Facebook
TwitterA data set of cross-nationally comparable microdata samples for 15 Economic Commission for Europe (ECE) countries (Bulgaria, Canada, Czech Republic, Estonia, Finland, Hungary, Italy, Latvia, Lithuania, Romania, Russia, Switzerland, Turkey, UK, USA) based on the 1990 national population and housing censuses in countries of Europe and North America to study the social and economic conditions of older persons. These samples have been designed to allow research on a wide range of issues related to aging, as well as on other social phenomena. A common set of nomenclatures and classifications, derived on the basis of a study of census data comparability in Europe and North America, was adopted as a standard for recoding. This series was formerly called Dynamics of Population Aging in ECE Countries. The recommendations regarding the design and size of the samples drawn from the 1990 round of censuses envisaged: (1) drawing individual-based samples of about one million persons; (2) progressive oversampling with age in order to ensure sufficient representation of various categories of older people; and (3) retaining information on all persons co-residing in the sampled individual''''s dwelling unit. Estonia, Latvia and Lithuania provided the entire population over age 50, while Finland sampled it with progressive over-sampling. Canada, Italy, Russia, Turkey, UK, and the US provided samples that had not been drawn specially for this project, and cover the entire population without over-sampling. Given its wide user base, the US 1990 PUMS was not recoded. Instead, PAU offers mapping modules, which recode the PUMS variables into the project''''s classifications, nomenclatures, and coding schemes. Because of the high sampling density, these data cover various small groups of older people; contain as much geographic detail as possible under each country''''s confidentiality requirements; include more extensive information on housing conditions than many other data sources; and provide information for a number of countries whose data were not accessible until recently. Data Availability: Eight of the fifteen participating countries have signed the standard data release agreement making their data available through NACDA/ICPSR (see links below). Hungary and Switzerland require a clearance to be obtained from their national statistical offices for the use of microdata, however the documents signed between the PAU and these countries include clauses stipulating that, in general, all scholars interested in social research will be granted access. Russia requested that certain provisions for archiving the microdata samples be removed from its data release arrangement. The PAU has an agreement with several British scholars to facilitate access to the 1991 UK data through collaborative arrangements. Statistics Canada and the Italian Institute of statistics (ISTAT) provide access to data from Canada and Italy, respectively. * Dates of Study: 1989-1992 * Study Features: International, Minority Oversamples * Sample Size: Approx. 1 million/country Links: * Bulgaria (1992), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/02200 * Czech Republic (1991), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06857 * Estonia (1989), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06780 * Finland (1990), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06797 * Romania (1992), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06900 * Latvia (1989), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/02572 * Lithuania (1989), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/03952 * Turkey (1990), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/03292 * U.S. (1990), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06219
Facebook
TwitterThis study is an experiment designed to compare the performance of three methodologies for sampling households with migrants:
Researchers from the World Bank applied these methods in the context of a survey of Brazilians of Japanese descent (Nikkei), requested by the World Bank. There are approximately 1.2-1.9 million Nikkei among Brazil’s 170 million population.
The survey was designed to provide detail on the characteristics of households with and without migrants, to estimate the proportion of households receiving remittances and with migrants in Japan, and to examine the consequences of migration and remittances on the sending households.
The same questionnaire was used for the stratified random sample and snowball surveys, and a shorter version of the questionnaire was used for the intercept surveys. Researchers can directly compare answers to the same questions across survey methodologies and determine the extent to which the intercept and snowball surveys can give similar results to the more expensive census-based survey, and test for the presence of biases.
Sao Paulo and Parana states
Japanese-Brazilian (Nikkei) households and individuals
The 2000 Brazilian Census was used to classify households as Nikkei or non-Nikkei. The Brazilian Census does not ask ethnicity but instead asks questions on race, country of birth and whether an individual has lived elsewhere in the last 10 years. On the basis of these questions, a household is classified as (potentially) Nikkei if it has any of the following: 1) a member born in Japan; 2) a member who is of yellow race and who has lived in Japan in the last 10 years; 3) a member who is of yellow race, who was not born in a country other than Japan (predominantly Korea, Taiwan or China) and who did not live in a foreign country other than Japan in the last 10 years.
Sample survey data [ssd]
1) Stratified random sample survey
Two states with the largest Nikkei population - Sao Paulo and Parana - were chosen for the study.
The sampling process consisted of three stages. First, a stratified random sample of 75 census tracts was selected based on 2000 Brazilian census. Second, interviewers carried out a door-to-door listing within each census tract to determine which households had a Nikkei member. Third, the survey questionnaire was then administered to households that were identified as Nikkei. A door-to-door listing exercise of the 75 census tracts was then carried out between October 13th, 2006, and October 29th, 2006. The fieldwork began on November 19, 2006, and all dwellings were visited at least once by December 22, 2006. The second wave of surveying took place from January 18th, 2007, to February 2nd, 2007, which was intended to increase the number of households responding.
2) Intercept survey
The intercept survey was designed to carry out interviews at a range of locations that were frequented by the Nikkei population. It was originally designed to be done in Sao Paulo city only, but a second intercept point survey was later carried out in Curitiba, Parana. Intercept survey took place between December 9th, 2006, and December 20th, 2006, whereas the Curitiba intercept survey took place between March 3rd and March 12th, 2007.
Consultations with Nikkei community organizations, local researchers and officers of the bank Sudameris, which provides remittance services to this community, were used to select a broad range of locations. Interviewers were assigned to visit each location during prespecified blocks of time. Two fieldworkers were assigned to each location. One fieldworker carried out the interviews, while the other carried out a count of the number of people with Nikkei appearance who appeared to be 18 years old or older who passed by each location. For the fixed places, this count was made throughout the prespecified time block. For example, between 2.30 p.m. and 3.30 p.m. at the sports club, the interviewer counted 57 adult Nikkeis. Refusal rates were carefully recorded, along with the sex and approximate age of the person refusing.
In all, 516 intercept interviews were collected.
3) Snowball sampling survey
The questionnaire that was used was the same as used for the stratified random sample. The plan was to begin with a seed list of 75 households, and to aim to reach a total sample of 300 households through referrals from the initial seed households. Each household surveyed was asked to supply the names of three contacts: (a) a Nikkei household with a member currently in Japan; (b) a Nikkei household with a member who has returned from Japan; (c) a Nikkei household without members in Japan and where individuals had not returned from Japan.
The snowball survey took place from December 5th to 20th, 2006. The second phase of the snowballing survey ran from January 22nd, 2007, to March 23rd, 2007. More associations were contacted to provide additional seed names (69 more names were obtained) and, as with the stratified sample, an adaptation of the intercept survey was used when individuals refused to answer the longer questionnaire. A decision was made to continue the snowball process until a target sample size of 100 had been achieved.
The final sample consists of 60 households who came as seed households from Japanese associations, and 40 households who were chain referrals. The longest chain achieved was three links.
Face-to-face [f2f]
1) Stratified sampling and snowball survey questionnaire
This questionnaire has 36 pages with over 1,000 variables, taking over an hour to complete.
If subjects refused to answer the questionnaire, interviewers would leave a much shorter version of the questionnaire to be completed by the household by themselves, and later picked up. This shorter questionnaire was the same as used in the intercept point survey, taking seven minutes on average. The intention with the shorter survey was to provide some data on households that would not answer the full survey because of time constraints, or because respondents were reluctant to have an interviewer in their house.
2) Intercept questionnaire
The questionnaire is four pages in length, consisting of 62 questions and taking a mean time of seven minutes to answer. Respondents had to be 18 years old or older to be interviewed.
1) Stratified random sampling 403 out of the 710 Nikkei households were surveyed, an interview rate of 57%. The refusal rate was 25%, whereas the remaining households were either absent on three attempts or were not surveyed because building managers refused permission to enter the apartment buildings. Refusal rates were higher in Sao Paulo than in Parana, reflecting greater concerns about crime and a busier urban environment.
