The Integrated Public Use Microdata Series (IPUMS) Complete Count Data include more than 650 million individual-level and 7.5 million household-level records. The microdata are the result of collaboration between IPUMS and the nation’s two largest genealogical organizations—Ancestry.com and FamilySearch—and provides the largest and richest source of individual level and household data.
All manuscripts (and other items you'd like to publish) must be submitted to
phsdatacore@stanford.edu for approval prior to journal submission.
We will check your cell sizes and citations.
For more information about how to cite PHS and PHS datasets, please visit:
https:/phsdocs.developerhub.io/need-help/citing-phs-data-core
Historic data are scarce and often only exists in aggregate tables. The key advantage of historic US census data is the availability of individual and household level characteristics that researchers can tabulate in ways that benefits their specific research questions. The data contain demographic variables, economic variables, migration variables and family variables. Within households, it is possible to create relational data as all relations between household members are known. For example, having data on the mother and her children in a household enables researchers to calculate the mother’s age at birth. Another advantage of the Complete Count data is the possibility to follow individuals over time using a historical identifier.
In sum: the historic US census data are a unique source for research on social and economic change and can provide population health researchers with information about social and economic determinants.
The historic US 1920 census data was collected in January 1920. Enumerators collected data traveling to households and counting the residents who regularly slept at the household. Individuals lacking permanent housing were counted as residents of the place where they were when the data was collected. Household members absent on the day of data collected were either listed to the household with the help of other household members or were scheduled for the last census subdivision.
Notes
We provide household and person data separately so that it is convenient to explore the descriptive statistics on each level. In order to obtain a full dataset, merge the household and person on the variables SERIAL and SERIALP. In order to create a longitudinal dataset, merge datasets on the variable HISTID.
Households with more than 60 people in the original data were broken up for processing purposes. Every person in the large households are considered to be in their own household. The original large households can be identified using the variable SPLIT, reconstructed using the variable SPLITHID, and the original count is found in the variable SPLITNUM.
Coded variables derived from string variables are still in progress. These variables include: occupation and industry.
Missing observations have been allocated and some inconsistencies have been edited for the following variables: SPEAKENG, YRIMMIG, CITIZEN, AGE, BPL, MBPL, FBPL, LIT, SCHOOL, OWNERSHP, MORTGAGE, FARM, CLASSWKR, OCC1950, IND1950, MARST, RACE, SEX, RELATE, MTONGUE. The flag variables indicating an allocated observation for the associated variables can be included in your extract by clicking the ‘Select data quality flags’ box on the extract summary page.
Most inconsistent information was not edited for this release, thus there are observations outside of the universe for some variables. In particular, the variables GQ, and GQTYPE have known inconsistencies and will be improved with the next release.
%3C!-- --%3E
This dataset was created on 2020-01-10 18:46:34.647
by merging multiple datasets together. The source datasets for this version were:
IPUMS 1920 households: This dataset includes all households from the 1920 US census.
IPUMS 1920 persons: This dataset includes all individuals from the 1920 US census.
IPUMS 1920 Lookup: This dataset includes variable names, variable labels, variable values, and corresponding variable value labels for the IPUMS 1920 datasets.
This dataset includes all individuals from the 1860 US census.
All manuscripts (and other items you'd like to publish) must be submitted to
phsdatacore@stanford.edu for approval prior to journal submission.
We will check your cell sizes and citations.
For more information about how to cite PHS and PHS datasets, please visit:
https:/phsdocs.developerhub.io/need-help/citing-phs-data-core
This dataset was developed through a collaboration between the Minnesota Population Center and the Church of Jesus Christ of Latter-Day Saints. The data contain demographic variables, economic variables, migration variables and race variables. Unlike more recent census datasets, pre-1900 census datasets only contain individual level characteristics and no household or family characteristics, but household and family identifiers do exist.
The official enumeration day of the 1860 census was 1 June 1860. The main goal of an early census like the 1860 U.S. census was to allow Congress to determine the collection of taxes and the appropriation of seats in the House of Representatives. Each district was assigned a U.S. Marshall who organized other marshals to administer the census. These enumerators visited households and recorder names of every person, along with their age, sex, color, profession, occupation, value of real estate, place of birth, parental foreign birth, marriage, literacy, and whether deaf, dumb, blind, insane or “idiotic”.
