93 datasets found
  1. 1940 Census: Official 1940 Census Website

    • catalog.data.gov
    • data.amerigeoss.org
    Updated Nov 7, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Archives and Records Administration (2024). 1940 Census: Official 1940 Census Website [Dataset]. https://catalog.data.gov/dataset/1940-census-official-1940-census-website
    Explore at:
    Dataset updated
    Nov 7, 2024
    Dataset provided by
    National Archives and Records Administrationhttp://www.archives.gov/
    Description

    Website alows the public full access to the 1940 Census images, census maps and descriptions.

  2. Census Data

    • catalog.data.gov
    • datadiscoverystudio.org
    • +2more
    Updated Mar 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Bureau of the Census (2024). Census Data [Dataset]. https://catalog.data.gov/dataset/census-data
    Explore at:
    Dataset updated
    Mar 1, 2024
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Description

    The Bureau of the Census has released Census 2000 Summary File 1 (SF1) 100-Percent data. The file includes the following population items: sex, age, race, Hispanic or Latino origin, household relationship, and household and family characteristics. Housing items include occupancy status and tenure (whether the unit is owner or renter occupied). SF1 does not include information on incomes, poverty status, overcrowded housing or age of housing. These topics will be covered in Summary File 3. Data are available for states, counties, county subdivisions, places, census tracts, block groups, and, where applicable, American Indian and Alaskan Native Areas and Hawaiian Home Lands. The SF1 data are available on the Bureau's web site and may be retrieved from American FactFinder as tables, lists, or maps. Users may also download a set of compressed ASCII files for each state via the Bureau's FTP server. There are over 8000 data items available for each geographic area. The full listing of these data items is available here as a downloadable compressed data base file named TABLES.ZIP. The uncompressed is in FoxPro data base file (dbf) format and may be imported to ACCESS, EXCEL, and other software formats. While all of this information is useful, the Office of Community Planning and Development has downloaded selected information for all states and areas and is making this information available on the CPD web pages. The tables and data items selected are those items used in the CDBG and HOME allocation formulas plus topics most pertinent to the Comprehensive Housing Affordability Strategy (CHAS), the Consolidated Plan, and similar overall economic and community development plans. The information is contained in five compressed (zipped) dbf tables for each state. When uncompressed the tables are ready for use with FoxPro and they can be imported into ACCESS, EXCEL, and other spreadsheet, GIS and database software. The data are at the block group summary level. The first two characters of the file name are the state abbreviation. The next two letters are BG for block group. Each record is labeled with the code and name of the city and county in which it is located so that the data can be summarized to higher-level geography. The last part of the file name describes the contents . The GEO file contains standard Census Bureau geographic identifiers for each block group, such as the metropolitan area code and congressional district code. The only data included in this table is total population and total housing units. POP1 and POP2 contain selected population variables and selected housing items are in the HU file. The MA05 table data is only for use by State CDBG grantees for the reporting of the racial composition of beneficiaries of Area Benefit activities. The complete package for a state consists of the dictionary file named TABLES, and the five data files for the state. The logical record number (LOGRECNO) links the records across tables.

  3. 1950 Census Population Schedules, Enumeration District Maps, and Enumeration...

    • registry.opendata.aws
    Updated Apr 1, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Archives and Records Administration (NARA) (2022). 1950 Census Population Schedules, Enumeration District Maps, and Enumeration District Descriptions [Dataset]. https://registry.opendata.aws/nara-1950-census/
    Explore at:
    Dataset updated
    Apr 1, 2022
    Dataset provided by
    National Archives and Records Administrationhttp://www.archives.gov/
    Description

    The 1950 Census population schedules were created by the Bureau of the Census in an attempt to enumerate every person living in the United States on April 1, 1950, although some persons were missed. The 1950 census population schedules were digitized by the National Archives and Records Administration (NARA) and released publicly on April 1, 2022. The 1950 Census enumeration district maps contain maps of counties, cities, and other minor civil divisions that show enumeration districts, census tracts, and related boundaries and numbers used for each census. The coverage is nation wide and includes territorial areas. The 1950 Census enumeration district descriptions contain written descriptions of census districts, subdivisions, and enumeration districts.