2) Intercept Interviews 516 intercept interviews were collected, along with 325 refusals. The average refusal rate is 39%, with location-specific refusal rates ranging from only 3% at the food festival to almost 66% at one of the two grocery stores.
Facebook
TwitterThe National Sample Survey Organisation (NSSO) has been carrying out All-India surveys on consumer expenditure. While some of these smaller-scale surveys are spread over a full year and others over six months only, the quinquennial (full-scale) surveys have all been of a full year's duration. Household consumer expenditure is measured as the expenditure incurred by a household on domestic account during a specified period, called reference period. It includes the imputed values of goods and services, which are not purchased but procured otherwise for consumption. In other words, it is the sum total of monetary values of all the items (i.e. goods and services) consumed by the household on domestic account during the reference period. Any expenditure incurred towards the productive enterprises of the households is also excluded from household consumer expenditure. To minimise recall errors, a very detailed item classification is adopted to collect information, including items of food, items of fuel, items of clothing, bedding and footwear, items of educational and medical expenses, items of durable goods and other items. The schedule has also collected some other household particulars including age, sex and educational level etc. of each household member. The schedule design for the survey is more or less similar to that adopted in the previous rounds.
The survey covered the whole of the Indian union except (i) Ladakh and Kargil districts of Jammu & Kashmir, (ii) 786 interior villages of Nagaland (out of a total of 1119 villages) located beyond 5 kms. of a bus route and (iii) 172 villages in Andaman & Nicobar Islands (out of total of 520 villages) which are inaccessible throughout the year.
Randomly selected households based on sampling procedure and members of the household
The survey used the interview method of data collection from a sample of randomly selected households and members of the household.
Sample survey data [ssd]
A two-stage stratified design was adopted for the 49th round survey. The first-stage units(fsu) were census villages in the rural sector and U.F.S. (Urban Frame Survey) blocks in the urban sector (However, for some of the newly declared towns of 1991 census for which UFS frames were not available, census EBs were first-stage units). The second-stage units were households in both the sectors. In the central sample altogether 5072 sample villages and 2928 urban sample blocks at all-India level were selected. Sixteen households were selected per sample village/block in each of which the schedule of enquiry was canvassed. The number of sample households actually surveyed for the enquiry was 119403.
Sample frame for fsus : Mostly the 1981 census lists of villages constituted the sampling frame for rural sector. For Nagaland, the villages located within 5 kms. of a bus route constituted the sampling frame. For Andaman and Nicobar Islands, the list of accessible villages was used as the sampling frame. For the Urban sector, the lists of NSS Urban Frame Survey (UFS) blocks have been considered as the sampling frame in most cases. However, 1991 house listing EBs (Enumeration blocks) were considered as the sampling frame for some of the new towns of 1991 census, for which UFS frames were not available.
Stratification for rural sector : States have been divided into NSS regions by grouping contiguous districts similar in respect of population density and crop pattern. In Gujarat, however, some districts have been split for the purpose of region formation, considering the location of dry areas and distribution of tribal population in the state. In the rural sector, each district with 1981 / 1991 census rural population less than, 1.8 million/2 million formed a separate stratum. Districts with larger population were divided into two or more strata, by grouping contiguous tehsils.
Stratification for urban sector : In the urban sector, strata were formed, within the NSS region, according to census population size classes of towns. Each city with population 10 lakhs or more formed a separate stratum. Further, within each region, the different towns were grouped to form three different strata on the basis of their respective census population as follows : all towns with population less than 50,000 as stratum 1, those with population 50,000 to 1,99,999 as stratum-2 and those with population 2,00,000 to 9,99,999 as stratum-3.
Sample size for fsu's : The central sample comprised of 5072 villages and 2928 blocks.
Selection of first stage units : The sample villages have been selected with probability proportional to population with replacement and the sample blocks by simple random sampling without replacement. Selection was done in both the sectors in the form of two independent subsamples.
Face-to-face [f2f]
The data for this survey is collected in the NSS Schedule 1.0 used for household consumer expenditure. For this round, the schedule had 11 blocks.
Blocks 1 and 2 - are similar to the ones used in usual NSS rounds. These are used to record identification of sample households and particulars of field operations.
Block-3: Household characteristics like, household size, principal industry-occupation, social group, land possessed, primary source of energy used for cooking and lighting etc. have been recorded in this block.
Block-4: In this block detailed demographic particulars including age, sex, educational level, marital status, number of meals usually taken in a day etc. have been recorded.
Block-5: In this block cash purchase and household consumption of food, pan, tobacco, intoxicants and fuel & light during the last 30 days have been recorded.
Block-6: Household consumption of clothing during the last 30 has been recorded in this block.
Block-7: Household consumption of footwear during the last 30 has been recorded in this block.
Block-8 : Household expenditure on miscellaneous goods and services and rents and taxes during the last 30 days has been recorded in this block.
Block-9 : Household expenditure for purchase and construction (including repairs) of durable goods for domestic use during the last 30 days has been recorded here.
Block-10 : Perception of households regarding sufficiency of food has been recorded here.
Block-11 : Summary of household consumer expenditure during the last 30 days has been recorded here.
Facebook
TwitterThe 2007/08 Agricultural Sample Census was designed to meet the data needs of a wide range of users down to district level including policy makers at local, regional and national levels, rural development agencies, funding institutions, researchers, NGOs, farmers' organizations, and others. The dataset is both more numerous in its sample and detailed in its scope and coverage so as to meet the user demand.
The census was carried out in order to:
-Provide benchmark data on productivity, production and agricultural practices in relation to policies and interventions promoted by the Ministry of Agriculture and Food Security and other stakeholders; and
Tanzania Mainland and Zanzibar
Community, Household, Individual
Small scale farmers, Large Scale Farmers, Community
Sample survey data [ssd]
The Mainland sample consisted of 3,192 villages. The total Mainland sample was 47,880 agricultural households while in Zanzibar, a total of 317 EAs were selected and 4,755 agricultural households were covered.
The villages were drawn from the National Master Sample (NMS) developed by the National Bureau of Statistics (NBS) to serve as a national framework for the conduct of household based surveys in the country. The National Master Sample was developed from the previous 2002 Population and Housing Census.
The numbers of villages/Enumeration Areas (EAs) were selected for the first stage with a probability proportional to the number of villages/EAs in each district. In the second stage, 15 households were selected from a list of agricultural households in each village/EA using systematic random sampling.
Face-to-face [f2f]
The census used three different questionnaires: - Small scale farm questionnaire - Community level questionnaire - Large scale farm questionnaire
The small scale farm questionnaire was the main census instrument and it included questions related to crop and livestock production and practices; population demographics; access to services, community resources and infrastructure; issues on poverty and gender. The main topics covered were:
The community level questionnaire was designed to collect village level data such as access and use of common resources, community tree plantation and seasonal farm gate prices.
The Large Scale Farm questionnaire was administered to large farms either privately or corporately managed.
