for Demography and Ecology at the University of Wisconsin. The collection contains a stratified 1-percent sample of households, with separate records for each household, for each "sample line" respondent, and for each person in the household. These records were encoded from microfilm copies of original handwritten enumeration schedules from the 1940 Census of Population. Geographic identification of the location of the sampled households includes Census regions and divisions, states (except Alaska and Hawaii), standard metropolitan areas (SMAs), and state economic areas (SEAs). Accompanying the data collection is a codebook that includes an abstract, descriptions of sample design, processing procedures and file structure, a data dictionary (record layout), category code lists, and a glossary. Also included is a procedural history of the 1940 Census. Each of the 20 subsamples contains three record types: household, sample line, and person. Household variables describe the location and condition of the household. The sample line records contain variables describing demographic characteristics such as nativity, marital status, number of children, veteran status, wage deductions for Social Security, and occupation. Person records also contain variables describing demographic characteristics including nativity, marital status, family membership, education, employment status, income, and occupation. (Source: downloaded from ICPSR 7/13/10)
Please Note: This dataset is part of the historical CISER Data Archive Collection and is also available at ICPSR at https://doi.org/10.3886/ICPSR08236.v1. We highly recommend using the ICPSR version as they may make this dataset available in multiple data formats in the future.
The 1940 Census population schedules were created by the Bureau of the Census in an attempt to enumerate every person living in the United States on April 1, 1940, although some persons were missed. The 1940 census population schedules were digitized by the National Archives and Records Administration (NARA) and released publicly on April 2, 2012. The 1940 Census enumeration district maps contain maps of counties, cities, and other minor civil divisions that show enumeration districts, census tracts, and related boundaries and numbers used for each census. The coverage is nation wide and includes territorial areas. The 1940 Census enumeration district descriptions contain written descriptions of census districts, subdivisions, and enumeration districts.
basic characteristics of people and housing for individual 2010 census tract portions inside or outside KCMO
1940 US Census contains records from Montpelier, Washington, Vermont, USA by Ancestry.com. 1940 United States Federal Census [database on-line]. Provo, UT, USA: Ancestry.com Operations, Inc., 2012.; Year: 1940; Census Place: Montpelier, Washington, Vermont; Roll: m-t0627-04238; Page: 3B; Enumeration District: 12-31; Original data: United States of America, Bureau of the Census. Sixteenth Census of the United States, 1940. Washington, D.C.: National Archives and Records Administration, 1940. T627, 4,643 rolls. - .
1940 United States Federal Census contains records from Philadelphia, Pennsylvania, USA by United States of America, Bureau of the Census. Sixteenth Census of the United States, 1940. Washington, D.C.: National Archives and Records Administration, 1940. T627, 4,643 rolls. Year: 1940; Census Place: Upper Dublin, Montgomery, Pennsylvania; Roll: m-t0627-03585; Page: 20B; Enumeration District: 46-208 - .
Census Blocks in Macon-Bibb County.
A census block is the smallest geographic unit used by the United States Census Bureau for tabulation of 100-percent data (data collected from all houses, rather than a sample of houses). The number of blocks in the United States, including Puerto Rico, for the 2010 Census was 11,155,486.[1]
Census blocks are grouped into block groups, which are grouped into census tracts. There are on average about 39 blocks per block group. Blocks typically have a four-digit number; the first number indicates which block group the block is in. For example, census block 3019 would be in block group 3.
Blocks are typically bounded by streets, roads or creeks. In cities, a census block may correspond to a city block, but in rural areas where there are fewer roads, blocks may be limited by other features. The population of a census block varies greatly. As of the 2010 census, there were 4,871,270 blocks with a reported population of zero,[2] while a block that is entirely occupied by an apartment complex might have several hundred inhabitants.
Census blocks covering the entire country were introduced with the 1990 census. Before that, back to the 1940 census, only selected areas were divided into blocks.
To review a table detailing Census Block information in the United States visit https://www.census.gov/geo/maps-data/data/tallies/tractblock.