  4. History of census: 1801 to 2021

    • gov.uk
    • s3.amazonaws.com
    Updated Jun 20, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2022). History of census: 1801 to 2021 [Dataset]. https://www.gov.uk/government/statistics/history-of-census-1801-to-2021
    Explore at:
    Dataset updated
    Jun 20, 2022
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    Office for National Statistics
    Description

    Official statistics are produced impartially and free from political influence.

  5. National Statistics Postcode Lookup - 2021 Census (February 2024) for the UK...

    • geoportal.statistics.gov.uk
    • hub.arcgis.com
    Updated Feb 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2024). National Statistics Postcode Lookup - 2021 Census (February 2024) for the UK [Dataset]. https://geoportal.statistics.gov.uk/datasets/e832e833fe5f45e19096800af4ac800c
    Explore at:
    Dataset updated
    Feb 18, 2024
    Dataset authored and provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    https://www.ons.gov.uk/methodology/geography/licenceshttps://www.ons.gov.uk/methodology/geography/licences

    Area covered
    Description

    This file contains the National Statistics Postcode Lookup (NSPL) for the United Kingdom as at February 2024 in Comma Separated Variable (CSV) and ASCII text (TXT) formats. To download the zip file click the Download button. The NSPL relates both current and terminated postcodes to a range of current statutory geographies via ‘best-fit’ allocation from the 2021 Census Output Areas (national parks and Workplace Zones are exempt from ‘best-fit’ and use ‘exact-fit’ allocations) for England, Wales and Northern Ireland. Scotland has the 2011 Census Output Areas

    It supports the production of area-based statistics from postcoded data. The NSPL is produced by ONS Geography, who provide geographic support to the Office for National Statistics (ONS) and geographic services used by other organisations. The NSPL is issued quarterly. (File size - 176 MB).Updated 26/02/2024 to remove the BUASD11 field included in error.

  6. d

    BestPlace: POI Dataset, GIS Database, Census data for Retail CPG & FMCG...

    • datarade.ai
    Updated Sep 8, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    BestPlace (2023). BestPlace: POI Dataset, GIS Database, Census data for Retail CPG & FMCG analytics [Dataset]. https://datarade.ai/data-products/bestplace-poi-dataset-gis-database-census-data-for-retail-bestplace
    Explore at:
    .json, .csv, .xls, .txtAvailable download formats
    Dataset updated
    Sep 8, 2023
    Dataset authored and provided by
    BestPlace
    Area covered
    Tunisia, Cameroon, Israel, Taiwan, Nicaragua, United Kingdom, Isle of Man, Morocco, Latvia, Mongolia
    Description

    BestPlace is an innovative retail data and analytics tool created explicitly for medium and enterprise-level CPG/FMCG companies. It's designed to revolutionize your retail data analysis approach by adding a strategic location-based perspective to your existing database. This perspective enriches your data landscape and allows your business to understand better and cater to shopping behavior. An In-Depth Approach to Retail Analytics Unlike conventional analytics tools, BestPlace delves deep into each store location details, providing a comprehensive analysis of your retail database. We leverage unique tools and methodologies to extract, analyze, and compile data. Our processes have been accurately designed to provide a holistic view of your business, equipping you with the information you need to make data-driven data-backed decisions. Amplifying Your Database with BestPlace At BestPlace, we understand the importance of a robust and informative retail database design. We don't just add new stores to your database; we enrich each store with vital characteristics and factors. These enhancements come from open cartographic sources such as Google Maps and our proprietary GIS database, all carefully collected and curated by our experienced data analysts. Store Features We enrich your retail database with an array of store features, which include but are not limited to: Number of reviews Average ratings Operational hours Categories relevant to each point Our attention to detail ensures your retail database becomes a powerful tool for understanding customer interactions and preferences.

    Extensive Use Cases BestPlace's capabilities stretch across various applications, offering value in areas such as: Competition Analysis: Identify your competitors, analyze their performance, and understand your standing in the market with our extensive POI database and retail data analytics capabilities. New Location Search: Use our rich retail store database to identify ideal locations for store expansions based on foot traffic data, proximity to key points, and potential customer demographics.