Data editing took place at a number of stages throughout the processing, including: - Manual cleaning exercisePrior to scanning. (Questionnaires found dirty or damaged and generally unsuitable for scanning were put aside for manual data entry ) - CSPro was used for data entry of all Large Scale Farms and Community based questionnaires - Scanning and ICR data capture technology for the smallholder questionnaire - There was an Interactive validation during the ICR extraction process. - The use of a batch validation program developed in CSPro. This was used in order to identify inconsistencies within a questionnaire. - Statistical Package for Social Sciences (SPSS) was used to produce the Census tabulations - Microsoft Excel was used to organize the tables, charts and compute additional indicators -Arc GIS (Geographical Information System) was used in producing the maps. - Microsoft Word was used in compiling and writing up the reports
Facebook
TwitterThe HIES gathers information related to demographic characteristics of the members of the surveyed households, expenditure on food and non-food items and income received by each household member from all the different sources in a compulsory manner. Starting from the HIES 2006/07, the survey questionnaire was further expanded beyond the collection of demographic, income and expenditure information. It has been introduced 7 new sections to collect almost all the other household information that helps to understand the correct living standards of the households. Those newly introduced areas covered by the HIES starting from the HIES 2006/07 are as follows. 1. School education (aged 5-19 years) 2. Health information 3. Inventory of durable goods 4. Access to infrastructure facilities 5. Household debts and borrowings 6. Housing, sanitary and disasters 7. Land and agriculture holdings
National - excluding Mannar, Kilinochchi and Mullaithivu districts in the Northern province
Sample survey data [ssd]
Sample design of the survey is two stage stratified and the Urban, Rural and the Estate sectors in each district of the country are the selection domains thus the district is the main domain used for the stratification. The sampling frame is the list of housing units prepared for the Census of Population and Housing (CPH) 2001 and the HIES 2009/10 will be the last HIES sampled from this sampling frame as the DCS is all set to conduct the CPH in 2011 based on whole newly prepared set of census blocks, which has been almost completed by now.
Selection of Primary Sampling Units Primary sampling units (PSUs) are the census blocks selected for the survey and the sampling frame, which is the collection of all the census blocks prepared in 2001 in Sri Lanka, is used for the selection of the PSUs at the first stage of the selection.
The PSU selection is done within all the independentselection domains that are assigned different sample size allocations to total the targeted sample size of 2,500 PSUs. The method of selection of the PSUs at the first stage is systematic with a selection probability given to each census block proportionate to the number of housing units available in the census blocks within the selection domains (PPS).
The selected PSUs are updated to include newly built housing units and to exclude demolished or vacated housing units, which are no longer considered as housing units according to the survey definitions, to capture variation of natural growth and to make necessary adjustments for the same. The PSU updating operation in field is generally done less than one month prior to the survey and it was carried out for the 12 months starting from June 2009 to May 2010 to support the scheduled 12 survey months started from July 2009 to June 2010 for the HIES 2009/10.
Selection of Secondary Sampling Units Secondary Sampling Units (SSUs) or Final sampling units (FSUs) are the housing units selected at the second stage from the 2,500 PSUs selected at the first stage. From each PSU, 10 SSUs (housing units) are systematically selected giving each housing unit in the PSU an equal probability to be selected for the survey. The total sample of size 25,000 housing units is resulted at the end of the sampling process and this sample represents the whole country in different probabilities depend on the different sample sizes allocated for the selection domains.
Sample allocation Allocation of the number of PSUs or determining the sample sizes for the districts is made proportionate to the number of housing units and the standard deviations of the mean household expenditure values reported in the respective districts in previous surveys (Neymann Allocation). Sector allocation of the district sample is made proportionate to the square root of the sizes of the respective selection domains (Urban, Rural and Estate sectors in the district). The sample of PSUs within the selection domain is equally distributed among the 12 survey months and the monthly sample too is equally dispersed among all the weeks in the month assigning a specific week for each PSU for the survey activities.
Face-to-face [f2f]
The survey questionnaire consists of nine parts. i. Demographic Characteristics ii. School education (aged 5 to 20 years) iii. Health vi. Household expenditure v. Household income vi. part a : Inventory of durable goods vi. part b : Debts of the household vii. Access to facilities in the area viii. Information about housing ix. Agriculture holdings and livestock
Estimation, Standard error, and coefficient of variation table is available in the final survey report.
Facebook
TwitterPersons, households, and dwellings
UNITS IDENTIFIED: - Dwellings: yes - Vacant Units: No - Households: yes - Individuals: yes - Group quarters: yes
UNIT DESCRIPTIONS: - Dwellings: no - Households: Yes - Group quarters: A collective household is a group of persons that does not live in an ordinary household, but lives in a collective establishment, sharing meal times.
Residents of France, of any nationality. Does not include French citizens living in other countries, foreign tourists, or people passing through. Reintegrated persons: Persons living in group quarters or without a fixed address but having a usual home elsewhere (i.e., enumerated away from their usual residence). During data processing, most of these people are reintegrated into their usual households. Legal population refers to the population without duplicate counts (population sans double compte) and the institutional population (population comptee a part).
Population and Housing Census [hh/popcen]
MICRODATA SOURCE: INSEE (Institut National de la Statisque et des Etudes Economiques)
SAMPLE SIZE (person records): 2934758.
SAMPLE DESIGN: 1/20 sample: A 1/5 systematic sample selected from 1/4 sample. 1/4 sample: a systematic sample of every 4th dwelling (or individual from institutional households). Dwellings, either for households/quasi-households or vacant dwellings, are sorted by locality and household size (if for households/quasi-households), before sampling. Individuals from communities/quasi-communities are sorted by locality, type of community and date of birth before sampling. All individuals within households constitute the 1/4 sample. Reintegrated persons: Persons living in group quarters or without a fixed address but having a usual home elsewhere (i.e., enumerated away from their usual residence). During data processing, most of these people are reintegrated into their usual households. Legal population refers to the population without duplicate counts (population sans double compte) and the institutional population (population comptee a part).
Face-to-face [f2f]
Form 1A for dwelling consists of (1) dwelling characteristics, (2) List A. permanent occupants of the dwelling, (3) List B. household members who do not live in the dwelling of enumeration, and (4) building characteristics; Form 2B. Individual form.
Facebook
TwitterThe 2003 Agriculture Sample Census was designed to meet the data needs of a wide range of users down to district level including policy makers at local, regional and national levels, rural development agencies, funding institutions, researchers, NGOs, farmer organisations, etc. As a result the dataset is both more numerous in its sample and detailed in its scope compared to previous censuses and surveys. To date this is the most detailed Agricultural Census carried out in Africa.
The census was carried out in order to: · Identify structural changes if any, in the size of farm household holdings, crop and livestock production, farm input and implement use. It also seeks to determine if there are any improvements in rural infrastructure and in the level of agriculture household living conditions; · Provide benchmark data on productivity, production and agricultural practices in relation to policies and interventions promoted by the Ministry of Agriculture and Food Security and other stake holders. · Establish baseline data for the measurement of the impact of high level objectives of the Agriculture Sector Development Programme (ASDP), National Strategy for Growth and Reduction of Poverty (NSGRP) and other rural development programs and projects. · Obtain benchmark data that will be used to address specific issues such as: food security, rural poverty, gender, agro-processing, marketing, service delivery, etc.
Tanzania Mainland and Zanzibar
Large scale, small scale and community farms.
Census/enumeration data [cen]
The Mainland sample consisted of 3,221 villages. These villages were drawn from the National Master Sample (NMS) developed by the National Bureau of Statistics (NBS) to serve as a national framework for the conduct of household based surveys in the country. The National Master Sample was developed from the 2002 Population and Housing Census. The total Mainland sample was 48,315 agricultural households. In Zanzibar a total of 317 enumeration areas (EAs) were selected and 4,755 agriculture households were covered. Nationwide, all regions and districts were sampled with the exception of three urban districts (two from Mainland and one from Zanzibar).
In both Mainland and Zanzibar, a stratified two stage sample was used. The number of villages/EAs selected for the first stage was based on a probability proportional to the number of villages in each district. In the second stage, 15 households were selected from a list of farming households in each selected Village/EA, using systematic random sampling, with the village chairpersons assisting to locate the selected households.
Face-to-face [f2f]
The census covered agriculture in detail as well as many other aspects of rural development and was conducted using three different questionnaires: • Small scale questionnaire • Community level questionnaire • Large scale farm questionnaire
The small scale farm questionnaire was the main census instrument and it includes questions related to crop and livestock production and practices; population demographics; access to services, resources and infrastructure; and issues on poverty, gender and subsistence versus profit making production unit.
The community level questionnaire was designed to collect village level data such as access and use of common resources, community tree plantation and seasonal farm gate prices.
The large scale farm questionnaire was administered to large farms either privately or corporately managed.