These data comprise Census records relating to the Alaskan people's population demographics for the State of Alaskan Salmon and People (SASAP) Project. Decennial census data were originally extracted from IPUMS National Historic Geographic Information Systems website: https://data2.nhgis.org/main (Citation: Steven Manson, Jonathan Schroeder, David Van Riper, and Steven Ruggles. IPUMS National Historical Geographic Information System: Version 12.0 [Database]. Minneapolis: University of Minnesota. 2017. http://doi.org/10.18128/D050.V12.0). A number of relevant tables of basic demographics on age and race, household income and poverty levels, and labor force participation were extracted. These particular variables were selected as part of an effort to understand and potentially quantify various dimensions of well-being in Alaskan communities. The file "censusdata_master.csv" is a consolidation of all 21 other data files in the package. For detailed information on how the datasets vary over different years, view the file "readme.docx" available in this data package. The included .Rmd file is a script which combines the 21 files by year into a single file (censusdata_master.csv). It also cleans up place names (including typographical errors) and uses the USGS place names dataset and the SASAP regions dataset to assign latitude and longitude values and region values to each place in the dataset. Note that some places were not assigned a region or location because they do not fit well into the regional framework. Considerable heterogeneity exists between census surveys each year. While we have attempted to combine these datasets in a way that makes sense, there may be some discrepancies or unexpected values. The RMarkdown document SASAPWebsiteGraphicsCensus.Rmd is used to generate a variety of figures using these data, including the additional file Chignik_population.png. An additional set of 25 figures showing regional trends in population and income metrics are also included.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Household is an occupied housing unit. Householder is a person in whose name the housing unit is rented or owned. This person must be at least 15 years old. Family household is a household in which there is at least 1 person present who is related to the householder by birth, marriage or adoption. Family is used to refer to a family household. In general, family consists of those related to each other by birth, marriage or adoption.
This data uses the householder's person weight to describe characteristics of people living in households. As a result, estimates of the number of households do not match estimates of housing units from the Housing Vacancy Survey (HVS). The HVS is weighted to housing units, rather than the population, in order to more accurately estimate the number of occupied and vacant housing units. For more information about the source and accuracy statement of the Annual Social and Economic Supplement (ASEC) of the Current Population Survey (CPS) see the technical documentation accessible at: http://www.census.gov/programs-surveys/cps/technical-documentation/complete.html
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States Population: All Ages data was reported at 325,719.000 Person th in 2017. This records an increase from the previous number of 323,406.000 Person th for 2016. United States Population: All Ages data is updated yearly, averaging 176,356.000 Person th from Jun 1900 (Median) to 2017, with 118 observations. The data reached an all-time high of 325,719.000 Person th in 2017 and a record low of 76,094.000 Person th in 1900. United States Population: All Ages data remains active status in CEIC and is reported by US Census Bureau. The data is categorized under Global Database’s United States – Table US.G002: Population by Age. Series Remarks Population data for the years 1900 to 1949 exclude the population residing in Alaska and Hawaii. Population data for the years 1940 to 1979 cover the resident population plus Armed Forces overseas. Population data for all other years cover only the resident population.
These data comprise Census records relating to the Alaskan people's population demographics for the State of Alaskan Salmon and People (SASAP) Project. Decennial census data were originally extracted from IPUMS National Historic Geographic Information Systems website: https://data2.nhgis.org/main(Citation: Steven Manson, Jonathan Schroeder, David Van Riper, and Steven Ruggles. IPUMS National Historical Geographic Information System: Version 12.0 [Database]. Minneapolis: University of Minnesota. 2017. http://doi.org/10.18128/D050.V12.0). A number of relevant tables of basic demographics on age and race, household income and poverty levels, and labor force participation were extracted.
These particular variables were selected as part of an effort to understand and potentially quantify various dimensions of well-being in Alaskan communities.
The file "censusdata_master.csv" is a consolidation of all 21 other data files in the package. For detailed information on how the datasets vary over different years, view the file "readme.docx" available in this data package.
The included .Rmd file is a script which combines the 21 files by year into a single file (censusdata_master.csv). It also cleans up place names (including typographical errors) and uses the
USGS place names dataset and the SASAP regions dataset to assign latitude and longitude values and region values to each place in the dataset. Note that some places were not assigned a region or
location because they do not fit well into the regional framework.
Considerable heterogeneity exists between census surveys each year. While we have attempted to combine these datasets in a way that makes sense, there may be some discrepancies or unexpected values.