  7. Historic US Census - 1940

    • redivis.com
    application/jsonl +7
    Updated Jan 10, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stanford Center for Population Health Sciences (2020). Historic US Census - 1940 [Dataset]. http://doi.org/10.57761/660g-eq95
    Explore at:
    sas, avro, arrow, spss, csv, stata, parquet, application/jsonlAvailable download formats
    Dataset updated
    Jan 10, 2020
    Dataset provided by
    Redivis Inc.
    Authors
    Stanford Center for Population Health Sciences
    Time period covered
    Jan 1, 1940 - Dec 31, 1940
    Area covered
    United States
    Description

    Abstract

    The Integrated Public Use Microdata Series (IPUMS) Complete Count Data include more than 650 million individual-level and 7.5 million household-level records. The IPUMS microdata are the result of collaboration between IPUMS and the nation’s two largest genealogical organizations—Ancestry.com and FamilySearch—and provides the largest and richest source of individual level and household data.

    Before Manuscript Submission

    All manuscripts (and other items you'd like to publish) must be submitted to

    phsdatacore@stanford.edu for approval prior to journal submission.

    We will check your cell sizes and citations.

    For more information about how to cite PHS and PHS datasets, please visit:

    https:/phsdocs.developerhub.io/need-help/citing-phs-data-core

    Documentation

    Historic data are scarce and often only exists in aggregate tables. The key advantage of historic US census data is the availability of individual and household level characteristics that researchers can tabulate in ways that benefits their specific research questions. The data contain demographic variables, economic variables, migration variables and family variables. Within households, it is possible to create relational data as all relations between household members are known. For example, having data on the mother and her children in a household enables researchers to calculate the mother’s age at birth. Another advantage of the Complete Count data is the possibility to follow individuals over time using a historical identifier.

    In sum: the historic US census data are a unique source for research on social and economic change and can provide population health researchers with information about social and economic determinants.Historic data are scarce and often only exists in aggregate tables. The key advantage of historic US census data is the availability of individual and household level characteristics that researchers can tabulate in ways that benefits their specific research questions. The data contain demographic variables, economic variables, migration variables and family variables. Within households, it is possible to create relational data as all relations between household members are known. For example, having data on the mother and her children in a household enables researchers to calculate the mother’s age at birth. Another advantage of the Complete Count data is the possibility to follow individuals over time using a historical identifier. In sum: the historic US census data are a unique source for research on social and economic change and can provide population health researchers with information about social and economic determinants.

    The historic US 1940 census data was collected in April 1940. Enumerators collected data traveling to households and counting the residents who regularly slept at the household. Individuals lacking permanent housing were counted as residents of the place where they were when the data was collected. Household members absent on the day of data collected were either listed to the household with the help of other household members or were scheduled for the last census subdivision.

    Notes

    • We provide IPUMS household and person data separately so that it is convenient to explore the descriptive statistics on each level. In order to obtain a full dataset, merge the household and person on the variables SERIAL and SERIALP. In order to create a longitudinal dataset, merge datasets on the variable HISTID.
    • Households with more than 60 people in the original data were broken up for processing purposes. Every person in the large households are considered to be in their own household. The original large households can be identified using the variable SPLIT40, reconstructed using the variable SERIAL40, and the original count is found in the variable NUMPREC40.
    • Some variables are missing from this data set for specific enumeration districts. The enumeration districts with missing data can be identified using the variable EDMISS. These variables will be added in a future release.
    • Coded variables derived from string variables are still in progress. These variables include: occupation, industry and migration status.
    • Missing observations have been allocated and some inconsistencies have been edited for the following variables: Missing observations have been allocated and some inconsistencies have been edited for the following variables: SURSIM, SEX, SCHOOL, RELATE, RACE, OCC1950, MTONGUE, MBPL, FBPL, BPL, MARST, EMPSTAT, CITIZEN, OWNERSHP. The flag variables indicating an allocated observation for the associated variables can be included in your extract by clicking the ‘Select data quality flags’ box on the extract summary page.
    • Most inconsistent information was not edited for this release, thus there are observations outside of the universe for many variables. In particular, the variables GQ, and GQTYPE have known inconsistencies and will be improved with the next r
  8. d