Questionnaire Design The questionnaires were designed following user meetings to ensure that the questions asked were in line with users data needs. Several features were incorporated into the design of the questionnaires to increase the accuracy of the data: • Where feasible all variables were extensively coded to reduce post enumeration coding error. • The definitions for each section were printed on the opposite page so that the enumerator could easily refer to the instructions whilst interviewing the farmer. • The responses to all questions were placed in boxes printed on the questionnaire, with one box per character. This feature made it possible to use scanning and Intelligent Character Recognition (ICR) technologies for data entry. • Skip patterns were used to reduce unnecessary and incorrect coding of sections which do not apply to the respondent. • Each section was clearly numbered, which facilitated the use of skip patterns and provided a reference for data type coding for the programming of CSPro, SPSS and the dissemination applications.
Data processing consisted of the following processes: · Data entry · Data structure formatting · Batch validation · Tabulation
Data Entry Scanning and ICR data capture technology for the small holder questionnaire were used on the Mainland. This not only increased the speed of data entry, it also increased the accuracy due to the reduction of keystroke errors. Interactive validation routines were incorporated into the ICR software to track errors during the verification process. The scanning operation was so successful that it is highly recommended for adoption in future censuses/surveys. In Zanzibar all data was entered manually using CSPro.
Prior to scanning, all questionnaires underwent a manual cleaning exercise. This involved checking that the questionnaire had a full set of pages, correct identification and good handwriting. A score was given to each questionnaire based on the legibility and the completeness of enumeration. This score will be used to assess the quality of enumeration and supervision in order to select the best field staff for future censuses/surveys.
CSPro was used for data entry of all Large Scale Farm and community based questionnaires due to the relatively small number of questionnaires. It was also used to enter data from the 2,880 small holder questionnaires that were rejected by the ICR extraction application.
Data Structure Formatting A program was developed in visual basic to automatically alter the structure of the output from the scanning/extraction process in order to harmonise it with the manually entered data. The program automatically checked and changed the number of digits for each variable, the record type code, the number of questionnaires in the village, the consistency of the Village ID Code and saved the data of one village in a file named after the village code.
Batch Validation A batch validation program was developed in order to identify inconsistencies within a questionnaire. This is in addition to the interactive validation during the ICR extraction process. The procedures varied from simple range checking within each variable to the more complex checking between variables. It took six months to screen, edit and validate the data from the smallholder questionnaires. After the long process of data cleaning, tabulations were prepared based on a pre-designed tabulation plan.
Tabulations Statistical Package for Social Sciences (SPSS) was used to produce the Census tabulations and Microsoft Excel was used to organize the tables and compute additional indicators. Excel was also used to produce charts while ArcView and Freehand were used for the maps.
Analysis and Report Preparation The analysis in this report focuses on regional comparisons, time series and national production estimates. Microsoft Excel was used to produce charts; ArcView and Freehand were used for maps, whereas Microsoft Word was used to compile the report.
Data Quality A great deal of emphasis was placed on data quality throughout the whole exercise from planning, questionnaire design, training, supervision, data entry, validation and cleaning/editing. As a result of this, it is believed that the census is highly accurate and representative of what was experienced at field level during the Census year. With very few exceptions, the variables in the questionnaire are within the norms for Tanzania and they follow expected time series trends when compared to historical data. Standard Errors and Coefficients of Variation for the main variables are presented in the Technical Report (Volume I).
The Sampling Error found on page (21) up to page (22) in the Technical Report for Agriculture Sample Census Survey 2002-2003
Facebook
TwitterThe metadata set does not comprise any description or summary. The information has not been provided.
Facebook
TwitterNASC is an exercise designed to fill the existing data gap in the agricultural landscape in Nigeria. It is a comprehensive enumeration of all agricultural activities in the country, including crop production, fisheries, forestry, and livestock activities. The implementation of NASC was done in two phases, the first being the Listing Phase, and the second is the Sample Survey Phase. Under the first phase, enumerators visited all the selected Enumeration Areas (EAs) across the Local Government Areas (LGAs) and listed all the farming households in the selected enumeration areas and collected the required information. The scope of information collected under this phase includes demographic details of the holders, type of agricultural activity (crop production, fishery, poultry, or livestock), the type of produce or product (for example: rice, maize, sorghum, chicken, or cow), and the details of the contact persons. The listing exercise was conducted concurrently with the administration of a Community Questionnaire, to gather information about the general views of the communities on the agricultural and non-agricultural activities through focus group discussions.
The main objective of the listing exercise is to collect information on agricultural activities at household level in order to provide a comprehensive frame for agricultural surveys. The main objective of the community questionnaire is to obtain information about the perceptions of the community members on the agricultural and non-agricultural activities in the community.
Additional objectives of the overall NASC program include the following: · To provide data to help the government at different levels in formulating policies on agriculture aimed at attaining food security and poverty alleviation · To provide data for the proposed Gross Domestic Product (GDP) rebasing
Estimation domains are administrative areas from which reliable estimates are expected. The sample size planned for the extended listing operation allowed reporting key structural agricultural statistics at Local Government Area (LGA) level.
Agricultural Households.
Population units of this operation are households with members practicing agricultural activities on their own account (farming households). However, all households in selected EAs were observed as much as possible to ensure a complete coverage of farming households.
Census/enumeration data [cen]
An advanced methodology was adopted in the conduct of the listing exercise. For the first time in Nigeria, the entire listing was conducted digitally. NBS secured newly demarcated digitized enumeration area (EA) maps from the National Population Commission (NPC) and utilized them for the listing exercise. This newly carved out maps served as a basis for the segmentation of the areas visited for listing exercise. With these maps, the process for identifying the boundaries of the enumeration areas by the enumerators was seamless.
The census was carried out in all the 36 States of the Federation and FCT. Forty (40) enumeration Areas (EAs) were selected to be canvassed in each LGA, the number of EAs covered varied by state, which is a function of the number of LGAs in the state. Both urban and rural EAs were canvassed. Out of 774 LGAs in the country, 767 LGAs were covered and the remaining 7 LGAs (4 in Imo and 3 in Borno States) were not covered due to insecurity (99% coverage). In all, thirty thousand, nine hundred and sixty (30,960) EAs were expected to be covered nationwide but 30,546 EAs were canvassed.
The Sampling method adopted involved three levels of stratification. The objective of this was to provide representative data on every Local Government Area (LGA) in Nigeria. Thus, the LGA became the primary reporting domain for the NASC and the first level of stratification. Within each LGA, eighty (80) EAs were systematically selected and stratified into urban and rural EAs, which then formed the second level of stratification, with the 80 EAs proportionally allocated to urban and rural according to the total share of urban/rural EAs within the LGA. These 80 EAs formed the master sample from which the main NASC sample was selected. From the 80 EAs selected across all the LGAs, 40 EAs were systematically selected per LGA to be canvassed. This additional level selection of EAs was again stratified across urban and rural areas with a target allocation of 30 rural and 10 urban EAs in each LGA. The remaining 40 EAs in each LGA from the master sample were set aside for replacement purposes in case there would be need for any inaccessible EA to be replaced.
Details of sampling procedure implemented in the NASC (LISTING COMPONENT). A stratified two-phase cluster sampling method was used. The sampling frame was stratified by urban/rural criteria in each LGA (estimation domain/analytical stratum).
First phase: in each LGA, a total sample of 80 EAs were allocated in each strata (urban/rural) proportionally to their number of EAs with reallocations as need be. In each stratum, the sample was selected with a Pareto probability proportional to size considering the number of households as measure of size.
Second phase: systematic subsampling of 40 EAs was done (10 in Urban and 30 in Rural with reallocations as needed, if there were fewer than 10 Urban or 30 Rural EAs in an LGA). This phase was implicitly stratified through sorting the first phase sample by geography.
