100+ datasets found
  1. 1960 Residence Census Data for Baltimore, MD

    • search.dataone.org
    Updated Oct 14, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cary Institute Of Ecosystem Studies; Jarlath O'Neil-Dunne (2013). 1960 Residence Census Data for Baltimore, MD [Dataset]. https://search.dataone.org/view/knb-lter-bes.150.570
    Explore at:
    Dataset updated
    Oct 14, 2013
    Dataset provided by
    Long Term Ecological Research Networkhttp://www.lternet.edu/
    Authors
    Cary Institute Of Ecosystem Studies; Jarlath O'Neil-Dunne
    Time period covered
    Jan 1, 2004 - Nov 17, 2011
    Area covered
    Description

    1960 Residence Census Data for Baltimore, Maryland. Refer to the 1960 codebook (codebook_1960.pdf) for more information. This is part of a collection of 221 Baltimore Ecosystem Study metadata records that point to a geodatabase. The geodatabase is available online and is considerably large. Upon request, and under certain arrangements, it can be shipped on media, such as a usb hard drive. The geodatabase is roughly 51.4 Gb in size, consisting of 4,914 files in 160 folders. Although this metadata record and the others like it are not rich with attributes, it is nonetheless made available because the data that it represents could be indeed useful.

  2. Data from: Census of Population, 1910 [United States]: Oversample of...

    • icpsr.umich.edu
    ascii, sas, spss +1
    Updated Sep 1, 2010
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Morgan, S. Philip; Ewbank, Douglas (2010). Census of Population, 1910 [United States]: Oversample of Black-headed Households [Dataset]. http://doi.org/10.3886/ICPSR09453.v2
    Explore at:
    ascii, spss, sas, stataAvailable download formats
    Dataset updated
    Sep 1, 2010
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    Morgan, S. Philip; Ewbank, Douglas
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/9453/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/9453/terms

    Time period covered
    Apr 15, 1910
    Area covered
    Maryland, Florida, Virginia, Arkansas, Tennessee, United States, Texas, North Carolina, Louisiana, Kentucky
    Description

    Designed to facilitate analysis of the status of Blacks around the turn of the century, this oversample of Black-headed households in the United States was drawn from the 1910 manuscript census schedules. The sample complements the 1/250 Public Use Sample of the 1910 census manuscripts collected by Samuel H. Preston at the University of Pennsylvania: CENSUS OF POPULATION, 1910 [UNITED STATES]: PUBLIC USE SAMPLE (ICPSR 9166). Part 1, Household Records, contains a record for each household selected in the sample and supplies variables describing the location, type, and composition of the households. Part 2, Individual Records, contains a record for each individual residing in the sampled households and includes information on demographic characteristics, occupation, literacy, nativity, ethnicity, and fertility.

  3. Tasmanian Census (1837-1857)

    • data.gov.au
    • researchdata.edu.au
    • +1more
    csv, json, xml
    Updated Nov 27, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Libraries Tasmania (2024). Tasmanian Census (1837-1857) [Dataset]. https://data.gov.au/data/dataset/tasmanian-census-1837-1857
    Explore at:
    csv(2357206), xml(6805324), json(5023772)Available download formats
    Dataset updated
    Nov 27, 2024
    Dataset authored and provided by
    Libraries Tasmania
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Tasmania
    Description

    Householders in the 1840s and 1850s, not complete for all districts. Available from the Tasmanian Names Index. Over 14,500 records.

