The Decennial Census provides population estimates and demographic information on residents of the United States.
The Census Summary Files contain detailed tables on responses to the decennial census. Data tables in Summary File 1 provide information on population and housing characteristics, including cross-tabulations of age, sex, households, families, relationship to householder, housing units, detailed race and Hispanic or Latino origin groups, and group quarters for the total population. Summary File 2 contains data tables on population and housing characteristics as reported by housing unit.
Researchers at NYU Langone Health can find guidance for the use and analysis of Census Bureau data on the Population Health Data Hub (listed under "Other Resources"), which is accessible only through the intranet portal with a valid Kerberos ID (KID).
https://www.icpsr.umich.edu/web/ICPSR/studies/38777/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/38777/terms
The 2010 Census Production Settings Redistricting Data (P.L. 94-171) Demonstration Noisy Measurement Files are an intermediate output of the 2020 Census Disclosure Avoidance System (DAS) TopDown Algorithm (TDA) (as described in Abowd, J. et al [2022], and implemented in https://github.com/uscensusbureau/DAS_2020_Redistricting_Production_Code). The NMF was produced using the official "production settings," the final set of algorithmic parameters and privacy-loss budget allocations that were used to produce the 2020 Census Redistricting Data (P.L. 94-171) Summary File and the 2020 Census Demographic and Housing Characteristics File. The NMF consists of the full set of privacy-protected statistical queries (counts of individuals or housing units with particular combinations of characteristics) of confidential 2010 Census data relating to the redistricting data portion of the 2010 Demonstration Data Products Suite - Redistricting and Demographic and Housing Characteristics File - Production Settings (2023-04-03). These statistical queries, called "noisy measurements" were produced under the zero-Concentrated Differential Privacy framework (Bun, M. and Steinke, T [2016]; see also Dwork C. and Roth, A. [2014]) implemented via the discrete Gaussian mechanism (Cannone C., et al., [2023]), which added positive or negative integer-valued noise to each of the resulting counts. The noisy measurements are an intermediate stage of the TDA prior to the post-processing the TDA then performs to ensure internal and hierarchical consistency within the resulting tables. The Census Bureau has released these 2010 Census demonstration data to enable data users to evaluate the expected impact of disclosure avoidance variability on 2020 Census data. The 2010 Census Production Settings Redistricting Data (P.L. 94-171) Demonstration Noisy Measurement Files (2023-04-03) have been cleared for public dissemination by the Census Bureau Disclosure Review Board (CBDRB-FY22-DSEP-004). The data include zero-Concentrated Differentially Private (zCDP) (Bun, M. and Steinke, T [2016]) noisy measurements, implemented via the discrete Gaussian mechanism. These are estimated counts of individuals and housing units included in the 2010 Census Edited File (CEF), which includes confidential data initially collected in the 2010 Census of Population and Housing. The noisy measurements included in this file were subsequently post-processed by the TopDown Algorithm (TDA) to produce the 2010 Census Production Settings Privacy-Protected Microdata File - Redistricting (P.L. 94-171) and Demographic and Housing Characteristics File (2023-04-03) (https://www2.census.gov/programs-surveys/decennial/2020/program-management/data-product- planning/2010-demonstration-data-products/04 Demonstration_Data_Products_Suite/2023-04-03/). As these 2010 Census demonstration data are intended to support study of the design and expected impacts of the 2020 Disclosure Avoidance System, the 2010 CEF records were pre-processed before application of the zCDP framework. This pre-processing converted the 2010 CEF records into the input-file format, response codes, and tabulation categories used for the 2020 Census, which differ in substantive ways from the format, response codes, and tabulation categories originally used for the 2010 Census. The NMF provides estimates of counts of persons in the CEF by various characteristics and combinations of characteristics, including their reported race and ethnicity, whether they were of voting age, whether they resided in a housing unit or one of 7 group quarters types, and their census block of residence, after the addition of discrete Gaussian noise (with the scale parameter determined by the privacy-loss budget allocation for that particular query under zCDP). Noisy measurements of the counts of occupied and vacant housing units by census block are also included. Lastly, data on constraints--information into which no noise was infused by the Disclosure Avoidance System (DAS) and used by the TDA to post-process the noisy measurements into the 2010 Census Production Settings Privacy-Protected Microdata File - Redistricting (P.L. 94-171) and Demographic and Housing Characteristics File (2023-04-03) --are provided. These data are available for download (i.e. not restricted access). Due to their size, they must be downloaded through the link on this
Link to the Open Data site for the United States Census Bureau.