With a total of 773 LGAs covered in the frame, the total planned sample size was 30920 EAs. However, during fieldwork 2 LGAs were unable to be covered due to insecurity and additional 4 LGAs were suspended early due to insecurity. For the same reason, replacements of some sampled EAs were needed in many LGAs. The teams were advised to select replacement units where possible considering appurtenance to the same stratum and similarity including in terms of population size. However about 609 EAs replacement units were selected from a different stratum and were discarded from data processing and reporting.
Out of 774 LGAs in the country, 767 LGAs were covered and the remaining 7 LGAs (4 in Imo and 3 in Borno states) were not covered due to insecurity (99% coverage).
Computer Assisted Personal Interview [capi]
The NASC household listing questionnaire served as a meticulously designed instrument administered within every household to gather comprehensive data. It encompassed various aspects such as household demographics, agricultural activities including crops, livestock (including poultry), fisheries, and ownership of agricultural/non-agricultural enterprises.
The questionnaire was structured into the following sections: Section 0: ADMINISTRATIVE IDENTIFICATION Section 1: BUILDING LISTING Section 2: HOUSEHOLD LISTING (Administered to the Head of Household or any knowledgeable adult member aged 15 years and above).
Data processing of the NASC household listing survey included checking for inconsistencies, incompleteness, and outliers. Data editing and cleaning was carried out electronically using the Stata software package. In some cases where data inconsistencies were found a call back to the household was carried out. A pre-analysis tabulation plan was developed and the final tables for publication were created using the Stata software package.
Given the complexity of the sample design, sampling errors were estimated through re-sampling approaches (Bootstrap/Jackknife)
Facebook
TwitterThe 2005 Republic of Palau Census of Population and Housing will be used to give a snapshot of Republic of Palau's population and housing at the mid-point of the decade. This Census is also important because it measures the population at the beginning of the implementation of the Compact of Free Association. The information collected in the census is needed to plan for the needs of the population. The government uses the census figures to allocate funds for public services in a wide variety of areas, such as education, housing, and job training. The figures also are used by private businesses, academic institutions, local organizations, and the public in general to understand who we are and what our situation is, in order to prepare better for our future needs.
The fundamental purpose of a census is to provide information on the size, distribution and characteristics of a country's population. The census data are used for policymaking, planning and administration, as well as in management and evaluation of programmes in education, labour force, family planning, housing, health, transportation and rural development. A basic administrative use is in the demarcation of constituencies and allocation of representation to governing bodies. The census is also an invaluable resource for research, providing data for scientific analysis of the composition and distribution of the population and for statistical models to forecast its future growth. The census provides business and industry with the basic data they need to appraise the demand for housing, schools, furnishings, food, clothing, recreational facilities, medical supplies and other goods and services.
A hierarchical geographic presentation shows the geographic entities in a superior/subordinate structure in census products. This structure is derived from the legal, administrative, or areal relationships of the entities. The hierarchical structure is depicted in report tables by means of indentation. The following structure is used for the 2005 Census of the Republic of Palau:
Republic of Palau State Hamlet/Village Enumeration District Block
Individuals Families Households General Population
The Census covered all the households and respective residents in the entire country.
Census/enumeration data [cen]
Not applicable to a full enumeration census.
Face-to-face [f2f]
The 2005 Palau Census of Population and Housing comprises three parts: 1. Housing - one form for each household 2. Population - one for for each member of the household 3. People who have left home - one form for each household.
Full scale processing and editing activiities comprised eight separate sessions either with or separately but with remote guidance of the U.S. Census Bureau experts to finalize all datasets for publishing stage.
Processing operation was handled with care to produce a set of data that describes the population as clearly and accurately as possible. To meet this objective, questionnaires were reviewed and edited during field data collection operations by crew leaders for consistency, completeness, and acceptability. Questionnaires were also reviewed by census clerks in the census office for omissions, certain inconsistencies, and population coverage. For example, write-in entries such as "Don't know" or "NA" were considered unacceptable in certain quantities and/or in conjunction with other data omissions.
As a result of this review operation, a telephone or personal visit follow-up was made to obtain missing information. Potential coverage errors were included in the follow-up, as well as questionnaires with omissions or inconsistencies beyond the completeness and quality tolerances specified in the review procedures.
Subsequent to field operations, remaining incomplete or inconsistent information on the questionnaires was assigned using imputation procedures during the final automated edit of the collected data. Allocations, or computer assignments of acceptable data in place of unacceptable entries or blanks, were needed most often when an entry for a given item was lacking or when the information reported for a person or housing unit on that item was inconsistent with other information for that same person or housing unit. As in previous censuses, the general procedure for changing unacceptable entries was to assign an entry for a person or housing unit that was consistent with entries for persons or housing units with similar characteristics. The assignment of acceptable data in lace of blanks or unacceptable entries enhanced the usefulness of the data.
Another way to make corrections during the computer editing process is substitution. Substitution is the assignment of a full set of characteristics for a person or housing unit. Because of the detailed field operations, substitution was not needed for the 2005 Census.
Sampling Error is not applicable to full enumeration censuses.
In any large-scale statistical operation, such as the 2005 Census of the Republic of Palau, human- and machine-related errors were anticipated. These errors are commonly referred to as nonsampling errors. Such errors include not enumerating every household or every person in the population, not obtaining all required information form the respondents, obtaining incorrect or inconsistent information, and recording information incorrectly. In addition, errors can occur during the field review of the enumerators' work, during clerical handling of the census questionnaires, or during the electronic processing of the questionnaires.
To reduce various types of nonsampling errors, a number of techniques were implemented during the planning, data collection, and data processing activities. Quality assurance methods were used throughout the data collection and processing phases of the census to improve the quality of the data.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Key Table Information.Table Title.Manufacturing: E-Commerce Statistics for the U.S.: 2022.Table ID.ECNECOMM2022.EC2231ECOMM.Survey/Program.Economic Census.Year.2022.Dataset.ECN Core Statistics Manufacturing: E-Commerce Statistics for the U.S.: 2022.Release Date.2025-01-23.Release Schedule.The Economic Census occurs every five years, in years ending in 2 and 7.The data in this file come from the 2022 Economic Census data files released on a flow basis starting in January 2024 with First Look Statistics. Preliminary U.S. totals released in January 2024 are superseded with final data shown in the releases of later economic census statistics through March 2026.For more information about economic census planned data product releases, see 2022 Economic Census Release Schedule..Dataset Universe.The dataset universe consists of all establishments that are in operation for at least some part of 2022, are located in one of the 50 U.S. states, associated offshore areas, or the District of Columbia, have paid employees, and are classified in one of nineteen in-scope sectors defined by the 2022 North American Industry Classification System (NAICS)..Methodology.Data Items and Other Identifying Records.Sales, value of shipments, or revenue ($1,000)E-Shipments value ($1,000) E-Shipments as percent of total sales, value of shipments, or revenue (%) Range indicating imputed percentage of total sales, value of shipments, or revenueDefinitions can be found by clicking on the column header in the table or by accessing the Economic Census Glossary..Unit(s) of Observation.The reporting units for the economic census are employer establishments. An establishment is generally a single physical location where business is conducted or where services or industrial operations are performed. A company or firm is comprised of one or more in-scope establishments that operate under the ownership or control of a single organization. For some industries, the reporting units are instead groups of all establishments in the same industry belonging to the same firm..Geography Coverage.The data are shown for the U.S. level only. For information about economic census geographies, including changes for 2022, see Geographies..Industry Coverage.The data are shown at the 2- through 3-digit 2022 NAICS code levels for the U.S. For information about NAICS, see Economic Census Code Lists..Sampling.The 2022 Economic Census sample includes all active operating establishments of multi-establishment firms and approximately 1.7 million single-establishment firms, stratified by industry and state. Establishments selected to the sample receive a questionnaire. For all data on this table, establishments not selected into the sample are represented with administrative data. For more information about the sample design, see 2022 Economic Census Methodology..Confidentiality.The Census Bureau has reviewed this data product to ensure appropriate access, use, and disclosure avoidance protection of the confidential source data (Project No. 7504609, Disclosure Review Board (DRB) approval number: CBDRB-FY23-099).To protect confidentiality, the U.S. Census Bureau suppresses cell values to minimize the risk of identifying a particular business’ data or identity.To comply with disclosure avoidance guidelines, data rows with fewer than three contributing firms or three contributing establishments are not presented. Additionally, establishment counts are suppressed when other select statistics in the same row are suppressed. More information on disclosure avoidance is available in the 2022 Economic Census Methodology..Technical Documentation/Methodology.For detailed information about the methods used to collect data and produce statistics, survey questionnaires, Primary Business Activity/NAICS codes, NAPCS codes, and more, see Economic Census Technical Documentation..Weights.No weighting applied as establishments not sampled are represented with administrative data..Table Information.FTP Download.https://www2.census.gov/programs-surveys/economic-census/data/2022/sector31/.API Information.Economic census data are housed in the Census Bureau Application Programming Interface (API)..Symbols.D - Withheld to avoid disclosing data for individual companies; data are included in higher level totalsN - Not available or not comparableS - Estimate does not meet publication standards because of high sampling variability, poor response quality, or other concerns about the estimate quality. Unpublished estimates derived from this table by subtraction are subject to these same limitations and should not be attributed to the U.S. Census Bureau. For a description of publication standards and the total quantity response rate, see link to program methodology page.X - Not applicableA - Relative standard error of 100% or morer - Reviseds - Relative standard error exceeds 40%For a complete list of symbols, see Economic Census Data Dictionary..Data-Specific Notes.Data users who create their own es...