  4. d

    PLACES: Census Tract Data (GIS Friendly Format), 2020 release

    • catalog.data.gov
    • data.virginia.gov
    • +2more
    Updated Aug 26, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2023). PLACES: Census Tract Data (GIS Friendly Format), 2020 release [Dataset]. https://catalog.data.gov/dataset/places-census-tract-data-gis-friendly-format-2020-release-2cba8
    Explore at:
    Dataset updated
    Aug 26, 2023
    Dataset provided by
    Centers for Disease Control and Prevention
    Description

    This dataset contains model-based census tract level estimates for the PLACES project 2020 release in GIS-friendly format. The PLACES project is the expansion of the original 500 Cities project and covers the entire United States—50 states and the District of Columbia (DC)—at county, place, census tract, and ZIP Code tabulation Areas (ZCTA) levels. It represents a first-of-its kind effort to release information uniformly on this large scale for local areas at 4 geographic levels. Estimates were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. The project was funded by the Robert Wood Johnson Foundation (RWJF) in conjunction with the CDC Foundation. Data sources used to generate these model-based estimates include Behavioral Risk Factor Surveillance System (BRFSS) 2018 or 2017 data, Census Bureau 2010 population estimates, and American Community Survey (ACS) 2014-2018 or 2013-2017 estimates. The 2020 release uses 2018 BRFSS data for 23 measures and 2017 BRFSS data for 4 measures (high blood pressure, taking high blood pressure medication, high cholesterol, and cholesterol screening). Four measures are based on the 2017 BRFSS data because the relevant questions are only asked every other year in the BRFSS. These data can be joined with the census tract 2015 boundary file in a GIS system to produce maps for 27 measures at the census tract level. An ArcGIS Online feature service is also available at https://www.arcgis.com/home/item.html?id=8eca985039464f4d83467b8f6aeb1320 for users to make maps online or to add data to desktop GIS software.

  5. 1940 United States Federal Census

    • ebroy.org
    Updated 1940
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States of America, Bureau of the Census. Sixteenth Census of the United States, 1940. Washington, D.C.: National Archives and Records Administration, 1940. T627, 4,643 rolls. Year: 1940; Census Place: Upper Dublin, Montgomery, Pennsylvania; Roll: m-t0627-03585; Page: 20B; Enumeration District: 46-208 (1940). 1940 United States Federal Census [Dataset]. https://ebroy.org/profile/?person=P14
    Explore at:
    Dataset updated
    1940
    Dataset provided by
    NARA Digital Preservation Strategy (2022–2026)http://www.archives.gov/
    Authors
    United States of America, Bureau of the Census. Sixteenth Census of the United States, 1940. Washington, D.C.: National Archives and Records Administration, 1940. T627, 4,643 rolls. Year: 1940; Census Place: Upper Dublin, Montgomery, Pennsylvania; Roll: m-t0627-03585; Page: 20B; Enumeration District: 46-208
    Area covered
    United States
    Description

    1940 United States Federal Census contains records from Philadelphia, Pennsylvania, USA by United States of America, Bureau of the Census. Sixteenth Census of the United States, 1940. Washington, D.C.: National Archives and Records Administration, 1940. T627, 4,643 rolls. Year: 1940; Census Place: Upper Dublin, Montgomery, Pennsylvania; Roll: m-t0627-03585; Page: 20B; Enumeration District: 46-208 - .

  6. 1980 Census Data; Income

    • search.dataone.org
    Updated Oct 14, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cary Institute Of Ecosystem Studies; Jarlath O'Neil-Dunne (2013). 1980 Census Data; Income [Dataset]. https://search.dataone.org/view/knb-lter-bes.135.570
    Explore at:
    Dataset updated
    Oct 14, 2013
    Dataset provided by
    Long Term Ecological Research Networkhttp://www.lternet.edu/
    Authors
    Cary Institute Of Ecosystem Studies; Jarlath O'Neil-Dunne
    Time period covered
    Jan 1, 2004 - Nov 17, 2011
    Area covered
    Description

    1980 Income Census Data for Baltimore, Maryland. This is part of a collection of 221 Baltimore Ecosystem Study metadata records that point to a geodatabase. The geodatabase is available online and is considerably large. Upon request, and under certain arrangements, it can be shipped on media, such as a usb hard drive. The geodatabase is roughly 51.4 Gb in size, consisting of 4,914 files in 160 folders. Although this metadata record and the others like it are not rich with attributes, it is nonetheless made available because the data that it represents could be indeed useful.