    IPUMS-International: Switzerland 1980 Census

    • search.dataone.org
    Updated Dec 16, 2014
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Minnesota Population Center (2014). IPUMS-International: Switzerland 1980 Census [Dataset]. https://search.dataone.org/view/ipumsi_6.3_ch_1980_DC.xml
    Explore at:
    Dataset updated
    Dec 16, 2014
    Dataset provided by
    Minnesota Population Center (MPC)
    Authors
    Minnesota Population Center
    Time period covered
    Jan 1, 1980
    Area covered
    Description

    IPUMS-International is an effort to inventory, preserve, harmonize, and disseminate census microdata from around the world. The project has collected the world's largest archive of publicly available census samples. The data are coded and documented consistently across countries and over time to facilitate comparative research. IPUMS-International makes these data available to qualified researchers free of charge through a web dissemination system. The IPUMS project is a collaboration of the Minnesota Population Center, National Statistical Offices, and international data archives. Major funding is provided by the U.S. National Science Foundation and the Demographic and Behavioral Sciences Branch of the National Institute of Child Health and Human Development. Additional support is provided by the University of Minnesota Office of the Vice President for Research, the Minnesota Population Center, and Sun Microsystems. Detailed metadata will be found in ipumsi_6.3_ch_1980_ddic.html within the Data Package. The related metadata describes the content of the extraction of the specified sample from the IPUMS International on-line extraction system.

  9. American Community Survey (ACS)

    • console.cloud.google.com
    Updated Jul 16, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    https://console.cloud.google.com/marketplace/browse?filter=partner:United%20States%20Census%20Bureau&inv=1&invt=Abyneg (2018). American Community Survey (ACS) [Dataset]. https://console.cloud.google.com/marketplace/product/united-states-census-bureau/acs
    Explore at:
    Dataset updated
    Jul 16, 2018
    Dataset provided by
    Googlehttp://google.com/
    Description

    The American Community Survey (ACS) is an ongoing survey that provides vital information on a yearly basis about our nation and its people by contacting over 3.5 million households across the country. The resulting data provides incredibly detailed demographic information across the US aggregated at various geographic levels which helps determine how more than $675 billion in federal and state funding are distributed each year. Businesses use ACS data to inform strategic decision-making. ACS data can be used as a component of market research, provide information about concentrations of potential employees with a specific education or occupation, and which communities could be good places to build offices or facilities. For example, someone scouting a new location for an assisted-living center might look for an area with a large proportion of seniors and a large proportion of people employed in nursing occupations. Through the ACS, we know more about jobs and occupations, educational attainment, veterans, whether people own or rent their homes, and other topics. Public officials, planners, and entrepreneurs use this information to assess the past and plan the future. For more information, see the Census Bureau's ACS Information Guide . This public dataset is hosted in Google BigQuery as part of the Google Cloud Public Datasets Program , with Carto providing cleaning and onboarding support. It is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery .

  10. Colorado Census Tract Boundaries

    • data-cdphe.opendata.arcgis.com
    • hub.arcgis.com
    Updated Apr 1, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Colorado Department of Public Health and Environment (2016). Colorado Census Tract Boundaries [Dataset]. https://data-cdphe.opendata.arcgis.com/datasets/colorado-census-tract-boundaries
    Explore at:
    Dataset updated
    Apr 1, 2016
    Dataset authored and provided by
    Colorado Department of Public Health and Environmenthttps://cdphe.colorado.gov/
    Area covered
    Description

    Census tracts are small, relatively permanent geographic entities within counties (or the statistical equivalents of counties) delineated by a committee of local data users. Generally, census tracts have between 2,500 and 8,000 residents and boundaries that follow visible features. When first established, census tracts are to be as homogeneous as possible with respect to population characteristics, economic status, and living conditions. (www.census.gov)

  11. Underwater fish visual census in the Azores from 1997 to 2015

    • gbif.org
    • erddap.eurobis.org
    • +4more
    Updated Mar 20, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pedro Afonso; Pedro Afonso (2025). Underwater fish visual census in the Azores from 1997 to 2015 [Dataset]. http://doi.org/10.14284/210
    Explore at:
    Dataset updated
    Mar 20, 2025
    Dataset provided by
    Global Biodiversity Information Facilityhttps://www.gbif.org/
    Institute of Marine Research
    Authors
    Pedro Afonso; Pedro Afonso
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1997 - Mar 20, 2025
    Area covered
    Description

    Fish assemblages surveyed by using underwater visual censuses (UVC) down to 40 m. Transects were performed between 1997 and 2015 in the Azores, Portugal. All mobile fish were identified to the lowest possible taxon. Dates, geographic coordinates and species recorded are provided.