This product will include topics such as age, sex, race, Hispanic or Latino origin, household type, family type, relationship to householder, group quarters population, housing occupancy and housing tenure. Some tables will be iterated by race and ethnicity.
2020 Census P.L. 94-171 is the first detailed data release from the 2020 Decennial Census of Population and Housing. The web layer is based on an extract for Table P2 – Hispanic or Latino, and Not Hispanic or Latino by Race at the census tract level geography of Broward County, Florida. The data extract was then joined to the 2020 Census TIGER/Line Shapefiles.
For details on field names, table hierarchy, and table contents refer to TABLE (MATRIX) SECTION in Chapter 6. Data Dictionary, https://www2.census.gov/programs-surveys/decennial/2020/technical-documentation/complete-tech-docs/summary-file/2020Census_PL94_171Redistricting_StatesTechDoc_English.pdf" STYLE="text-decoration:underline;">2020 Census State Public Law 94-171 Summary File Technical Documentation.
The 2023 cartographic boundary shapefiles are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2020 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some states and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census and beyond, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.
The PDB is a database of U.S. housing, demographic, socioeconomic and operational statistics based on select 2010 Decennial Census and select 5-year American Community Survey (ACS) estimates. Data are provided at the census tract level of geography. These data can be used for many purposes, including survey field operations planning.
IPUMS-International is an effort to inventory, preserve, harmonize, and disseminate census microdata from around the world. The project has collected the world's largest archive of publicly available census samples. The data are coded and documented consistently across countries and over time to facillitate comparative research. IPUMS-International makes these data available to qualified researchers free of charge through a web dissemination system.
The IPUMS project is a collaboration of the Minnesota Population Center, National Statistical Offices, and international data archives. Major funding is provided by the U.S. National Science Foundation and the Demographic and Behavioral Sciences Branch of the National Institute of Child Health and Human Development. Additional support is provided by the University of Minnesota Office of the Vice President for Research, the Minnesota Population Center, and Sun Microsystems.
National coverage
Household
UNITS IDENTIFIED: - Dwellings: No - Vacant units: No - Households: Yes - Individuals: Yes - Group quarters: Yes (institutional)
UNIT DESCRIPTIONS: - Dwellings: Not available - Households: An individual or group of people who inhabit part or all of the physical or census building, usually live together, who eat from one kitchen or organize daily needs together as one unit. - Group quarters: A special household includes people living in dormitories, barracks, or institutions in which daily needs are under the responsibility of a foundation or other organization. Also includes groups of people in lodging houses or buildings, where the total number of lodgers is ten or more.
All population residing in the geographic area of Indonesia regardless of residence status. Diplomats and their families residing in Indonesia were excluded.
Census/enumeration data [cen]
MICRODATA SOURCE: Statistics Indonesia
SAMPLE DESIGN: Geographically stratified systematic sample (drawn by MPC).
SAMPLE UNIT: Household
SAMPLE FRACTION: 10%
SAMPLE SIZE (person records): 20,112,539
Face-to-face [f2f]
L1 questionnaire for buildings and households; L2 questionnaire for permanent residents; and L3 questionnaire for non-permanent residents (boat people, homeless persons, etc).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Age, Sex, Race, Ethnicity, Total Housing Units, and Voting Age Population. This service is updated annually with American Community Survey (ACS) 5-year data. Contact: District of Columbia, Office of Planning. Email: planning@dc.gov. Geography: Census Tracts. Current Vintage: 2019-2023. ACS Table(s): DP05. Data downloaded from: Census Bureau's API for American Community Survey. Date of API call: January 2, 2025. National Figures: data.census.gov. Please cite the Census and ACS when using this data. Data Note from the Census: Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables. Data Processing Notes: This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2020 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page. Data processed using R statistical package and ArcGIS Desktop. Margin of Error was not included in this layer but is available from the Census Bureau. Contact the Office of Planning for more information about obtaining Margin of Error values.