Please send a description of any unusual values to the dataset contact.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Polygon geometry with attributes displaying the boundaries of the pre-1949 wards with respective decennial Census population stats from 1940 to 1890 in East Baton Rouge Parish, Louisiana.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Census Block is the smallest geographic unit used by the United States Census Bureau for tabulation of 100-percent data (data collected from all houses, rather than a sample of houses). The number of blocks in the United States, including Puerto Rico, for the 2010 Census was 11,155,486.Census blocks are grouped into block groups, which are grouped into census tracts. There are on average about 39 blocks per block group. Blocks typically have a four-digit number; the first number indicates which block group the block is in. For example, census block 3019 would be in block group 3.Blocks are typically bounded by streets, roads or creeks. In cities, a census block may correspond to a city block, but in rural areas where there are fewer roads, blocks may be limited by other features. The population of a census block varies greatly. As of the 2010 census, there were 4,871,270 blocks with a reported population of zero, while a block that is entirely occupied by an apartment complex might have several hundred inhabitants. Census blocks covering the entire country were introduced with the 1990 census. Before that, back to the 1940 census, only selected areas were divided into blocks. Census blocks are maintained within the Administration Feature and is dissolved out weekly. Administration is a polygon feature consisting of the smallest statistical areas bounded by visible features such as roads, streams, railroad tracks, and mountain ridges, as well as by nonvisible boundaries such as jurisdictional limits, school district, public safety boundaries, voting precincts, and census blocks. This methodology allows for single stream editing to move coincidental boundaries across many aggregate datasets simultaneously. Administration is maintained though an ArcGIS topology class in conjunction with County Parcels and Zoning. The topology prevents self-intersection and gaps, while ensuring complete coverage amongst the participating features.
The aim of this project was to develop a dataset describing the U.S. Catholic Church at the diocesan level. The total project consists of six decades' worth of data, from 1940 through 1990. Diocesan information collected from Church and other sources were merged with "https://www.census.gov/" Target="_blank">U.S. Census data describing population and other characteristics of the counties that make up each diocese.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Harnett County population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Harnett County. The dataset can be utilized to understand the population distribution of Harnett County by age. For example, using this dataset, we can identify the largest age group in Harnett County.
Key observations
The largest age group in Harnett County, NC was for the group of age 30 to 34 years years with a population of 10,925 (8%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in Harnett County, NC was the 85 years and over years with a population of 1,940 (1.42%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Harnett County Population by Age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
PLURAL (Place-level urban-rural indices) is a framework to create continuous classifications of "rurality" or "urbanness" based on the spatial configuration of populated places. PLURAL makes use of the concept of "remoteness" to characterize the level of spatial isolation of a populated place with respect to its neighbors. There are two implementations of PLURAL, including (a) PLURAL-1, based on distances to the nearest places of user-specified population classes, and (b) PLURAL-2, based on neighborhood characterization derived from spatial networks. PLURAL requires simplistic input data, i.e., the coordinates (x,y) and population p of populated places (villages, towns, cities) in a given point in time. Due to its simplistic input, the PLURAL rural-urban classification scheme can be applied to historical data, as well as to data from data-scarce settings. Using the PLURAL framework, we created place-level rural-urban indices for the conterminous United States from 1930 to 2018. Rural-urban classifications are essential for analyzing geographic, demographic, environmental, and social processes across the rural-urban continuum. Most existing classifications are, however, only available at relatively aggregated spatial scales, such as at the county scale in the United States. The absence of rurality or urbanness measures at high spatial resolution poses significant problems when the process of interest is highly localized, as with the incorporation of rural towns and villages into encroaching metropolitan areas. Moreover, existing rural-urban classifications are often inconsistent over time, or require complex, multi-source input data (e.g., remote sensing observations or road network data), thus, prohibiting the longitudinal analysis of rural-urban dynamics. We developed a set of distance- and spatial-network-based methods for consistently estimating the remoteness and rurality of places at fine spatial resolution, over long periods of time. Based on these methods, we constructed indices of urbanness for 30,000 places in the United States from 1930 to 2018. We call these indices the place-level urban-rural index (PLURAL), enabling long-term, fine-grained analyses of urban and rural change in the United States. The method paper has been peer-reviewed and is published in "Landscape and Urban Planning". The PLURAL indices from 1930 to 2018 are available as CSV files, and as point-based geospatial vector data (.SHP). Moreover, we provide animated GIF files illustrating the spatio-temporal variation of the different variants of the PLURAL indices, illustrating the dynamics of the rural-urban continuum in the United States from 1930 to 2018. Apply the PLURAL rural-urban classification to your own data: Python code is fully open source and available at https://github.com/johannesuhl/plural. Data sources: Place-level population counts (1980-2010) and place locations 1930 - 2018 were obtained from IPUMS NHGIS, (University of Minnesota, www.nhgis.org; Manson et al. 2022). Place-level population counts 1930-1970 were digitized from historical census records (U.S. Census Bureau 1942, 1964). References: Uhl, J.H., Hunter, L.M., Leyk, S., Connor, D.S., Nieves, J.J., Hester, C., Talbot, C. and Gutmann, M., 2023. Place-level urban–rural indices for the United States from 1930 to 2018. Landscape and Urban Planning, 236, p.104762. DOI: https://doi.org/10.1016/j.landurbplan.2023.104762 Steven Manson, Jonathan Schroeder, David Van Riper, Tracy Kugler, and Steven Ruggles. IPUMS National Historical Geographic Information System: Version 16.0 [dataset]. Minneapolis, MN: IPUMS. 2021. http://doi.org/10.18128/D050.V16.0 U.S. Census Bureau (1942). U.S. Census of Population: 1940. Vol. I, Number of Inhabitants. U.S. Government Printing Office, Washington, D.C. U.S. Census Bureau (1964). U.S. Census of Population: 1960. Vol. I, Characteristics of the Population. Part I, United States Summary. U.S. Government Printing Office, Washington, D.C.