  7. i

    National Population Housing Census 1971 - IPUMS Subset - Greece

    • catalog.ihsn.org
    • datacatalog.ihsn.org
    • +1more
    Updated Mar 29, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Statistical Service of Greece (2019). National Population Housing Census 1971 - IPUMS Subset - Greece [Dataset]. http://catalog.ihsn.org/index.php/catalog/5353
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset provided by
    National Statistical Service of Greece
    Minnesota Population Center
    Time period covered
    1971
    Area covered
    Greece
    Description

    Abstract

    IPUMS-International is an effort to inventory, preserve, harmonize, and disseminate census microdata from around the world. The project has collected the world's largest archive of publicly available census samples. The data are coded and documented consistently across countries and over time to facillitate comparative research. IPUMS-International makes these data available to qualified researchers free of charge through a web dissemination system.

    The IPUMS project is a collaboration of the Minnesota Population Center, National Statistical Offices, and international data archives. Major funding is provided by the U.S. National Science Foundation and the Demographic and Behavioral Sciences Branch of the National Institute of Child Health and Human Development. Additional support is provided by the University of Minnesota Office of the Vice President for Research, the Minnesota Population Center, and Sun Microsystems.

    Geographic coverage

    National coverage

    Analysis unit

    UNITS IDENTIFIED: - Dwellings: Yes - Vacant units: No - Households: Yes - Individuals: Yes - Group quarters: Not available in microdata sample - Special populations: No

    UNIT DESCRIPTIONS: - Dwellings: Separated space with independent access that serves as a human lodging - Households: Individuals living in the same dwelling and sharing at least one meal. - Group quarters: Group of persons who share a common roof and food because of work, health, religion, etc.

    Universe

    The entire population of the country, including all households and dwellings.

    Kind of data

    Census/enumeration data [cen]

    Sampling procedure

    MICRODATA SOURCE: National Statistical Service of Greece

    SAMPLE DESIGN: Systematic Sampling (random start, then 1 out of every 2.5 private households from the processed 25% households) by MPC.

    SAMPLE UNIT: Household

    SAMPLE FRACTION: 10%

    SAMPLE UNIVERSE: Microdata are available for 25% of the population.

    SAMPLE SIZE (person records): 845,473

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    P1 for private households

    Response rate

    COVERAGE: 100%

  8. d

    UNI-CEN Standardized Census Data Table - Census Tract (CT) - 1976 - Long...

    • search.dataone.org
    Updated Dec 28, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UNI-CEN Project (2023). UNI-CEN Standardized Census Data Table - Census Tract (CT) - 1976 - Long Format (DTA) (Version 2023-03) [Dataset]. http://doi.org/10.5683/SP3/RWMP14
    Explore at:
    Dataset updated
    Dec 28, 2023
    Dataset provided by
    Borealis
    Authors
    UNI-CEN Project
    Time period covered
    Jan 1, 1976
    Description

    UNI-CEN Standardized Census Data Tables contain Census data that have been reformatted into a common table format with standardized variable names and codes. The data are provided in two tabular formats for different use cases. "Long" tables are suitable for use in statistical environments, while "wide" tables are commonly used in GIS environments. The long tables are provided in Stata Binary (dta) format, which is readable by all statistics software. The wide tables are provided in comma-separated values (csv) and dBase 3 (dbf) formats with codebooks. The wide tables are easily joined to the UNI-CEN Digital Boundary Files. For the csv files, a .csvt file is provided to ensure that column data formats are correctly formatted when importing into QGIS. A schema.ini file does the same when importing into ArcGIS environments. As the DBF file format supports a maximum of 250 columns, tables with a larger number of variables are divided into multiple DBF files. For more information about file sources, the methods used to create them, and how to use them, consult the documentation at https://borealisdata.ca/dataverse/unicen_docs. For more information about the project, visit https://observatory.uwo.ca/unicen.