More than 39 million people and 14.2 million households span more than 163,000 square miles of Californian’s urban, suburban and rural communities. California has the fifth largest economy in the world and is the most populous state in the nation, with nation-leading diversity in race, ethnicity, language and socioeconomic conditions. These characteristics make California amazingly unique amongst all 50 states, but also present significant challenges to counting every person and every household, no matter the census year. A complete and accurate count of a state’s population in a decennial census is essential. The results of the 2020 Census will inform decisions about allocating hundreds of billions of dollars in federal funding to communities across the country for hospitals, fire departments, school lunch programs and other critical programs and services. The data collected by the United States Census Bureau (referred hereafter as U.S. Census Bureau) also determines the number of seats each state has in the U.S. House of Representatives and will be used to redraw State Assembly and Senate boundaries. California launched a comprehensive Complete Count Census 2020 Campaign (referred to hereafter as the Campaign) to support an accurate and complete count of Californians in the 2020 Census. Due to the state’s unique diversity and with insights from past censuses, the Campaign placed special emphasis on the hardest-tocount Californians and those least likely to participate in the census. The California Complete Count – Census 2020 Office (referred to hereafter as the Census Office) coordinated the State’s operations to complement work done nationally by the U.S. Census Bureau to reach those households most likely to be missed because of barriers, operational or motivational, preventing people from filling out the census. The Campaign, which began in 2017, included key phases, titled Educate, Motivate and Activate. Each of these phases were designed to make sure all Californians knew about the census, how to respond, their information was safe and their participation would help their communities for the next 10 years.
"Website allows the public full access to the 1950 Census images, census maps and descriptions.
This dataset includes 2020 census tracts as defined by the U.S. Census Bureau and made available through their TIGER/Line files. Census tracts are small, relatively permanent statistical subdivisions of a county. Their primary purpose is to provide a stable set of geographic units for the presentation of decennial census data. They are reviewed and updated prior to each decennial census. Census tracts generally have a population size of 1,200 to 8,000 people with an optimum size of 4,000 people. Census tract boundaries generally follow visible and identifiable features but might follow legal boundaries or incorporated place boundaries. For more information about census geographies, see https://www2.census.gov/geo/pdfs/maps-data/data/tiger/tgrshp2020/TGRSHP2020_TechDoc_Ch4.pdf . This file is for reference use only. NCTCOG and its members are not responsible for errors or inaccuracies in the file.
2020 Census Tracts from the US Census for New York City. These boundary files are derived from the US Census Bureau's TIGER data products and have been geographically modified to fit the New York City base map. All previously released versions of this data are available at BYTES of the BIG APPLE- Archive.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Census Tree is the largest-ever database of record links among the historical U.S. censuses, with over 700 million links for people living in the United States between 1850 and 1940. These links allow researchers to construct a longitudinal dataset that is highly representative of the population, and that includes women, Black Americans, and other under-represented populations at unprecedented rates. Each .csv file consists of a crosswalk between the two years indicated in the filename, using the IPUMS histids. For more information, consult the included Read Me file, and visit https://censustree.org.
license: mit
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Unemployed Persons in West Census Region (LASRD940000000000004) from Jan 1976 to Apr 2025 about West Census Region, household survey, unemployment, persons, and USA.
This service contains 2010 & 2020 Census data layers.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Employed Persons in West Census Region (LAURD940000000000005A) from 1976 to 2024 about West Census Region, household survey, employment, persons, and USA.
This dataset shows census data for Nigeria from government data sources and the World Bank data portal.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Loch Lloyd population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Loch Lloyd. The dataset can be utilized to understand the population distribution of Loch Lloyd by age. For example, using this dataset, we can identify the largest age group in Loch Lloyd.
Key observations
The largest age group in Loch Lloyd, MO was for the group of age 60-64 years with a population of 112 (15.86%), according to the 2021 American Community Survey. At the same time, the smallest age group in Loch Lloyd, MO was the 5-9 years with a population of 8 (1.13%). Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Loch Lloyd Population by Age. You can refer the same here
The Decennial Census provides population estimates and demographic information on residents of the United States.
The Census Summary Files contain detailed tables on responses to the decennial census. Data tables in Summary File 1 provide information on population and housing characteristics, including cross-tabulations of age, sex, households, families, relationship to householder, housing units, detailed race and Hispanic or Latino origin groups, and group quarters for the total population. Summary File 2 contains data tables on population and housing characteristics as reported by housing unit.
Researchers at NYU Langone Health can find guidance for the use and analysis of Census Bureau data on the Population Health Data Hub (listed under "Other Resources"), which is accessible only through the intranet portal with a valid Kerberos ID (KID).