This dataset was created primarily to map and track socioeconomic and demographic variables from the US Census Bureau from year 1940 to year 2010, by decade, within the City of Baltimore's Mayor's Office of Information Technology (MOIT) year 2010 neighborhood boundaries. The socioeconomic and demographic variables include the percent White, percent African American, percent owner occupied homes, percent vacant homes, the percentage of age 25 and older people with a high school education or greater, and the percentage of age 25 and older people with a college education or greater. Percent White and percent African American are also provided for year 1930. Each of the the year 2010 neighborhood boundaries were also attributed with the 1937 Home Owners' Loan Corporation (HOLC) definition of neighborhoods via spatial overlay. HOLC rated neighborhoods as A, B, C, D or Undefined. HOLC categorized the perceived safety and risk of mortgage refinance lending in metropolitan areas using a hierarchical grading scale of A, B, C, and D. A and B areas were considered the safest areas for federal investment due to their newer housing as well as higher earning and racially homogenous households. In contrast, C and D graded areas were viewed to be in a state of inevitable decline, depreciation, and decay, and thus risky for federal investment, due to their older housing stock and racial and ethnic composition. This policy was inherently a racist practice. Places were graded based on who lived there; poor areas with people of color were labeled as lower and less-than. HOLC's 1937 neighborhoods do not cover the entire extent of the year 2010 neighborhood boundaries. The neighborhood boundaries were also augmented to include which of the year 2017 Housing Market Typology (HMT) the 2010 neighborhoods fall within. Finally, the neighborhood boundaries were also augmented to include tree canopy and tree canopy change year 2007 to year 2015.
Data on death rates for suicide, by selected population characteristics. Please refer to the PDF or Excel version of this table in the HUS 2019 Data Finder (https://www.cdc.gov/nchs/hus/contents2019.htm) for critical information about measures, definitions, and changes over time. SOURCE: NCHS, National Vital Statistics System (NVSS); Grove RD, Hetzel AM. Vital statistics rates in the United States, 1940–1960. National Center for Health Statistics. 1968; numerator data from NVSS annual public-use Mortality Files; denominator data from U.S. Census Bureau national population estimates; and Murphy SL, Xu JQ, Kochanek KD, Arias E, Tejada-Vera B. Deaths: Final data for 2018. National Vital Statistics Reports; vol 69 no 13. Hyattsville, MD: National Center for Health Statistics. 2021. Available from: https://www.cdc.gov/nchs/products/nvsr.htm. For more information on the National Vital Statistics System, see the corresponding Appendix entry at https://www.cdc.gov/nchs/data/hus/hus19-appendix-508.pdf.
2000 Census blocks for the Wichita / Sedgwick County area, clipped to the county line. Features were extracted based upon County FIPS code 173 which correlates to Sedgwick County Kansas.US Census Defines Census Block as the following: A census block is the smallest geographic unit used by the United States Census Bureau for tabulation of 100-percent data (data collected from all houses, rather than a sample of houses).Census blocks are grouped into block groups, which are grouped into census tracts. There are on average about 39 blocks per block group. Blocks typically have a four-digit number; the first number indicates which block group the block is in. For example, census block 3019 would be in block group 3.[2]Blocks are typically bounded by roads and highways, town/city/county/state boundaries, creeks and rivers, etc. In cities, a census block may correspond to a city block, but in rural areas where there are fewer roads, blocks may be delimited by other features such as political boundaries, rivers and other natural features, as well as parks and similar facilities, etc. The population of a census block varies greatly. As of the 2010 census, there were 4,871,270 blocks with a reported population of zero,[3] while a block that is entirely occupied by an apartment complex might have several hundred inhabitants.Census blocks covering the entire country were introduced with the 1990 census. Before that, back to the 1940 census, only selected areas were divided into blocks.
Website alows the public full access to the 1940 Census images, census maps and descriptions.