Sources: Szucs, L.D. and Hargreaves Luebking, S. (1997). Research in Census Records, The Source: A Guidebook of American Genealogy. Ancestry Incorporated, Salt Lake City, UT Dollarhide, W.(2000). The Census Book: A Genealogist’s Guide to Federal Census Facts, Schedules and Indexes. Heritage Quest, Bountiful, UT
The Bureau of the Census has released Census 2000 Summary File 1 (SF1) 100-Percent data. The file includes the following population items: sex, age, race, Hispanic or Latino origin, household relationship, and household and family characteristics. Housing items include occupancy status and tenure (whether the unit is owner or renter occupied). SF1 does not include information on incomes, poverty status, overcrowded housing or age of housing. These topics will be covered in Summary File 3. Data are available for states, counties, county subdivisions, places, census tracts, block groups, and, where applicable, American Indian and Alaskan Native Areas and Hawaiian Home Lands. The SF1 data are available on the Bureau's web site and may be retrieved from American FactFinder as tables, lists, or maps. Users may also download a set of compressed ASCII files for each state via the Bureau's FTP server. There are over 8000 data items available for each geographic area. The full listing of these data items is available here as a downloadable compressed data base file named TABLES.ZIP. The uncompressed is in FoxPro data base file (dbf) format and may be imported to ACCESS, EXCEL, and other software formats. While all of this information is useful, the Office of Community Planning and Development has downloaded selected information for all states and areas and is making this information available on the CPD web pages. The tables and data items selected are those items used in the CDBG and HOME allocation formulas plus topics most pertinent to the Comprehensive Housing Affordability Strategy (CHAS), the Consolidated Plan, and similar overall economic and community development plans. The information is contained in five compressed (zipped) dbf tables for each state. When uncompressed the tables are ready for use with FoxPro and they can be imported into ACCESS, EXCEL, and other spreadsheet, GIS and database software. The data are at the block group summary level. The first two characters of the file name are the state abbreviation. The next two letters are BG for block group. Each record is labeled with the code and name of the city and county in which it is located so that the data can be summarized to higher-level geography. The last part of the file name describes the contents . The GEO file contains standard Census Bureau geographic identifiers for each block group, such as the metropolitan area code and congressional district code. The only data included in this table is total population and total housing units. POP1 and POP2 contain selected population variables and selected housing items are in the HU file. The MA05 table data is only for use by State CDBG grantees for the reporting of the racial composition of beneficiaries of Area Benefit activities. The complete package for a state consists of the dictionary file named TABLES, and the five data files for the state. The logical record number (LOGRECNO) links the records across tables.
IPUMS-International is an effort to inventory, preserve, harmonize, and disseminate census microdata from around the world. The project has collected the world's largest archive of publicly available census samples. The data are coded and documented consistently across countries and over time to facillitate comparative research. IPUMS-International makes these data available to qualified researchers free of charge through a web dissemination system.
The IPUMS project is a collaboration of the Minnesota Population Center, National Statistical Offices, and international data archives. Major funding is provided by the U.S. National Science Foundation and the Demographic and Behavioral Sciences Branch of the National Institute of Child Health and Human Development. Additional support is provided by the University of Minnesota Office of the Vice President for Research, the Minnesota Population Center, and Sun Microsystems.
National coverage
Households and Group Quarters
UNITS IDENTIFIED: - Dwellings: No - Vacant units: Yes - Households: Yes - Individuals: Yes - Group quarters: Yes
UNIT DESCRIPTIONS: - Households: Dwelling places with fewer than ten persons unrelated to a household head, excluding institutions and transient quarters. - Group quarters: Institutions, transient quarters, and dwelling places with ten or more persons unrelated to a household head.
Residents of the 50 states (not the outlying areas).
