https://www.usa.gov/government-workshttps://www.usa.gov/government-works
This dataset contains the percentage of workers who report working from home for each county in the U.S. with a population of over 65,000 for the years 2010 to 2019. The data were taken from the U.S. Census Bureau's American Community Survey, 1-year Summary, Commuting Characteristics by Sex (S0801-C01-13).
The percentage of the working population that does not commute to work. Source: U.S. Census Bureau, American Community SurveyYears Available: 2018-2022, 2019-2023Please note: We do not recommend comparing overlapping years of data due to the nature of this dataset. For more information, please visit: https://www.census.gov/programs-surveys/acs/guidance/comparing-acs-data.html
https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/
Dataset shows an individual’s statistical area 3 (SA3) of usual residence and the SA3 of their workplace address, for the employed census usually resident population count aged 15 years and over, by main means of travel to work from the 2018 and 2023 Censuses.
The main means of travel to work categories are:
Main means of travel to work is the usual method which an employed person aged 15 years and over used to travel the longest distance to their place of work.
Workplace address refers to where someone usually works in their main job, that is the job in which they worked the most hours. For people who work at home, this is the same address as their usual residence address. For people who do not work at home, this could be the address of the business they work for or another address, such as a building site.
Workplace address is coded to the most detailed geography possible from the available information. This dataset only includes travel to work information for individuals whose workplace address is available at SA3 level. The sum of the counts for each region in this dataset may not equal the total employed census usually resident population count aged 15 years and over for that region. Workplace address – 2023 Census: Information by concept has more information.
This dataset can be used in conjunction with the following spatial files by joining on the SA3 code values:
Download data table using the instructions in the Koordinates help guide.
Footnotes
Geographical boundaries
Statistical standard for geographic areas 2023 (updated December 2023) has information about geographic boundaries as of 1 January 2023. Address data from 2013 and 2018 Censuses was updated to be consistent with the 2023 areas. Due to the changes in area boundaries and coding methodologies, 2013 and 2018 counts published in 2023 may be slightly different to those published in 2013 or 2018.
Subnational census usually resident population
The census usually resident population count of an area (subnational count) is a count of all people who usually live in that area and were present in New Zealand on census night. It excludes visitors from overseas, visitors from elsewhere in New Zealand, and residents temporarily overseas on census night. For example, a person who usually lives in Christchurch city and is visiting Wellington city on census night will be included in the census usually resident population count of Christchurch city.
Population counts
Stats NZ publishes a number of different population counts, each using a different definition and methodology. Population statistics – user guide has more information about different counts.
Caution using time series
Time series data should be interpreted with care due to changes in census methodology and differences in response rates between censuses. The 2023 and 2018 Censuses used a combined census methodology (using census responses and administrative data).
Workplace address time series
Workplace address time series data should be interpreted with care at lower geographic levels, such as statistical area 2 (SA2). Methodological improvements in 2023 Census resulted in greater data accuracy, including a greater proportion of people being counted at lower geographic areas compared to the 2018 Census. Workplace address – 2023 Census: Information by concept has more information.
Working at home
In the census, working at home captures both remote work, and people whose business is at their home address (e.g. farmers or small business owners operating from their home). The census asks respondents whether they ‘mostly’ work at home or away from home. It does not capture whether someone does both, or how frequently they do one or the other.
Rows excluded from the dataset
Rows show SA3 of usual residence by SA3 of workplace address. Rows with a total population count of less than six have been removed to reduce the size of the dataset, given only a small proportion of SA3-SA3 combinations have commuter flows.
About the 2023 Census dataset
For information on the 2023 dataset see Using a combined census model for the 2023 Census. We combined data from the census forms with administrative data to create the 2023 Census dataset, which meets Stats NZ's quality criteria for population structure information. We added real data about real people to the dataset where we were confident the people who hadn’t completed a census form (which is known as admin enumeration) will be counted. We also used data from the 2018 and 2013 Censuses, administrative data sources, and statistical imputation methods to fill in some missing characteristics of people and dwellings.
Data quality
The quality of data in the 2023 Census is assessed using the quality rating scale and the quality assurance framework to determine whether data is fit for purpose and suitable for release. Data quality assurance in the 2023 Census has more information.
Quality rating of a variable
The quality rating of a variable provides an overall evaluation of data quality for that variable, usually at the highest levels of classification. The quality ratings shown are for the 2023 Census unless stated. There is variability in the quality of data at smaller geographies. Data quality may also vary between censuses, for subpopulations, or when cross tabulated with other variables or at lower levels of the classification. Data quality ratings for 2023 Census variables has more information on quality ratings by variable.
Main means of travel to work quality rating
Main means of travel to work is rated as moderate quality.