  9. N

    Rusk County, TX Age Group Population Dataset: A Complete Breakdown of Rusk...

    • neilsberg.com
    csv, json
    Updated Jul 24, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Rusk County, TX Age Group Population Dataset: A Complete Breakdown of Rusk County Age Demographics from 0 to 85 Years and Over, Distributed Across 18 Age Groups // 2024 Edition [Dataset]. https://www.neilsberg.com/research/datasets/aab5afb0-4983-11ef-ae5d-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Jul 24, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Texas, Rusk County
    Variables measured
    Population Under 5 Years, Population over 85 years, Population Between 5 and 9 years, Population Between 10 and 14 years, Population Between 15 and 19 years, Population Between 20 and 24 years, Population Between 25 and 29 years, Population Between 30 and 34 years, Population Between 35 and 39 years, Population Between 40 and 44 years, and 9 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the age groups. For age groups we divided it into roughly a 5 year bucket for ages between 0 and 85. For over 85, we aggregated data into a single group for all ages. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Rusk County population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Rusk County. The dataset can be utilized to understand the population distribution of Rusk County by age. For example, using this dataset, we can identify the largest age group in Rusk County.

    Key observations

    The largest age group in Rusk County, TX was for the group of age 35 to 39 years years with a population of 3,746 (7.10%), according to the ACS 2018-2022 5-Year Estimates. At the same time, the smallest age group in Rusk County, TX was the 80 to 84 years years with a population of 907 (1.72%). Source: U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Variables / Data Columns

    • Age Group: This column displays the age group in consideration
    • Population: The population for the specific age group in the Rusk County is shown in this column.
    • % of Total Population: This column displays the population of each age group as a proportion of Rusk County total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Rusk County Population by Age. You can refer the same here

  10. o

    Nigeria Census Data - Dataset - openAFRICA

    • open.africa
    Updated Dec 4, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). Nigeria Census Data - Dataset - openAFRICA [Dataset]. https://open.africa/dataset/nigeria-census-data
    Explore at:
    Dataset updated
    Dec 4, 2017
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Nigeria
    Description

    This dataset shows census data for Nigeria from government data sources and the World Bank data portal.

  11. g

    Metadata for Census 2010 Restricted-Use Microdata

    • search.gesis.org
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S.Census Bureau, Metadata for Census 2010 Restricted-Use Microdata [Dataset]. http://doi.org/10.3886/E101222V1-4873
    Explore at:
    Dataset provided by
    ICPSR - Interuniversity Consortium for Political and Social Research
    GESIS search
    Authors
    U.S.Census Bureau
    License

    https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de616008https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de616008

    Description

    Abstract (en): The U.S. Census counts every resident in the United States. It is mandated by Article I, Section 2 of the Constitution and takes place every 10 years. The basic purpose of the census is apportionment and redistricting. "Apportionment" is the process of dividing the 435 memberships, or seats, in the House of Representatives among the 50 states based on the population figures collected during the decennial census. "Redistricting" is the process of geographically defining state legislative districts. The census data allow state officials to realign congressional and state legislative districts in their states, taking into account population shifts since the last census and assuring equal representation for their constituents in compliance with the “one-person, one-vote” principle of the 1965 Voting Rights Act. The resident population of the United States

  12. o

    United States Microdata Samples Extract File, 1940-1980: Demographics of...

    • explore.openaire.eu
    • icpsr.umich.edu
    Updated Dec 20, 1985
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Inter-University Consortium For Political And Social Research (1985). United States Microdata Samples Extract File, 1940-1980: Demographics of Aging [Dataset]. http://doi.org/10.3886/icpsr08353
    Explore at:
    Dataset updated
    Dec 20, 1985
    Authors
    Inter-University Consortium For Political And Social Research
    Area covered
    United States
    Description