Census/enumeration data [cen]
MICRODATA SOURCE: U.S. Census Bureau
SAMPLE UNIT: Household
SAMPLE FRACTION: 5%
SAMPLE SIZE (person records): 11,343,120
Face-to-face [f2f]
The 1980 census employed a single long form questionnaire completed by one-half of housing units in places with a population under 2,500 and one-sixth of other housing units.
UNDERCOUNT: No official estimates
https://www.icpsr.umich.edu/web/ICPSR/studies/2863/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/2863/terms
The objective of this data collection was to examine inequalities of wealth and the geographic distribution of wealthy individuals in late 18th- and early 19th-century New York and to investigate wealth in relationship to occupation and location. For this study, the entire set of tax assessment records and United States Census records for New York City were computerized and occupational status was added for all entries. The collection addresses topics such as social class structure, demographic factors, occupational status and geographic distribution, property values and geographic distribution, and the relationship of these factors to the political system. Units of analysis were individual property owners and renters for the tax assessment data and heads of households for the census data. Data collected included the individual's name, address, occupation, sex, and race, the type, quantity, and value of real and personal property, and the type and occupancy of the structure at the address. Occupational data from city directories were used to supplement the tax and census data.
https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de442054https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de442054
Abstract (en): This collection contains individual-level and 1-percent national sample data from the 1960 Census of Population and Housing conducted by the Census Bureau. It consists of a representative sample of the records from the 1960 sample questionnaires. The data are stored in 30 separate files, containing in total over two million records, organized by state. Some files contain the sampled records of several states while other files contain all or part of the sample for a single state. There are two types of records stored in the data files: one for households and one for persons. Each household record is followed by a variable number of person records, one for each of the household members. Data items in this collection include the individual responses to the basic social, demographic, and economic questions asked of the population in the 1960 Census of Population and Housing. Data are provided on household characteristics and features such as the number of persons in household, number of rooms and bedrooms, and the availability of hot and cold piped water, flush toilet, bathtub or shower, sewage disposal, and plumbing facilities. Additional information is provided on tenure, gross rent, year the housing structure was built, and value and location of the structure, as well as the presence of air conditioners, radio, telephone, and television in the house, and ownership of an automobile. Other demographic variables provide information on age, sex, marital status, race, place of birth, nationality, education, occupation, employment status, income, and veteran status. The data files were obtained by ICPSR from the Center for Social Analysis, Columbia University. About 600,000 households and group quarters segments, and about 1,800,000 persons in the United States. One sample household for every 100 households, and persons in group quarters in the United States. Records have been sampled on a household-by-household basis so that the characteristics of family members may be interrelated and related to the characteristics of the housing unit. 2006-01-18 File CB7756.ALL.PDF was removed from any previous datasets and flagged as a study-level file, so that it will accompany all downloads.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units and the group quarters population for states and counties..Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2023 American Community Survey 1-Year Estimates.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Households not paying cash rent are excluded from the calculation of median gross rent..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Homeownership Rate in the United States (RHORUSQ156N) from Q1 1965 to Q1 2025 about homeownership, housing, rate, and USA.
https://www.icpsr.umich.edu/web/ICPSR/studies/32404/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/32404/terms
The data in the Historical Demographic Data of Southeastern Europe series derive primarily from the ethnographic and archival research of Joel M. Halpern, Professor Emeritus of Anthropology at the University of Massachusetts at Amherst, in southeastern Europe from 1953 to 2006. The series is comprised of historical demographic data from several towns and villages in the countries of Bosnia, Croatia, Macedonia, Montenegro, Serbia, and Slovenia, all of which are former constituent republics of the Socialist Federal Republic of Yugoslavia. The data provide insight into the shift from agricultural to industrial production, as well as the more general processes of urbanization occurring in the last days of the Yugoslav state. With an expansive timeframe ranging from 1818 to 2006, the series also contains a wide cross-section of demographic data types. These include, but are not limited to, population censuses, tax records, agricultural and landholding data, birth records, death records, marriage and engagement records, and migration information. This component of the series focuses exclusively on the Serbian village of Orasac and is composed of 64 datasets. These data record a variety of demographic and economic information between the years of 1824 and 1975. General population information at the individual level is available in official census records from 1863, 1884, 1948, 1953, and 1961, and from population register records for the years of 1928, 1966, and 1975. Census data at the household level is also available for the years of 1863, 1928, 1948, 1953, and 1961. These data are followed by detailed records of engagement and marriage. Many of these data were obtained through the courtesy of village and county officials. Priest book records from 1851 through 1966, as well as death records from 1863 to 1976 and tombstone records from 1975, are also available. Information regarding migrants and emigrants was obtained from the village council for the years of 1946 through 1975. Lastly, the data provide economic and financial information, including records of individual landholdings (for the years of 1863, 1952, 1966, and 1975), records of government taxation at the individual or household level (for 1813 through 1840, as well as for 1952), and livestock censuses (at both the individual and household level for the years of 1824 and 1825, and only at the individual level for the years of 1833 and 1834).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the House population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for House. The dataset can be utilized to understand the population distribution of House by age. For example, using this dataset, we can identify the largest age group in House.