Main means of travel to work – 2023 Census: Information by concept has more information, for example, definitions and data quality.
Workplace address quality rating
Workplace address is rated as moderate quality.
Workplace address – 2023 Census: Information by concept has more information, for example, definitions and data quality.
Using data for good
Stats NZ expects that, when working with census data, it is done so with a positive purpose, as outlined in the Māori Data Governance Model (Data Iwi Leaders Group, 2023). This model states that "data should support transformative outcomes and should uplift and strengthen our relationships with each other and with our environments. The avoidance of harm is the minimum expectation for data use. Māori data should also contribute to iwi and hapū tino rangatiratanga”.
Confidentiality
The 2023 Census confidentiality rules have been applied to 2013, 2018, and 2023 data. These rules protect the confidentiality of individuals, families, households, dwellings, and undertakings in 2023 Census data. Counts are calculated using fixed random rounding to base 3 (FRR3) and suppression of ‘sensitive’ counts less than six, where tables report multiple geographic variables and/or small populations. Individual figures may not always sum to stated totals. Applying confidentiality rules to 2023 Census data and summary of changes since 2018 and 2013 Censuses has more information about 2023 Census confidentiality rules.
Percentages
To calculate percentages, divide the figure for the category of interest by the figure for ‘Total stated’ where this applies.
Symbol
-999 Confidential
Inconsistencies in definitions
Please note that there may be differences in definitions between census classifications and those used for other data collections.
This EnviroAtlas dataset portrays the commute time of workers to their workplace for each Census Block Group (CBG) during 2008-2012. Data were compiled from the Census ACS (American Community Survey) 5-year Summary Data. The commute time is the amount of travel time in minutes for workers to get from home to work. This value includes private vehicle use, carpooling, public transit, bicycling, or walking. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
This layer shows workers' place of residence by mode of commute. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized by the percentage of workers who drove alone. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B08301 (Not all lines of this ACS table are available in this feature layer.)Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
NOTE: Data based on a sample. For information on confidentiality.protection, sampling error, nonsampling error, definitions, and.count corrections see.http://www.census.gov/prod/cen2000/doc/sf4.pdf
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Sweet Home. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.
Key observations: Insights from 2023
Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Sweet Home, the median income for all workers aged 15 years and older, regardless of work hours, was $35,745 for males and $22,144 for females.
These income figures highlight a substantial gender-based income gap in Sweet Home. Women, regardless of work hours, earn 62 cents for each dollar earned by men. This significant gender pay gap, approximately 38%, underscores concerning gender-based income inequality in the city of Sweet Home.
- Full-time workers, aged 15 years and older: In Sweet Home, among full-time, year-round workers aged 15 years and older, males earned a median income of $53,992, while females earned $43,309, leading to a 20% gender pay gap among full-time workers. This illustrates that women earn 80 cents for each dollar earned by men in full-time roles. This analysis indicates a widening gender pay gap, showing a substantial income disparity where women, despite working full-time, face a more significant wage discrepancy compared to men in the same roles.Surprisingly, the gender pay gap percentage was higher across all roles, including non-full-time employment, for women compared to men. This suggests that full-time employment offers a more equitable income scenario for women compared to other employment patterns in Sweet Home.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.
Gender classifications include:
Employment type classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Sweet Home median household income by race. You can refer the same here
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
NOTE: Data based on a sample. For information on confidentiality.protection, sampling error, nonsampling error, definitions, and.count corrections see.http://www.census.gov/prod/cen2000/doc/sf4.pdf
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau's Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units for states and counties..Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the .Technical Documentation.. section......Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the .Methodology.. section..Source: U.S. Census Bureau, 2014-2018 American Community Survey 5-Year Estimates.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see .ACS Technical Documentation..). The effect of nonsampling error is not represented in these tables..Workers include members of the Armed Forces and civilians who were at work last week..While the 2014-2018 American Community Survey (ACS) data generally reflect the February 2013 Office of Management and Budget (OMB) definitions of metropolitan and micropolitan statistical areas; in certain instances the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB definitions due to differences in the effective dates of the geographic entities..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on Census 2010 data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:..An "**" entry in the margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate..An "-" entry in the estimate column indicates that either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution, or the margin of error associated with a median was larger than the median itself..An "-" following a median estimate means the median falls in the lowest interval of an open-ended distribution..An "+" following a median estimate means the median falls in the upper interval of an open-ended distribution..An "***" entry in the margin of error column indicates that the median falls in the lowest interval or upper interval of an open-ended distribution. A statistical test is not appropriate..An "*****" entry in the margin of error column indicates that the estimate is controlled. A statistical test for sampling variability is not appropriate. .An "N" entry in the estimate and margin of error columns indicates that data for this geographic area cannot be displayed because the number of sample cases is too small..An "(X)" means that the estimate is not applicable or not available....
Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
The Travel Time to Work indicator compares the mean, or average, commute time for Champaign County residents to the mean commute time for residents of Illinois and the United States as a whole. On its own, mean travel time of all commuters on all mode types could be reflective of a number of different conditions. Congestion, mode choice, changes in residential patterns, changes in the location of major employment centers, and changes in the transit network can all impact travel time in different and often conflicting ways. Since the onset of the COVID-19 pandemic in 2020, the workplace location (office vs. home) is another factor that can impact the mean travel time of an area. We don’t recommend trying to draw any conclusions about conditions in Champaign County, or anywhere else, based on mean travel time alone.
However, when combined with other indicators in the Mobility category (and other categories), mean travel time to work is a valuable measure of transportation behaviors in Champaign County.
Champaign County’s mean travel time to work is lower than the mean travel time to work in Illinois and the United States. Based on this figure, the state of Illinois has the longest commutes of the three analyzed areas.
The year-to-year fluctuations in mean travel time have been statistically significant in the United States since 2014, and in Illinois in 2021 and 2022. Champaign County’s year-to-year fluctuations in mean travel time were statistically significant from 2021 to 2022, the first time since this data first started being tracked in 2005.
Mean travel time data was sourced from the U.S. Census Bureau’s American Community Survey (ACS) 1-Year Estimates, which are released annually.
As with any datasets that are estimates rather than exact counts, it is important to take into account the margins of error (listed in the column beside each figure) when drawing conclusions from the data.
Due to the impact of the COVID-19 pandemic, instead of providing the standard 1-year data products, the Census Bureau released experimental estimates from the 1-year data in 2020. This includes a limited number of data tables for the nation, states, and the District of Columbia. The Census Bureau states that the 2020 ACS 1-year experimental tables use an experimental estimation methodology and should not be compared with other ACS data. For these reasons, and because data is not available for Champaign County, no data for 2020 is included in this Indicator.
For interested data users, the 2020 ACS 1-Year Experimental data release includes a dataset on Travel Time to Work.
Sources: U.S. Census Bureau; American Community Survey, 2023 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using data.census.gov; (16 October 2024).; U.S. Census Bureau; American Community Survey, 2022 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using data.census.gov; (10 October 2023).; U.S. Census Bureau; American Community Survey, 2021 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using data.census.gov; (17 October 2022).; U.S. Census Bureau; American Community Survey, 2019 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using data.census.gov; (29 March 2021).; U.S. Census Bureau; American Community Survey, 2018 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using data.census.gov; (29 March 2021).; U.S. Census Bureau; American Community Survey, 2017 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2016 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (14 September 2017).; U.S. Census Bureau; American Community Survey, 2015 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (19 September 2016).; U.S. Census Bureau; American Community Survey, 2014 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2013 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2012 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2011 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2010 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2009 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2008 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2007 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2006 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2005 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).
The percentage of the working population that does not commute to work. Source: U.S. Census Bureau, American Community Survey Years Available: 2018-2022, 2019-2023
https://www.usa.gov/government-works/https://www.usa.gov/government-works/
AGGREGATE TRAVEL TIME TO WORK (IN MINUTES) OF WORKERS BY TRAVEL TIME TO WORK Survey/Program: American Community Survey Universe: Workers 16 years and over who did not work at home TableID: B08135 Product: 2019: ACS 1-Year Estimates Detailed Tables
https://www.icpsr.umich.edu/web/ICPSR/studies/6497/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/6497/terms
This dataset, prepared by the Inter-university Consortium for Political and Social Research, comprises 2 percent of the cases in the second release of CENSUS OF POPULATION AND HOUSING, 1990 [UNITED STATES]: PUBLIC USE MICRODATA SAMPLE: 5-PERCENT SAMPLE (ICPSR 9952). As 2 percent of the 5-percent Public Use Microdata Sample (PUMS), it constitutes a 1-in-1,000 sample, and contains all housing and population variables in the original 5-percent PUMS. Housing variables include area type, state and area of residence, farm/nonfarm status, type of structure, year structure was built, vacancy and boarded-up status, number of rooms and bedrooms, presence or absence of a telephone, presence or absence of complete kitchen and plumbing facilities, type of sewage, water source, and heating fuel used, property value, tenure, year moved into housing unit, type of household/family, type of group quarters, household language, number of persons, related children, own/adopted children, and stepchildren in the household, number of persons and workers in the family, status of mortgage, second mortgage, and home equity loan, number of vehicles available, household income, sales of agricultural products, payments for rent, mortgage, and property tax, condominium fees, mobile home costs, and cost of electricity, water, heating fuel, and flood/fire/hazard insurance. Person variables cover age, sex, relationship to householder, educational attainment, school enrollment, race, Hispanic origin, ancestry, language spoken at home, citizenship, place of birth, year of immigration, place of residence in 1985, marital status, number of children ever born, presence and age of own children, military service, mobility and personal care limitation, work limitation status, employment status, employment status of parents, occupation, industry, class of worker, hours worked last week, weeks worked in 1989, usual hours worked per week, temporary absence from work, place of work, time of departure for work, travel time to work, means of transportation to work, number of occupants in vehicle during ride to work, total earnings, total income, wages and salary income, farm and nonfarm self-employment income, Social Security income, public assistance income, retirement income, and rent, dividends, and net rental income.