    This is an extract of the decennial Public Use Microdata Sample (PUMS) released by the Bureau of the Census. Because the complete PUMS files contain several hundred thousand records, ICPSR has constructed this subset to allow for easier and less costly analysis. The collection of data at ten year increments allows the user to follow various age cohorts through the life-cycle. Data include information on the household and its occupants such as size and value of dwelling, utility costs, number of people in the household, and their relationship to the respondent. More detailed information was collected on the respondent, the head of household, and the spouse, if present. Variables include education, marital status, occupation and income. The stratified sample has unequal sampling rates across strata and requires the use of weights for analyses using more than one stratum. The epsem sample was selected in a second stage from the stratified sample and used compensating sampling rates within each stratum so that the overall probability of selection for each person is equal. The person level weight for use with the stratified sample and the household weight to be used with the epsem sample are included in the data file.Conducted by the United States Department of Commerce, Bureau of the Census. Stratified sample of adults contained in the Public Use Microdata Sample. Approximately 500 records were drawn from each of 28 sex/age/race strata. Additionally, an equal probability (epsem) sample was drawn from the stratified sample. Datasets: DS0: Study-Level Files DS1: United States Microdata Samples Extract File, 1940-1980: Demographics of Aging DS2: Frequencies, 1940-1980 For 1960-1980, all PUMS records for persons 18 and over. For 1940 and 1950, all sample line records.

  13. w

    Population Data

    • data.wu.ac.at
    • data.amerigeoss.org
    Updated Mar 13, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Bloomington (2018). Population Data [Dataset]. https://data.wu.ac.at/schema/data_gov/ZWI5MDg1MmMtMjRjMC00NTk1LWExMTUtZTI1OTQ5Mjk1NjEy
    Explore at:
    Dataset updated
    Mar 13, 2018
    Dataset provided by
    City of Bloomington
    Description

    Population and other demographic information is collected by the US Census Bureau.

    View the US Census Bureau's Quick Facts page about Bloomington, Indiana at https://www.census.gov/quickfacts

    The Demographic Profile and other data for Bloomington can be viewed or downloaded from the American FactFinder search tool: https://factfinder.census.gov/bkmk/cf/1.0/en/place/Bloomington city, Indiana/POPULATION/DECENNIAL_CNT

    The Census Bureau is creating a new platform for data. This site is in a preview stage and some parts are under construction. Here is a link for Bloomington: https://data.census.gov/cedsci/results/all?q=Bloomington%20city,%20Indiana&g=1600000US1805860&ps=app*from@SINGLE_SEARCH

    The City webpage for Census data contains other related information: https://bloomington.in.gov/about/census-data

  14. a

    d0a8d6 - 2020 USA Census Tracts for USR Search Segments

    • cest-cusec.hub.arcgis.com
    • prep-response-portal-napsg.hub.arcgis.com
    Updated Jun 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SARGeo (2025). d0a8d6 - 2020 USA Census Tracts for USR Search Segments [Dataset]. https://cest-cusec.hub.arcgis.com/datasets/sargeo::d0a8d6-2020-usa-census-tracts-for-usr-search-segments
    Explore at:
    Dataset updated
    Jun 24, 2025
    Dataset authored and provided by
    SARGeo
    Area covered
    Description

    USA Census Tracts for Urban Search and Rescue. This layer can be used for search segment planning. Census Tracts generally contain between 1,200 and 8,000 people, with an optimum size of 4,000 people and the boundaries generally follow existing roads and waterways. The field segment_designation is the last 5 digits of the unique identifier and matches the field in the SARCOP Segment layer.This layer presents the USA 2020 Census Tract boundaries of the United States in the 50 states and the District of Columbia. It is updated annually as Tract boundaries change. The geography is sourced from US Census Bureau 2020 TIGER FGDB (National Sub-State) and edited using TIGER Hydrology to add a detailed coastline for cartographic purposes. Geography last updated May 2022.Attribute fields include 2020 total population from the US Census PL94 data.