Key observations
The largest age group in House, NM was for the group of age 60 to 64 years years with a population of 16 (34.04%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in House, NM was the Under 5 years years with a population of 0 (0%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for House Population by Age. You can refer the same here
This layer shows median household income by race and by age of householder. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. Median income and income source is based on income in past 12 months of survey. This layer is symbolized to show median household income. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B19013B, B19013C, B19013D, B19013E, B19013F, B19013G, B19013H, B19013I, B19049, B19053Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for New One Family Homes for Sale in the United States (HNFSEPUSSA) from Jan 1963 to May 2025 about 1-unit structures, family, new, sales, housing, and USA.
The 2005 Republic of Palau Census of Population and Housing will be used to give a snapshot of Republic of Palau's population and housing at the mid-point of the decade. This Census is also important because it measures the population at the beginning of the implementation of the Compact of Free Association. The information collected in the census is needed to plan for the needs of the population. The government uses the census figures to allocate funds for public services in a wide variety of areas, such as education, housing, and job training. The figures also are used by private businesses, academic institutions, local organizations, and the public in general to understand who we are and what our situation is, in order to prepare better for our future needs.
The fundamental purpose of a census is to provide information on the size, distribution and characteristics of a country's population. The census data are used for policymaking, planning and administration, as well as in management and evaluation of programmes in education, labour force, family planning, housing, health, transportation and rural development. A basic administrative use is in the demarcation of constituencies and allocation of representation to governing bodies. The census is also an invaluable resource for research, providing data for scientific analysis of the composition and distribution of the population and for statistical models to forecast its future growth. The census provides business and industry with the basic data they need to appraise the demand for housing, schools, furnishings, food, clothing, recreational facilities, medical supplies and other goods and services.
A hierarchical geographic presentation shows the geographic entities in a superior/subordinate structure in census products. This structure is derived from the legal, administrative, or areal relationships of the entities. The hierarchical structure is depicted in report tables by means of indentation. The following structure is used for the 2005 Census of the Republic of Palau:
Republic of Palau State Hamlet/Village Enumeration District Block
Individuals Families Households General Population
The Census covered all the households and respective residents in the entire country.
Census/enumeration data [cen]
Not applicable to a full enumeration census.
Face-to-face [f2f]
The 2005 Palau Census of Population and Housing comprises three parts: 1. Housing - one form for each household 2. Population - one for for each member of the household 3. People who have left home - one form for each household.
Full scale processing and editing activiities comprised eight separate sessions either with or separately but with remote guidance of the U.S. Census Bureau experts to finalize all datasets for publishing stage.
Processing operation was handled with care to produce a set of data that describes the population as clearly and accurately as possible. To meet this objective, questionnaires were reviewed and edited during field data collection operations by crew leaders for consistency, completeness, and acceptability. Questionnaires were also reviewed by census clerks in the census office for omissions, certain inconsistencies, and population coverage. For example, write-in entries such as "Don't know" or "NA" were considered unacceptable in certain quantities and/or in conjunction with other data omissions.