  12. N

    Income Distribution by Quintile: Mean Household Income in Bellefontaine...

    • neilsberg.com
    csv, json
    Updated Jan 11, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Income Distribution by Quintile: Mean Household Income in Bellefontaine Neighbors, MO [Dataset]. https://www.neilsberg.com/research/datasets/945f5454-7479-11ee-949f-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Jan 11, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Bellefontaine Neighbors, Missouri
    Variables measured
    Income Level, Mean Household Income
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. It delineates income distributions across income quintiles (mentioned above) following an initial analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series via current methods (R-CPI-U-RS). For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the mean household income for each of the five quintiles in Bellefontaine Neighbors, MO, as reported by the U.S. Census Bureau. The dataset highlights the variation in mean household income across quintiles, offering valuable insights into income distribution and inequality.

    Key observations

    • Income disparities: The mean income of the lowest quintile (20% of households with the lowest income) is 10,367, while the mean income for the highest quintile (20% of households with the highest income) is 169,915. This indicates that the top earners earn 16 times compared to the lowest earners.
    • *Top 5%: * The mean household income for the wealthiest population (top 5%) is 359,970, which is 211.85% higher compared to the highest quintile, and 3472.27% higher compared to the lowest quintile.

    Mean household income by quintiles in Bellefontaine Neighbors, MO (in 2022 inflation-adjusted dollars))

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Income Levels:

    • Lowest Quintile
    • Second Quintile
    • Third Quintile
    • Fourth Quintile
    • Highest Quintile
    • Top 5 Percent

    Variables / Data Columns

    • Income Level: This column showcases the income levels (As mentioned above).
    • Mean Household Income: Mean household income, in 2022 inflation-adjusted dollars for the specific income level.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Bellefontaine Neighbors median household income. You can refer the same here

  13. d

    Socioeconomic variables used in the Neighborhoods at Risk tool

    • search.dataone.org
    • data.griidc.org
    Updated Feb 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hernandez, Patty (2025). Socioeconomic variables used in the Neighborhoods at Risk tool [Dataset]. http://doi.org/10.7266/HH98Q2CK
    Explore at:
    Dataset updated
    Feb 5, 2025
    Dataset provided by
    GRIIDC
    Authors
    Hernandez, Patty
    Description

    The dataset contains census tract-level socioeconomic data from the U.S. Census American Community Survey (ACS) 5-year estimates representing average characteristics from 2014 to 2018 using Neighborhoods at Risk, a free and interactive data tool. Each row in the data table represents a census tract. Neighborhoods at Risk displays nine socioeconomic variables and filters about people. For each characteristic, the tool provides a margin of error as reported by the census. The data includes the following variables: children under five years old, families in poverty, households with no car, housing units that are rentals, people of color, including Hispanics, people over 65 years old, people who don’t speak English well, people with disabilities, and people without health insurance.

  14. N

    Kansas City, MO Age Group Population Dataset: A Complete Breakdown of Kansas...

    • neilsberg.com
    csv, json
    Updated Jul 24, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Kansas City, MO Age Group Population Dataset: A Complete Breakdown of Kansas City Age Demographics from 0 to 85 Years and Over, Distributed Across 18 Age Groups // 2024 Edition [Dataset]. https://www.neilsberg.com/research/datasets/aa9b957d-4983-11ef-ae5d-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Jul 24, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Kansas City, Missouri
    Variables measured
    Population Under 5 Years, Population over 85 years, Population Between 5 and 9 years, Population Between 10 and 14 years, Population Between 15 and 19 years, Population Between 20 and 24 years, Population Between 25 and 29 years, Population Between 30 and 34 years, Population Between 35 and 39 years, Population Between 40 and 44 years, and 9 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the age groups. For age groups we divided it into roughly a 5 year bucket for ages between 0 and 85. For over 85, we aggregated data into a single group for all ages. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Kansas City population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Kansas City. The dataset can be utilized to understand the population distribution of Kansas City by age. For example, using this dataset, we can identify the largest age group in Kansas City.