Facebook
Twitterhttps://www.icpsr.umich.edu/web/ICPSR/studies/3524/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/3524/terms
These Fifth-Count Tallies by school district were created from the assembled and edited 20-percent, 15-percent, and 5-percent Samples portions of the 1970 Census of Population and Housing.
Facebook
Twitterhttps://opendata.victoria.ca/pages/open-data-licencehttps://opendata.victoria.ca/pages/open-data-licence
2016 Short Form Census data (100% sample) broken down by neighbourhood. The data breakdown per neighbourhood is a special data request from Statistics Canada, with help from the Capital Regional District. Data were adapted from the 2016 National Household Survey (short form census questionnaire).Data quality:Victoria; City [Census subdivision]; British ColumbiaGlobal non-response rate (GNR) short-form census questionnaire: 6.6%Global non-response rate (GNR) long-form census questionnaire: 5.7%Source: Statistics Canada, 2016 Census of Population.
Facebook
TwitterThe key objective of every census is to count every person (man, woman, child) resident in the country on census night, and also collect information on assorted demographic (sex, age, marital status, citizenship) and socio-economic (education/qualifications; labour force and economic activity) information, as well as data pertinent to household and housing characteristics. This count provides a complete picture of the population make-up in each village and town, of each island and region, thus allowing for an assessment of demographic change over time.
The need for a national census became obvious to the Census Office (Bureau of Statistics) during 1997 when a memo was submitted to government officials proposing the need for a national census in an attempt to update old socio-economic figures. The then Acting Director of the Bureau of Statistics and his predecessor shared a similar view: that the 'heydays' and 'prosperity' were nearing their end. This may not have been apparent, as it took until almost mid-2001 for the current Acting Government Statistician to receive instructions to prepare planning for a national census targeted for 2002. It has been repeatedly said that for adequate planning at the national level, information about the characteristics of the society is required. With such information, potential impacts can be forecast and policies can be designed for the improvement and benefit of society. Without it, the people, national planners and leaders will inevitably face uncertainties.
National coverage as the Population Census covers the whole of Nauru.
The Census covers all individuals living in private and non-private dwellings and institutions.
Census/enumeration data [cen]
There is no sampling for the population census, full coverage.
Face-to-face [f2f]
The questionnaire was based on the Pacific Islands Model Population and Housing Census Form and the 1992 census, and comprised two parts: a set of household questions, asked only of the head of household, and an individual questionnaire, administered to each household member. Unlike the previous census, which consisted of a separate household form plus two separate individual forms for Nauruans and non-Nauruans, the 2 002 questionnaire consisted of only one form separated into different parts and sections. Instructions (and skips) were desi
The questionnaire cover recorded various identifiers: district name, enumeration area, house number, number of households (family units) residing, total number of residents, gender, and whether siblings of the head of the house were also recorded. The second page, representing a summary page, listed every individual residing within the house. This list was taken by the enumerator on the first visit, on the eve of census night. The first part of the census questionnaire focused on housing-related questions. It was administered only once in each household, with questions usually asked of the household head. The household form asked the same range of questions as those covered in the 1992 census, relating to type of housing, structure of outer walls, water supply sources and storage, toilet and cooking facilities, lighting, construction materials and subsistence-type activities. The second part of the census questionnaire focused on individual questions covering all household members. This section was based on the 1992 questions, with notable differences being the exclusion of income-level questions and the expansion of fertility and mortality questions. As in 1992, a problem emerged during questionnaire design regarding the question of who or what should determine a ‘Nauruan’. Unlike the 1992 census, where the emphasis was on blood ties, the issue of naturalisation and citizenship through the sale of passports seriously complicated matters in 2 002. To resolve this issue, it was decided to apply two filtering processes: Stage 1 identified persons with tribal heritage through manual editing, and Stage 2 identified persons of Nauruan nationality and citizenship through designed skips in the questionnaire that were incorporated in the data-processing programming.
The topics of questions for each of the parts include: - Person Particulars: - name - relationship - sex - ethnicity - religion - educational attainment - Economic Activity (to all persons 15 years and above): - economic activity - economic inactive - employment status - Fertility: - Fertility - Mortality - Labour Force Activity: - production of cash crops - fishing - own account businesses - handicrafts. - Disability: - type of disability - nature of disability - Household and housing: - electricity - water - tenure - lighting - cooking - sanitation - wealth ownerships
Coding, data entry and editing Coding took longer than expected when the Census Office found that more quality-control checks were required before coding could take place and that a large number of forms still required attention. While these quality-control checks were supposed to have been done by the supervisors in the field, the Census Office decided to review all census forms before commencing the coding. This process took approximately three months, before actual data processing could begin. The amount of additional time required to recheck the quality of every census form meant that data processing fell behind schedule. The Census Office had to improvise, with a little pressure from external stakeholders, and coding, in conjunction with data entry, began after recruiting two additional data entry personnel. All four Census Office staff became actively involved with coding, with one staff member alternating between coding and data entry, depending on which process was dropping behind schedule. In the end, the whole process took almost two months to complete. Prior to commencing data entry, the Census Office had to familiarise itself with the data entry processing system. For this purpose, SPC’s Demography/Population Programme was invited to lend assistance. Two office staff were appointed to work with Mr Arthur Jorari, SPC Population Specialist, who began by revising their skills for the data processing software that had been introduced by Dr McMurray. This training attachment took two weeks to complete. Data entry was undertaken using the 2 .3 version of the US Census Bureau’s census and surveying processing software, or CSPro2.3. This version was later updated to CSPro2.4, and all data were transferred accordingly. Technical assistance for data editing was provided by Mr Jorari over a two-week period. While most edits were completed during this period, it was discovered that some batches of questionnaires had not been entered during the initial data capturing. Therefore, batch-edit application had to be regenerated. This process was frequently interrupted by power outages prevailing at the time, which delayed data processing considerably and also required much longer periods of technical support to the two Nauru data processing staff via phone or email (when available).
Data was compared with Administrative records after the Census to review the quality and reliability of the data.