  15. V

    PLACES: Census Tract Data (GIS Friendly Format), 2022 release

    • data.virginia.gov
    • healthdata.gov
    • +3more
    csv, json, rdf, xsl
    Updated Aug 25, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2023). PLACES: Census Tract Data (GIS Friendly Format), 2022 release [Dataset]. https://data.virginia.gov/dataset/places-census-tract-data-gis-friendly-format-2022-release
    Explore at:
    xsl, rdf, json, csvAvailable download formats
    Dataset updated
    Aug 25, 2023
    Dataset provided by
    Centers for Disease Control and Prevention
    Description

    This dataset contains model-based census tract level estimates for the PLACES 2022 release in GIS-friendly format. PLACES covers the entire United States—50 states and the District of Columbia (DC)—at county, place, census tract, and ZIP Code Tabulation Area levels. It provides information uniformly on this large scale for local areas at 4 geographic levels. Estimates were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. PLACES was funded by the Robert Wood Johnson Foundation in conjunction with the CDC Foundation. Data sources used to generate these model-based estimates include Behavioral Risk Factor Surveillance System (BRFSS) 2020 or 2019 data, Census Bureau 2010 population estimates, and American Community Survey (ACS) 2015–2019 estimates. The 2022 release uses 2020 BRFSS data for 25 measures and 2019 BRFSS data for 4 measures (high blood pressure, taking high blood pressure medication, high cholesterol, and cholesterol screening) that the survey collects data on every other year. These data can be joined with the census tract 2015 boundary file in a GIS system to produce maps for 29 measures at the census tract level. An ArcGIS Online feature service is also available for users to make maps online or to add data to desktop GIS software. https://cdcarcgis.maps.arcgis.com/home/item.html?id=3b7221d4e47740cab9235b839fa55cd7

  16. Population ACS 2018-2022 - COUNTIES

    • hub.arcgis.com
    • covid19-uscensus.hub.arcgis.com
    • +1more
    Updated Feb 2, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    US Census Bureau (2024). Population ACS 2018-2022 - COUNTIES [Dataset]. https://hub.arcgis.com/maps/3bbeddc5116c4424ba5987f4e80f70a0
    Explore at:
    Dataset updated
    Feb 2, 2024
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    US Census Bureau
    Area covered
    Description

    This layer shows Population. This is shown by state and county boundaries. This service contains the 2018-2022 release of data from the American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the point by Population Density and size of the point by Total Population. The size of the symbol represents the total count of housing units. Population Density was calculated based on the total population and area of land fields, which both came from the U.S. Census Bureau. Formula used for Calculating the Pop Density (B01001_001E/GEO_LAND_AREA_SQ_KM). To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2018-2022ACS Table(s): B01001, B09020Data downloaded from: Census Bureau's API for American Community Survey Date of API call: January 18, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:Boundaries come from the Cartographic Boundaries via US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates, and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto Rico. The Counties (and equivalent) layer contains 3221 records - all counties and equivalent, Washington D.C., and Puerto Rico municipios. See Areas Published. Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells.Margin of error (MOE) values of -555555555 in the API (or "*****" (five asterisks) on data.census.gov) are displayed as 0 in this dataset. The estimates associated with these MOEs have been controlled to independent counts in the ACS weighting and have zero sampling error. So, the MOEs are effectively zeroes, and are treated as zeroes in MOE calculations. Other negative values on the API, such as -222222222, -666666666, -888888888, and -999999999, all represent estimates or MOEs that can't be calculated or can't be published, usually due to small sample sizes. All of these are rendered in this dataset as null (blank) values.

  17. p

    Population and Housing Census 2005 - Palau

    • microdata.pacificdata.org
    Updated Aug 18, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office of Planning and Statistics (2013). Population and Housing Census 2005 - Palau [Dataset]. https://microdata.pacificdata.org/index.php/catalog/27
    Explore at:
    Dataset updated
    Aug 18, 2013
    Dataset authored and provided by
    Office of Planning and Statistics
    Time period covered
    2005
    Area covered
    Palau
    Description

    Abstract

    The 2005 Republic of Palau Census of Population and Housing will be used to give a snapshot of Republic of Palau's population and housing at the mid-point of the decade. This Census is also important because it measures the population at the beginning of the implementation of the Compact of Free Association. The information collected in the census is needed to plan for the needs of the population. The government uses the census figures to allocate funds for public services in a wide variety of areas, such as education, housing, and job training. The figures also are used by private businesses, academic institutions, local organizations, and the public in general to understand who we are and what our situation is, in order to prepare better for our future needs.