    Key observations

    The largest age group in Kansas City, MO was for the group of age 25 to 29 years years with a population of 45,678 (9.03%), according to the ACS 2018-2022 5-Year Estimates. At the same time, the smallest age group in Kansas City, MO was the 80 to 84 years years with a population of 7,502 (1.48%). Source: U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Variables / Data Columns

    • Age Group: This column displays the age group in consideration
    • Population: The population for the specific age group in the Kansas City is shown in this column.
    • % of Total Population: This column displays the population of each age group as a proportion of Kansas City total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Kansas City Population by Age. You can refer the same here

  15. G

    Annual School Meal Census

    • find.data.gov.scot
    • dtechtive.com
    csv
    Updated Feb 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Glasgow City Council (uSmart) (2024). Annual School Meal Census [Dataset]. https://find.data.gov.scot/datasets/39576
    Explore at:
    csv(0.0188 MB), csv(0.0162 MB), csv(0.0195 MB), csv(0.0051 MB), csv(0.0159 MB), csv(0.0177 MB), csv(0.0203 MB), csv(0.0218 MB), csv(0.0138 MB), csv(0.0156 MB), csv(0.0134 MB)Available download formats
    Dataset updated
    Feb 2, 2024
    Dataset provided by
    Glasgow City Council (uSmart)
    Description

    Data presented here is an extract of data taken from the Annual School Meal Census in publicly funded schools in Scotland. The data shows the provision of school meals (including free school meals) for each school in the Glasgow local authority area. The dataset forms part of a time series and is available for the years 2003 through to 2014. Full datasets can be downloaded from The Scottish Government. The data is graduated to school level and data includes: the numbers on the school roll; counts of pupils entitled to free school meals; counts of pupils present on the day of the survey, counts of pupils taking a school meal (free or not) on the day of the survey; and counts of pupils taking a free school meal on the day of the survey. In order to protect the identity of pupils a * used in the dataset denotes the number of pupils is 4 or less (zero included) or where such a figure could be worked out. A * * used in the dataset denotes where the difference between the number of pupils on the register and pupils with FME is 4 or less. Some of the datasets also include information on breakfast clubs, the provision of fresh fruit and water and the anonymity of the free school meal application process. The School Meal Census is carried out annually. For individual dataset errata or qualifications users should consult the background data or notes of the individual datasets. Licence: None fsm2003-2014.zip - https://dataservices.open.glasgow.gov.uk/Download/Organisation/728522f0-86da-48c6-8f75-1649934eb8a4/Dataset/7a0f701f-b55f-463f-a748-d62d6adf9979/File/51a57ba3-cf7b-4738-90ff-81d48dac9820/Version/7e43a6c6-cff0-4be2-b6e4-cd2e9c2707a5

  16. TIGER/Line Shapefile, 2022, Nation, U.S., 2020 Census 5-Digit ZIP Code...

    • catalog.data.gov
    Updated Jan 27, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Commerce, U.S. Census Bureau, Geography Division, Spatial Data Collection and Products Branch (Point of Contact) (2024). TIGER/Line Shapefile, 2022, Nation, U.S., 2020 Census 5-Digit ZIP Code Tabulation Area (ZCTA5) [Dataset]. https://catalog.data.gov/dataset/tiger-line-shapefile-2022-nation-u-s-2020-census-5-digit-zip-code-tabulation-area-zcta5
    Explore at:
    Dataset updated
    Jan 27, 2024
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    United States Department of Commercehttp://www.commerce.gov/
    Area covered
    United States
    Description