Facebook
Twitterhttps://www.icpsr.umich.edu/web/ICPSR/studies/8038/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/8038/terms
This data collection is a component of Summary Tape File (STF) 3, which consists of four sets of data containing detailed tabulations of the nation's population and housing characteristics produced from the 1980 Census. The STF 3 files contain sample data inflated to represent the total United States population. The files also contain 100-percent counts and unweighted sample counts of persons and housing units. All files in the STF 3 series are identical, containing 321 substantive data variables organized in the form of 150 "tables," as well as standard geographic identification variables. Population items tabulated for each person include demographic data and information on schooling, ethnicity, labor force status, and children, as well as details on occupation and income. Housing items include size and condition of the housing unit as well as information on value, age, water, sewage and heating, vehicles, and monthly owner costs. Each dataset provides different geographic coverage. STF 3C consists of one nationwide data file containing information about all states. It contains summaries for the United States, census regions, census divisions, states, standard consolidated statistical areas (SCSAs), standard metropolitan statistical areas (SMSAs), urbanized areas, counties, places of 10,000 or more, congressional districts, and minor civil divisions (MCDs) of 10,000 or more in Connecticut, Maine, Massachusetts, Michigan, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Vermont, and Wisconsin. The Census Bureau's machine-readable data dictionary for STF 3 is also available through CENSUS OF POPULATION AND HOUSING, 1980 [UNITED STATES]: CENSUS SOFTWARE PACKAGE (CENSPAC) VERSION 3.2 WITH STF4 DATA DICTIONARIES (ICPSR 7789), the software package designed specifically by the Census Bureau for use with the 1980 Census data files.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Table showing all variables, classifications and codes included within the Census 2021 microdata samples. This covers the secure, safeguarded and public samples.
Facebook
TwitterThe 2005 Census of Population and Housing was the third comprehensive data collection of population and housing characteristics taken by the Republic since Compact Implementation in October 1994. The 2005 Census of Palau had two volumes. This first volume contained the basic tables, which can be used instantly for planning and policy determination. A second volume, the Census monograph, contained analyses of trends and comparisons of the States.
National
Individuals Families Households General Population
The Census covered all the households and respective residents in the entire country.
Census/enumeration data [cen]
Not applicable to a full enumeration census. For details please refer to the attached Basic Tables and Monograph.
Face-to-face [f2f]
Full scale processing and editing activiities comprised eight separate sessions either with or separately but with remote guidance of the U.S. Census Bureau experts to finalize all datasets for publishing stage.
In any large-scale statistical operation, such as the 2005 Census of the Republic of Palau, human- and machine-related errors do occur. These errors are commonly referred to as nonsampling errors. Such errors include not enumerating every household or every person in the population, not obtaining all required information form the respondents, obtaining incorrect or inconsistent information, and recording information incorrectly. In addition, errors can occur during the field review of the enumerators' work, during clerical handling of the census questionnaires, or during the electronic processing of the questionnaires.
To reduce various types of nonsampling errors, a number of techniques were implemented during the planning, data collection, and data processing activities. Quality assurance methods were used throughout the data collection and processing phases of the census to improve the quality of the data.
Sampling Error is not applicable to censuses; however, a processing operation was handled with care to produce a set of data that describes the population as clearly and accurately as possible. To meet this objective, questionnaires were reviewed and edited during field data collection operations by crew leaders for consistency, completeness, and acceptability. Questionnaires were also reviewed by census clerks in the census office for omissions, certain inconsistencies, and population coverage. For example, write-in entries such as “Don't know” or “NA” were considered unacceptable in certain quantities and/or in conjunction with other data omissions.
As a result of this review operation, a telephone or personal visit follow-up was made to obtain missing information. Potential coverage errors were included in the follow-up, as well as questionnaires with omissions or inconsistencies beyond the completeness and quality tolerances specified in the review procedures.
Subsequent to field operations, remaining incomplete or inconsistent information on the questionnaires was assigned using imputation procedures during the final automated edit of the collected data. Allocations, or computer assignments of acceptable data in place of unacceptable entries or blanks, were needed most often when an entry for a given item was lacking or when the information reported for a person or housing unit on that item was inconsistent with other information for that same person or housing unit. As in previous censuses, the general procedure for changing unacceptable entries was to assign an entry for a person or housing unit that was consistent with entries for persons or housing units with similar characteristics. The assignment of acceptable data in lace of blanks or unacceptable entries enhanced the usefulness of the data.
Another way to make corrections during the computer editing process is substitution. Substitution is the assignment of a full set of characteristics for a person or housing unit. Because of the detailed field operations, substitution was not needed for the 2005 Census.
In any large-scale statistical operation, such as the 2005 Census of the Republic of Palau, human- and machine-related errors were anticipated. These errors are commonly referred to as nonsampling errors. Such errors include not enumerating every household or every person in the population, not obtaining all required information form the respondents, obtaining incorrect or inconsistent information, and recording information incorrectly. In addition, errors can occur during the field review of the enumerators' work, during clerical handling of the census questionnaires, or during the electronic processing of the questionnaires.
To reduce various types of nonsampling errors, a number of techniques were implemented during the planning, data collection, and data processing activities. Quality assurance methods were used throughout the data collection and processing phases of the census to improve the quality of the data.
Facebook
TwitterThe programme for the World Census of Agriculture 2000 is the eighth in the series for promoting a global approach to agricultural census taking. The first and second programmes were sponsored by the International Institute for Agriculture (IITA) in 1930 and 1940. Subsequent ones up to 1990 were promoted by the Food and Agriculture Organization of the United Nations(FAO). FAO recommends that each country should conduct at least one agricultural census in each census programme decade and its programme for the World Census of Agriculture 2000 for instance corresponds to agricultural census to be undertaken during the decade 1996 to 2005. Many countries do not have sufficient resources for conducting an agricultural census. It therefore became an acceptable practice since 1960 to conduct agricultural census on sample basis for those countries lacking the resources required for a complete enumeration.
In Nigeria's case, a combination of complete enumeration and sample enumeration is adopted whereby the rural (peasant) holdings are covered on sample basis while the modern holdings are covered on complete enumeration. The project named “National Agricultural Sample Census” derives from this practice. Nigeria through the National Agricultural Sample Census (NASC) participated in the 1970's, 1980's, 1990's programmes of the World Census of Agriculture. Nigeria failed to conduct the Agricultural Census in 2003/2004 because of lack of funding. The NBS regular annual agriculture surveys since 1996 had been epileptic and many years of backlog of data set are still unprocessed. The baseline agricultural data is yet to be updated while the annual regular surveys suffered set back. There is an urgent need by the governments (Federal, State, LGA), sector agencies, FAO and other International Organizations to come together to undertake the agricultural census exercise which is long overdue. The conduct of 2006/2008 National Agricultural Sample Census Survey is now on course with the pilot exercise carried out in the third quarter of 2007.
The National Agricultural Sample Census (NASC) 2006/08 is imperative to the strengthening of the weak agricultural data in Nigeria. The project is phased into three sub-projects for ease of implementation; the Pilot Survey, Modern Agricultural Holding and the Main Census. It commenced in the third quarter of 2006 and to terminate in the first quarter of 2008. The pilot survey was implemented collaboratively by National Bureau of Statistics.
The main objective of the pilot survey was to test the adequacy of the survey instruments, equipments and administration of questionnaires, data processing arrangement and report writing. The pilot survey conducted in July 2007 covered the two NBS survey system-the National Integrated Survey of Households (NISH) and National Integrated Survey of Establishment (NISE). The survey instruments were designed to be applied using the two survey systems while the use of Geographic Positioning System (GPS) was introduced as additional new tool for implementing the project.
The Stakeholders workshop held at Kaduna on 21st-23rd May 2007 was one of the initial bench marks for the take off of the pilot survey. The pilot survey implementation started with the first level training (training of trainers) at the NBS headquarters between 13th - 15th June 2007. The second level training for all levels of field personnels was implemented at headquarters of the twelve (12) concerned states between 2nd - 6th July 2007. The field work of the pilot survey commenced on the 9th July and ended on the 13th of July 07. The IMPS and SPSS were the statistical packages used to develop the data entry programme.