As a result of this review operation, a telephone or personal visit follow-up was made to obtain missing information. Potential coverage errors were included in the follow-up, as well as questionnaires with omissions or inconsistencies beyond the completeness and quality tolerances specified in the review procedures.
Subsequent to field operations, remaining incomplete or inconsistent information on the questionnaires was assigned using imputation procedures during the final automated edit of the collected data. Allocations, or computer assignments of acceptable data in place of unacceptable entries or blanks, were needed most often when an entry for a given item was lacking or when the information reported for a person or housing unit on that item was inconsistent with other information for that same person or housing unit. As in previous censuses, the general procedure for changing unacceptable entries was to assign an entry for a person or housing unit that was consistent with entries for persons or housing units with similar characteristics. The assignment of acceptable data in lace of blanks or unacceptable entries enhanced the usefulness of the data.
Another way to make corrections during the computer editing process is substitution. Substitution is the assignment of a full set of characteristics for a person or housing unit. Because of the detailed field operations, substitution was not needed for the 2005 Census.
Sampling Error is not applicable to full enumeration censuses.
In any large-scale statistical operation, such as the 2005 Census of the Republic of Palau, human- and machine-related errors were anticipated. These errors are commonly referred to as nonsampling errors. Such errors include not enumerating every household or every person in the population, not obtaining all required information form the respondents, obtaining incorrect or inconsistent information, and recording information incorrectly. In addition, errors can occur during the field review of the enumerators' work, during clerical handling of the census questionnaires, or during the electronic processing of the questionnaires.
To reduce various types of nonsampling errors, a number of techniques were implemented during the planning, data collection, and data processing activities. Quality assurance methods were used throughout the data collection and processing phases of the census to improve the quality of the data.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Housing Inventory Estimate: Occupied Housing Units in the United States (EOCCUSQ176N) from Q2 2000 to Q1 2025 about inventories, housing, and USA.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Purchase Only House Price Index for the East South Central Census Division was 400.73000 Index 1991 Q1=100 in October of 2024, according to the United States Federal Reserve. Historically, Purchase Only House Price Index for the East South Central Census Division reached a record high of 400.73000 in October of 2024 and a record low of 100.00000 in January of 1991. Trading Economics provides the current actual value, an historical data chart and related indicators for Purchase Only House Price Index for the East South Central Census Division - last updated from the United States Federal Reserve on June of 2025.
This data collection and its 1940 counterpart were assembled through a collaborative effort between the United States Bureau of the Census and the Center for Demography and Ecology of the University of Wisconsin. The 1940 and 1950 Census Public Use Sample Project was supported by The National Science Foundation under Grant SES-7704135. The collections contain a stratified 1-percent sample of households, with separate records for each household, for each \'sample line\' respondent, and for each person in the household. These records were encoded from microfilm copies of original handwritten enumeration schedules from the 1940 and 1950 Censuses of Population. The universe for the sample included all persons and households within the United States. Geographic identification of the location of the sampled households includes Census regions and divisions, States (except Alaska and Hawaii), Standard Metropolitan Areas (SMA\'s), and State Economic Areas (SEA\'s). The SMA\'s and SEA\'s are comparable for both the 1940 and 1950 Public Use Microdata Samples (PUMS). The data collections were constructed from and consist of 20 independently-drawn subsamples stored in 20 discrete physical files. Each of the 20 subsamples contains three record types (household, \'sample line\', and person). Both collections had both a complete-count and a sample component. Individuals selected for the sample component were asked a set of additional questions. Only households with a \'sample line\' person were included in the public use microdata sample. The collections also contain records of group quarters members who were also on the Census \'sample line\'. For the 1940 and 1950 collections, each household record contains variables describing the location and composition of the household. The \'sample line\' records for 1950 contain variables describing demographic characteristics such as nativity, marital status, number of children, veteran status, education, income, and occupation. The person records for 1950 contain such demographic variables as nativity, marital status, family membership, and occupation. Accompanying the data collections are code books which include an abstract, descriptions of sample design, processing procedures and file structure, a data dictionary (record layout), category code lists, and a glossary. The data collections are arranged by subsample with each subsample stored as a separate physical file of information. The 20 subsamples were selected randomly. Within each of the 20 subsamples, records are sequenced by State. Extracting all of the records for one State entails reading through all of the 20 physical files and selecting that State\'s records from each of the 20 subsamples. Record types are ordered within household (household characteristics first, \'sample line\' next, and person records last). The 1950 collection consists of a total of 2,844,458 data records: 461,130 household records, 461,130 \'sample line\' records, and 1,922,198 person records. Each record type has a logical record length of 133.;