    The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. ZIP Code Tabulation Areas (ZCTAs) are approximate area representations of U.S. Postal Service (USPS) ZIP Code service areas that the Census Bureau creates to present statistical data for each decennial census. The Census Bureau delineates ZCTA boundaries for the United States, Puerto Rico, American Samoa, Guam, the Commonwealth of the Northern Mariana Islands, and the U.S. Virgin Islands once each decade following the decennial census. Data users should not use ZCTAs to identify the official USPS ZIP Code for mail delivery. The USPS makes periodic changes to ZIP Codes to support more efficient mail delivery. The Census Bureau uses tabulation blocks as the basis for defining each ZCTA. Tabulation blocks are assigned to a ZCTA based on the most frequently occurring ZIP Code for the addresses contained within that block. The most frequently occurring ZIP Code also becomes the five-digit numeric code of the ZCTA. These codes may contain leading zeros. Blocks that do not contain addresses but are surrounded by a single ZCTA (enclaves) are assigned to the surrounding ZCTA. Because the Census Bureau only uses the most frequently occurring ZIP Code to assign blocks, a ZCTA may not exist for every USPS ZIP Code. Some ZIP Codes may not have a matching ZCTA because too few addresses were associated with the specific ZIP Code or the ZIP Code was not the most frequently occurring ZIP Code within any of the blocks where it exists. The ZCTA boundaries in this release are those delineated following the 2020 Census.

  17. N

    Los Angeles County, CA Population Pyramid Dataset: Age Groups, Male and...

    • neilsberg.com
    csv, json
    Updated Jul 24, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Los Angeles County, CA Population Pyramid Dataset: Age Groups, Male and Female Population, and Total Population for Demographics Analysis // 2024 Edition [Dataset]. https://www.neilsberg.com/research/datasets/f0347518-4983-11ef-ae5d-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Jul 24, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Los Angeles County, California
    Variables measured
    Male and Female Population Under 5 Years, Male and Female Population over 85 years, Male and Female Total Population for Age Groups, Male and Female Population Between 5 and 9 years, Male and Female Population Between 10 and 14 years, Male and Female Population Between 15 and 19 years, Male and Female Population Between 20 and 24 years, Male and Female Population Between 25 and 29 years, Male and Female Population Between 30 and 34 years, Male and Female Population Between 35 and 39 years, and 9 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates. To measure the three variables, namely (a) male population, (b) female population and (b) total population, we initially analyzed and categorized the data for each of the age groups. For age groups we divided it into roughly a 5 year bucket for ages between 0 and 85. For over 85, we aggregated data into a single group for all ages. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the data for the Los Angeles County, CA population pyramid, which represents the Los Angeles County population distribution across age and gender, using estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates. It lists the male and female population for each age group, along with the total population for those age groups. Higher numbers at the bottom of the table suggest population growth, whereas higher numbers at the top indicate declining birth rates. Furthermore, the dataset can be utilized to understand the youth dependency ratio, old-age dependency ratio, total dependency ratio, and potential support ratio.

    Key observations

    • Youth dependency ratio, which is the number of children aged 0-14 per 100 persons aged 15-64, for Los Angeles County, CA, is 25.4.
    • Old-age dependency ratio, which is the number of persons aged 65 or over per 100 persons aged 15-64, for Los Angeles County, CA, is 20.8.
    • Total dependency ratio for Los Angeles County, CA is 46.2.
    • Potential support ratio, which is the number of youth (working age population) per elderly, for Los Angeles County, CA is 4.8.
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Variables / Data Columns

    • Age Group: This column displays the age group for the Los Angeles County population analysis. Total expected values are 18 and are define above in the age groups section.
    • Population (Male): The male population in the Los Angeles County for the selected age group is shown in the following column.
    • Population (Female): The female population in the Los Angeles County for the selected age group is shown in the following column.
    • Total Population: The total population of the Los Angeles County for the selected age group is shown in the following column.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Los Angeles County Population by Age. You can refer the same here

  18. d

    IPUMS-International: Turkey 1990 Census

    • search.dataone.org
    Updated Dec 16, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Minnesota Population Center (2014). IPUMS-International: Turkey 1990 Census [Dataset]. https://search.dataone.org/view/ipumsi_6.3_tr_1990_DC.xml
    Explore at:
    Dataset updated
    Dec 16, 2014
    Dataset provided by
    Minnesota Population Center (MPC)
    Authors
    Minnesota Population Center
    Time period covered
    Jan 1, 1990
    Area covered
    Description