State
Households who are rearing livestock or kept poultry
Livestock or poultry household
Census/enumeration data [cen]
The survey was carried out in 12 states falling under 6 geo-political zones. 2 states were covered in each geo-political zone. 2 local government areas per selected state were studied. 2 Rural enumeration areas per local government area were covered and 3 Livestock/poultry farming housing units were systematically selected and canvassed.
No Deviation
Face-to-face [f2f]
The NASC livestock and poultry questionnaire was divided into the following sections: - Identification/description of holdings - Funds, employment and earnings/wages - Livestock - Poultry - Fixed assets - Sales - Stock - Subsidy
The data processing and analysis plan involved five main stages: training of data processing staff; manual editing and coding; development of data entry programme; data entry and editing and tabulation. Census and Surveys Processing System (CSPro) software were used for data entry, Statistical Package for Social Sciences (SPSS) and CSPro for editing and a combination of SPSS, Statistical Analysis Software (SAS) and EXCEL for table generation. The subject-matter specialists and computer personnel from the NBS and CBN implemented the data processing work. Tabulation Plans were equally developed by these officers for their areas and topics covered in the three-survey system used for the exercise. The data editing is in 2 phases namely manual editing before the data entry were done. This involved using editors at the various zones to manually edit and ensure consistency in the information on the questionnaire. The second editing is the computer editing, this is the cleaning of the already enterd data. The completed questionnaires were collected and edited manually (a) Office editing and coding were done by the editor using visual control of the questionnaire before data entry (b) Cspro was used to design the data entry template provided as external resource (c) Ten operator plus two suppervissor and two progammer were used (d) Ten machines were used for data entry (e) After data entry data entry supervisor runs fequency on each section to see that all the questionnaire were enterd
The response rate at EA level was 100 percent, while 99.3 percent was recorded at housing units level.
No computation of sampling error
The Quality Control measures were carried out during the survey, essentially to ensure quality of data. There were two levels of supervision involving the supervisors at the first level, NBS State Officers and Zonal Controllers at second level and finally the NBS Headquarters staff constituting the second level supervision.
Facebook
TwitterThe Public Use Microdata Samples (PUMS) from the 1980 Census contain person- and household-level information from the "long-form" questionnaires distributed to a sample of the population enumerated in the 1980 Census. The B Sample contains information for each state, and for households and persons residing in metropolitan areas that are too small to be separately identified and/or that cross state boundaries. Standard Metropolitan Statistical Areas (SMSAs) and county groups are defined differently here than in the A Sample [CENSUS OF POPULATION AND HOUSING, 1980 [UNITED STATES]: PUBLIC USE MICRODATA SAMPLE (A SAMPLE): 5-PERCENT SAMPLE (ICPSR 8101)]. Most states cannot be identified in their entirety. As a percentage of the l-Percent Public Use Microdata Sample (B Sample) [CENSUS OF POPULATION AND HOUSING, 1980 [UNITED STATES]: PUBLIC USE MICRODATA SAMPLE (B SAMPLE): 1-PERCENT SAMPLE (ICPSR 8170)], this file constitutes a 1-in-1000 sample, and contains all household- and person-level variables from the original B Sample. Household-level variables include housing tenure, year structure was built, number and types of rooms in dwelling, plumbing facilities, heating equipment, taxes and mortgage costs, number of children, and household and family income. Person-level variables include sex, age, marital status, race, Spanish origin, income, occupation, transportation to work, and education. (Source: retrieved from ICPSR 06/15/2011)
Facebook
TwitterIPUMS-International is an effort to inventory, preserve, harmonize, and disseminate census microdata from around the world. The project has collected the world's largest archive of publicly available census samples. The data are coded and documented consistently across countries and over time to facillitate comparative research. IPUMS-International makes these data available to qualified researchers free of charge through a web dissemination system.
The IPUMS project is a collaboration of the Minnesota Population Center, National Statistical Offices, and international data archives. Major funding is provided by the U.S. National Science Foundation and the Demographic and Behavioral Sciences Branch of the National Institute of Child Health and Human Development. Additional support is provided by the University of Minnesota Office of the Vice President for Research, the Minnesota Population Center, and Sun Microsystems.
National coverage
Household
UNITS IDENTIFIED: - Dwellings: No - Vacant units: No - Households: Yes - Individuals: Yes - Group quarters: Yes (institution) - Special populations: Yes (refugee, homeless, boating population)
UNIT DESCRIPTIONS: - Dwellings: The dwelling unit refers to that part of the structure occupied by the household. - Households: A household is defined as a person or group of persons who normally eat and live together. - Group quarters: Groups of people living together in places such as hospitals, colleges, hotels, barracks, and prisons.
All persons living in Sierra Leone
Census/enumeration data [cen]
MICRODATA SOURCE: Statistics Sierra Leone (SLL)
SAMPLE DESIGN: Systematic sample of every 10th household with a random start, drawn by the Minnesota Population Center
SAMPLE UNIT: Household
SAMPLE FRACTION: 10%
SAMPLE SIZE (person records): 494,298
Face-to-face [f2f]
Sierra Leone 2004 Population and Housing Census questionnaire
Facebook
TwitterA data set of cross-nationally comparable microdata samples for 15 Economic Commission for Europe (ECE) countries (Bulgaria, Canada, Czech Republic, Estonia, Finland, Hungary, Italy, Latvia, Lithuania, Romania, Russia, Switzerland, Turkey, UK, USA) based on the 1990 national population and housing censuses in countries of Europe and North America to study the social and economic conditions of older persons. These samples have been designed to allow research on a wide range of issues related to aging, as well as on other social phenomena. A common set of nomenclatures and classifications, derived on the basis of a study of census data comparability in Europe and North America, was adopted as a standard for recoding. This series was formerly called Dynamics of Population Aging in ECE Countries. The recommendations regarding the design and size of the samples drawn from the 1990 round of censuses envisaged: (1) drawing individual-based samples of about one million persons; (2) progressive oversampling with age in order to ensure sufficient representation of various categories of older people; and (3) retaining information on all persons co-residing in the sampled individual''''s dwelling unit. Estonia, Latvia and Lithuania provided the entire population over age 50, while Finland sampled it with progressive over-sampling. Canada, Italy, Russia, Turkey, UK, and the US provided samples that had not been drawn specially for this project, and cover the entire population without over-sampling. Given its wide user base, the US 1990 PUMS was not recoded. Instead, PAU offers mapping modules, which recode the PUMS variables into the project''''s classifications, nomenclatures, and coding schemes. Because of the high sampling density, these data cover various small groups of older people; contain as much geographic detail as possible under each country''''s confidentiality requirements; include more extensive information on housing conditions than many other data sources; and provide information for a number of countries whose data were not accessible until recently. Data Availability: Eight of the fifteen participating countries have signed the standard data release agreement making their data available through NACDA/ICPSR (see links below). Hungary and Switzerland require a clearance to be obtained from their national statistical offices for the use of microdata, however the documents signed between the PAU and these countries include clauses stipulating that, in general, all scholars interested in social research will be granted access. Russia requested that certain provisions for archiving the microdata samples be removed from its data release arrangement. The PAU has an agreement with several British scholars to facilitate access to the 1991 UK data through collaborative arrangements. Statistics Canada and the Italian Institute of statistics (ISTAT) provide access to data from Canada and Italy, respectively. * Dates of Study: 1989-1992 * Study Features: International, Minority Oversamples * Sample Size: Approx. 1 million/country Links: * Bulgaria (1992), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/02200 * Czech Republic (1991), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06857 * Estonia (1989), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06780 * Finland (1990), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06797 * Romania (1992), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06900 * Latvia (1989), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/02572 * Lithuania (1989), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/03952 * Turkey (1990), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/03292 * U.S. (1990), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06219