    The fundamental purpose of a census is to provide information on the size, distribution and characteristics of a country's population. The census data are used for policymaking, planning and administration, as well as in management and evaluation of programmes in education, labour force, family planning, housing, health, transportation and rural development. A basic administrative use is in the demarcation of constituencies and allocation of representation to governing bodies. The census is also an invaluable resource for research, providing data for scientific analysis of the composition and distribution of the population and for statistical models to forecast its future growth. The census provides business and industry with the basic data they need to appraise the demand for housing, schools, furnishings, food, clothing, recreational facilities, medical supplies and other goods and services.

    Geographic coverage

    A hierarchical geographic presentation shows the geographic entities in a superior/subordinate structure in census products. This structure is derived from the legal, administrative, or areal relationships of the entities. The hierarchical structure is depicted in report tables by means of indentation. The following structure is used for the 2005 Census of the Republic of Palau:

    Republic of Palau State Hamlet/Village Enumeration District Block

    Analysis unit

    Individuals Families Households General Population

    Universe

    The Census covered all the households and respective residents in the entire country.

    Kind of data

    Census/enumeration data [cen]

    Sampling procedure

    Not applicable to a full enumeration census.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The 2005 Palau Census of Population and Housing comprises three parts: 1. Housing - one form for each household 2. Population - one for for each member of the household 3. People who have left home - one form for each household.

    Cleaning operations

    Full scale processing and editing activiities comprised eight separate sessions either with or separately but with remote guidance of the U.S. Census Bureau experts to finalize all datasets for publishing stage.

    Processing operation was handled with care to produce a set of data that describes the population as clearly and accurately as possible. To meet this objective, questionnaires were reviewed and edited during field data collection operations by crew leaders for consistency, completeness, and acceptability. Questionnaires were also reviewed by census clerks in the census office for omissions, certain inconsistencies, and population coverage. For example, write-in entries such as "Don't know" or "NA" were considered unacceptable in certain quantities and/or in conjunction with other data omissions.

    As a result of this review operation, a telephone or personal visit follow-up was made to obtain missing information. Potential coverage errors were included in the follow-up, as well as questionnaires with omissions or inconsistencies beyond the completeness and quality tolerances specified in the review procedures.

    Subsequent to field operations, remaining incomplete or inconsistent information on the questionnaires was assigned using imputation procedures during the final automated edit of the collected data. Allocations, or computer assignments of acceptable data in place of unacceptable entries or blanks, were needed most often when an entry for a given item was lacking or when the information reported for a person or housing unit on that item was inconsistent with other information for that same person or housing unit. As in previous censuses, the general procedure for changing unacceptable entries was to assign an entry for a person or housing unit that was consistent with entries for persons or housing units with similar characteristics. The assignment of acceptable data in lace of blanks or unacceptable entries enhanced the usefulness of the data.

    Another way to make corrections during the computer editing process is substitution. Substitution is the assignment of a full set of characteristics for a person or housing unit. Because of the detailed field operations, substitution was not needed for the 2005 Census.

    Sampling error estimates

    Sampling Error is not applicable to full enumeration censuses.

    Data appraisal

    In any large-scale statistical operation, such as the 2005 Census of the Republic of Palau, human- and machine-related errors were anticipated. These errors are commonly referred to as nonsampling errors. Such errors include not enumerating every household or every person in the population, not obtaining all required information form the respondents, obtaining incorrect or inconsistent information, and recording information incorrectly. In addition, errors can occur during the field review of the enumerators' work, during clerical handling of the census questionnaires, or during the electronic processing of the questionnaires.