    IPUMS-International is an effort to inventory, preserve, harmonize, and disseminate census microdata from around the world. The project has collected the world's largest archive of publicly available census samples. The data are coded and documented consistently across countries and over time to facilitate comparative research. IPUMS-International makes these data available to qualified researchers free of charge through a web dissemination system. The IPUMS project is a collaboration of the Minnesota Population Center, National Statistical Offices, and international data archives. Major funding is provided by the U.S. National Science Foundation and the Demographic and Behavioral Sciences Branch of the National Institute of Child Health and Human Development. Additional support is provided by the University of Minnesota Office of the Vice President for Research, the Minnesota Population Center, and Sun Microsystems. Detailed metadata will be found in ipumsi_6.3_tr_1990_ddic.html within the Data Package. The related metadata describes the content of the extraction of the specified sample from the IPUMS International on-line extraction system.

  19. d

    IPUMS-International: Hungary 2001 Census

    • search.dataone.org
    Updated Dec 16, 2014
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Minnesota Population Center (2014). IPUMS-International: Hungary 2001 Census [Dataset]. https://search.dataone.org/view/ipumsi_6.3_hu_2001_DC.xml
    Explore at:
    Dataset updated
    Dec 16, 2014
    Dataset provided by
    Minnesota Population Center (MPC)
    Authors
    Minnesota Population Center
    Time period covered
    Jan 1, 2001
    Area covered
    Description

    IPUMS-International is an effort to inventory, preserve, harmonize, and disseminate census microdata from around the world. The project has collected the world's largest archive of publicly available census samples. The data are coded and documented consistently across countries and over time to facilitate comparative research. IPUMS-International makes these data available to qualified researchers free of charge through a web dissemination system. The IPUMS project is a collaboration of the Minnesota Population Center, National Statistical Offices, and international data archives. Major funding is provided by the U.S. National Science Foundation and the Demographic and Behavioral Sciences Branch of the National Institute of Child Health and Human Development. Additional support is provided by the University of Minnesota Office of the Vice President for Research, the Minnesota Population Center, and Sun Microsystems. Detailed metadata will be found in ipumsi_6.3_hu_2001_ddic.html within the Data Package. The related metadata describes the content of the extraction of the specified sample from the IPUMS International on-line extraction system.

  20. B

    UNI-CEN Boundaries (CBF-Original Shorelines) - Census Division (CD) - 1861 -...

    • borealisdata.ca
    • search.dataone.org
    Updated Apr 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UNI-CEN Project (2023). UNI-CEN Boundaries (CBF-Original Shorelines) - Census Division (CD) - 1861 - Esri Shapefile format (WGS84 / EPSG:4326) [Dataset]. http://doi.org/10.5683/SP3/2AFGSW
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 4, 2023
    Dataset provided by
    Borealis
    Authors
    UNI-CEN Project
    License

    https://borealisdata.ca/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.5683/SP3/2AFGSWhttps://borealisdata.ca/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.5683/SP3/2AFGSW

    Time period covered
    Jan 1, 1861
    Area covered
    Canada
    Description

    The UNI-CEN Digital Boundary File Series facilitates the mapping of UNI-CEN census data tables. Boundaries are provided in multiple formats for different use cases: Esri Shapefile (SHP), geoJson, and File Geodatabase (FGDB). SHP and FGDB files are provided in two projections: NAD83 CSRS for print cartography and WGS84 for web applications. The geoJson version is provided in WGS84 only. The UNI-CEN Standardized Census Data Tables are readily merged to these boundary files. For more information about file sources, the methods used to create them, and how to use them, consult the documentation at https://borealisdata.ca/dataverse/unicen_docs. For more information about the project, visit https://observatory.uwo.ca/unicen.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
National Archives and Records Administration (2024). 1940 Census: Official 1940 Census Website [Dataset]. https://catalog.data.gov/dataset/1940-census-official-1940-census-website
Organization logo

1940 Census: Official 1940 Census Website

Explore at:
4 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Nov 7, 2024
Dataset provided by
National Archives and Records Administrationhttp://www.archives.gov/
Description

Website alows the public full access to the 1940 Census images, census maps and descriptions.

Search
Clear search
Close search
Google apps
Main menu