https://creativecommons.org/share-your-work/public-domain/pdmhttps://creativecommons.org/share-your-work/public-domain/pdm
The U.S. Census counts every resident in the United States. It is mandated by Article I, Section 2 of the Constitution and takes place every 10 years. The basic purpose of the census is apportionment and redistricting. "Apportionment" is the process of dividing the 435 memberships, or seats, in the House of Representatives among the 50 states based on the population figures collected during the decennial census. "Redistricting" is the process of geographically defining state legislative districts. The census data allow state officials to realign congressional and state legislative districts in their states, taking into account population shifts since the last census and assuring equal representation for their constituents in compliance with the “one-person, one-vote” principle of the 1965 Voting Rights Act.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Note: For information on data collection, confidentiality protection, nonsampling error, subject definitions, and guidance on using the data, access the 2020 Census Supplemental Demographic and Housing Characteristics File (S-DHC) Technical Documentation..To protect respondent confidentiality, data have undergone disclosure avoidance methods which add statistical "noise" - small, random additions or subtractions - to the data so that no one can reliably link the published data to a specific person or household. As a result, data users may observe implausible and improbable data within this product and compared with other 2020 Census data products. For more information, access the 2020 Census Supplemental Demographic and Housing Characteristics File (S-DHC) Technical Documentation..The degree of uncertainty introduced by statistical noise and post-processing is represented through a 90 percent credible interval (CI). The CI does not account for the truncation of large households (maximum of 10 persons per household or 6 children under 18 years). The CI can be interpreted as providing 90 percent probability that the truncated value is between the lower and upper end points. The enumerated value can be larger than the 90% CI high value given household truncation. For information on the impact of truncation, refer to the 2020 Census Supplemental Demographic and Housing Characteristics File (S-DHC) Technical Documentation.."Spouse" and "unmarried partner" represent spouse or unmarried partner of the householder. It does not reflect all spouses or unmarried partners in a household.."Nonrelative" represents household members not related to the householder by birth, marriage, or adoption.."Own child" includes biological, adopted, and stepchildren of the householder..Source: U.S. Census Bureau, 2020 Census Supplemental Demographic and Housing Characteristics File (S-DHC)
The 2001 Census: Special Licence Household Sample of Anonymised Records (SL-HSAR) dataset comprises Sample of Anonymised Records (SARs) data that relate to 29 April 2001. They were created by the Office for National Statistics (ONS) as part of the 2001 Census of Population. All households were asked to complete a form giving information about the household and all individuals living in the household. Completion of the form was compulsory for the entire population. The Census schedule includes questions on housing and tenure, and demographic and socio-economic information for all household members.
The dataset comprises SARs data for 1% of households in England and Wales, including imputed values for households which were not enumerated during the Census. Individual data for households larger than 11 residents have been suppressed. To protect confidentiality, age data have been grouped into 2-year bands and there is no geographical breakdown available. A small amount of perturbation has been applied to the data to protect confidentiality. As with the Individual Licensed SAR (see under SNs 7210 and 7211), separate variables indicate whether or not imputation or perturbation has been applied to any given variable for each case in the sample. Documentation, training and user support for these data is undertaken by the SARs team at the Cathie Marsh Centre for Census and Survey Research (CCSR). A further release of data, which contains additional derived variables, will be made available at a later date.
The Secure Access version replaces the previous Special Licence version that was held under SN 5278, which is no longer available. Prospective users of the Secure Access data will need to fulfil additional requirements, including completion of face-to-face training and agreement to Secure Access' User Agreement and Breaches Penalties Policy, in order to obtain permission to use that version (see 'Access' section below).