    To reduce various types of nonsampling errors, a number of techniques were implemented during the planning, data collection, and data processing activities. Quality assurance methods were used throughout the data collection and processing phases of the census to improve the quality of the data.

  18. d

    Regional Data - Census 1950 (West German States)

    • da-ra.de
    Updated 1990
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jörg Blasius; G. Antoine (1990). Regional Data - Census 1950 (West German States) [Dataset]. http://doi.org/10.4232/1.1832
    Explore at:
    Dataset updated
    1990
    Dataset provided by
    GESIS Data Archive
    da|ra
    Authors
    Jörg Blasius; G. Antoine
    Time period covered
    1950
    Area covered
    Germany
    Description

    Aggregate data from documents from the state bureaus of the census

  19. N

    Free Soil, MI Census Bureau Gender Demographics and Population Distribution...

    • neilsberg.com
    Updated Feb 19, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Free Soil, MI Census Bureau Gender Demographics and Population Distribution Across Age Datasets [Dataset]. https://www.neilsberg.com/research/datasets/e183f584-52cf-11ee-804b-3860777c1fe6/
    Explore at:
    Dataset updated
    Feb 19, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Free Soil, Michigan
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Free Soil population by gender and age. The dataset can be utilized to understand the gender distribution and demographics of Free Soil.

    Content

    The dataset constitues the following two datasets across these two themes

    • Free Soil, MI Population Breakdown by Gender
    • Free Soil, MI Population Breakdown by Gender and Age

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

  20. (Appendix 1) DSDP Site 94-607 ostracode species census data

    • doi.pangaea.de
    • datadiscoverystudio.org
    • +1more
    html, tsv
    Updated 1996
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Thomas M Cronin; Maureen E Raymo; K P Kyle (1996). (Appendix 1) DSDP Site 94-607 ostracode species census data [Dataset]. http://doi.org/10.1594/PANGAEA.712904
    Explore at:
    tsv, htmlAvailable download formats
    Dataset updated
    1996
    Dataset provided by
    PANGAEA
    Authors
    Thomas M Cronin; Maureen E Raymo; K P Kyle
    License

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Time period covered
    Jul 6, 1983
    Area covered
    Variables measured
    AGE, Sum, Ostracoda, Krithe spp., Macrocyprid, Buntonia spp., Heinia dryppa, Messinella sp., Ambocythere sp., Parakrithe spp., and 35 more
    Description

    This dataset is about: (Appendix 1) DSDP Site 94-607 ostracode species census data. Please consult parent dataset @ https://doi.org/10.1594/PANGAEA.712910 for more information. Counting data for 10 cubic cm samples.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Cary Institute Of Ecosystem Studies; Jarlath O'Neil-Dunne (2013). 1960 Residence Census Data for Baltimore, MD [Dataset]. https://search.dataone.org/view/knb-lter-bes.150.570
Organization logo

1960 Residence Census Data for Baltimore, MD

Explore at:
Dataset updated
Oct 14, 2013
Dataset provided by
Long Term Ecological Research Networkhttp://www.lternet.edu/
Authors
Cary Institute Of Ecosystem Studies; Jarlath O'Neil-Dunne
Time period covered
Jan 1, 2004 - Nov 17, 2011
Area covered
Description

1960 Residence Census Data for Baltimore, Maryland. Refer to the 1960 codebook (codebook_1960.pdf) for more information. This is part of a collection of 221 Baltimore Ecosystem Study metadata records that point to a geodatabase. The geodatabase is available online and is considerably large. Upon request, and under certain arrangements, it can be shipped on media, such as a usb hard drive. The geodatabase is roughly 51.4 Gb in size, consisting of 4,914 files in 160 folders. Although this metadata record and the others like it are not rich with attributes, it is nonetheless made available because the data that it represents could be indeed useful.

Search
Clear search
Close search
Google apps
Main menu