Detailed SARs data:
A more detailed version of these data, containing geographical information at the level of Local Authority, is available as a Controlled Access Microdata Sample (CAMS). These can be accessed at all ONS sites. Applications to use these data should be made to ONS; further details can be found on their CAMS web page. The CAMS file includes data for Scotland and Northern Ireland as well as England and Wales.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units for states and counties..Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2018-2022 American Community Survey 5-Year Estimates.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Between 2018 and 2019 the American Community Survey retirement income question changed. These changes resulted in an increase in both the number of households reporting retirement income and higher aggregate retirement income at the national level. For more information see Changes to the Retirement Income Question ..The 2018-2022 American Community Survey (ACS) data generally reflect the March 2020 Office of Management and Budget (OMB) delineations of metropolitan and micropolitan statistical areas. In certain instances, the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB delineation lists due to differences in the effective dates of the geographic entities..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.
The Integrated Public Use Microdata Series (IPUMS) Complete Count Data include more than 650 million individual-level and 7.5 million household-level records. The microdata are the result of collaboration between IPUMS and the nation’s two largest genealogical organizations—Ancestry.com and FamilySearch—and provides the largest and richest source of individual level and household data.
All manuscripts (and other items you'd like to publish) must be submitted to
phsdatacore@stanford.edu for approval prior to journal submission.
We will check your cell sizes and citations.
For more information about how to cite PHS and PHS datasets, please visit:
https:/phsdocs.developerhub.io/need-help/citing-phs-data-core
Historic data are scarce and often only exists in aggregate tables. The key advantage of historic US census data is the availability of individual and household level characteristics that researchers can tabulate in ways that benefits their specific research questions. The data contain demographic variables, economic variables, migration variables and family variables. Within households, it is possible to create relational data as all relations between household members are known. For example, having data on the mother and her children in a household enables researchers to calculate the mother’s age at birth. Another advantage of the Complete Count data is the possibility to follow individuals over time using a historical identifier.
In sum: the historic US census data are a unique source for research on social and economic change and can provide population health researchers with information about social and economic determinants.
The historic US 1920 census data was collected in January 1920. Enumerators collected data traveling to households and counting the residents who regularly slept at the household. Individuals lacking permanent housing were counted as residents of the place where they were when the data was collected. Household members absent on the day of data collected were either listed to the household with the help of other household members or were scheduled for the last census subdivision.
Notes
We provide household and person data separately so that it is convenient to explore the descriptive statistics on each level. In order to obtain a full dataset, merge the household and person on the variables SERIAL and SERIALP. In order to create a longitudinal dataset, merge datasets on the variable HISTID.
Households with more than 60 people in the original data were broken up for processing purposes. Every person in the large households are considered to be in their own household. The original large households can be identified using the variable SPLIT, reconstructed using the variable SPLITHID, and the original count is found in the variable SPLITNUM.
Coded variables derived from string variables are still in progress. These variables include: occupation and industry.
Missing observations have been allocated and some inconsistencies have been edited for the following variables: SPEAKENG, YRIMMIG, CITIZEN, AGE, BPL, MBPL, FBPL, LIT, SCHOOL, OWNERSHP, MORTGAGE, FARM, CLASSWKR, OCC1950, IND1950, MARST, RACE, SEX, RELATE, MTONGUE. The flag variables indicating an allocated observation for the associated variables can be included in your extract by clicking the ‘Select data quality flags’ box on the extract summary page.
Most inconsistent information was not edited for this release, thus there are observations outside of the universe for some variables. In particular, the variables GQ, and GQTYPE have known inconsistencies and will be improved with the next release.
%3C!-- --%3E
This dataset was created on 2020-01-10 18:46:34.647
by merging multiple datasets together. The source datasets for this version were:
IPUMS 1920 households: This dataset includes all households from the 1920 US census.
IPUMS 1920 persons: This dataset includes all individuals from the 1920 US census.
IPUMS 1920 Lookup: This dataset includes variable names, variable labels, variable values, and corresponding variable value labels for the IPUMS 1920 datasets.