Data DescriptionThe layers on this map contain population, employed labour force counts, private dwelling counts, and employment counts at Census Subdivision and Census Tract geographies from the 2006, 2011, and 2016 Census. The definition of each variable is described next:Population counts: the total population aggregated from different ages in each census tract.Employment counts: the number of labour force aged 15 years and over having an usual work place or working at home at places of work in each census tract, excluding workers with a non-fixed place-of-work.Employed labour force counts: the number of employed labour force aged 15 years and over having a usual work place or working at home at places of residence in each census tract including workers with a non-fixed place-of-work.Private dwellings count: the number of households aggregated from different types of dwellings in each census tract.Note: Population counts are from long census survey forms, covering 25% of the population. The other three variables are from short census survey forms, covering 100% population.Note about the Legend: the Employment and Population values are normalized by Quantiles. Each colour has the same number of features and will not necessarily represent the same values in different layers.InstructionsZoom in and out of the map to update the bar charts. Use the Select Tool to select specific geographies to display on the bar chart.“Select by rectangle” allows you to draw a rectangle and select multiple geography to view in the chart.“Select by point” allows you select an area by clicking on its geography."Add Data" allows you add separate public data as need from ArcGIS Online, URL (an ArcGIS Server Web Service, a WMS OGC Web Service, a KML file, a GeoRSS file, a CSV file), and local files (shapefile, csv, kml, gpx, geojson)Project lead: A.MaruicioDevelopers: C.Riccardo, W.Huang, D.Robbin
The State Legislative District Summary File (Sample) (SLDSAMPLE) contains the sample data, which is the information compiled from the questions asked of a sample of all people and housing units. Population items include basic population totals; urban and rural; households and families; marital status; grandparents as caregivers; language and ability to speak English; ancestry; place of birth, citizenship status, and year of entry; migration; place of work; journey to work (commuting); school enrollment and educational attainment; veteran status; disability; employment status; industry, occupation, and class of worker; income; and poverty status. Housing items include basic housing totals; urban and rural; number of rooms; number of bedrooms; year moved into unit; household size and occupants per room; units in structure; year structure built; heating fuel; telephone service; plumbing and kitchen facilities; vehicles available; value of home; monthly rent; and shelter costs. The file contains subject content identical to that shown in Summary File 3 (SF 3).
https://www.icpsr.umich.edu/web/ICPSR/studies/38974/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/38974/terms
During the COVID-19 pandemic, certain occupations and industries were deemed "essential", and typically included individuals who worked in healthcare, food service, public transportation, etc. However, early on in the pandemic, while these workers faced disproportionately higher risks, they often did not receive adequate personal protective equipment (PPE), were unable to work from home, and were limited in their ability to take other precautions to safeguard their health (Chen et al., 2021). As a result, previous studies have documented higher rates of infection, hospitalization, and death among essential workers compared to their non-essential worker counterparts (Selden & Berdahl, 2021; Wei et al., 2022). This dataset provides users with information on the number and proportion of essential workers in census tracts or ZIP Code tabulation areas (ZCTAs) in the United States over the 2016-2020 period.
This layer shows Commuting to Work. This is shown by state and county boundaries. This service contains the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show Population that worked at home. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2017-2021ACS Table(s): DP03Data downloaded from: Census Bureau's API for American Community Survey Date of API call: February 16, 2023National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:Boundaries come from the Cartographic Boundaries via US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates, and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto Rico. The Counties (and equivalent) layer contains 3221 records - all counties and equivalent, Washington D.C., and Puerto Rico municipios. See Areas Published. Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells.Margin of error (MOE) values of -555555555 in the API (or "*****" (five asterisks) on data.census.gov) are displayed as 0 in this dataset. The estimates associated with these MOEs have been controlled to independent counts in the ACS weighting and have zero sampling error. So, the MOEs are effectively zeroes, and are treated as zeroes in MOE calculations. Other negative values on the API, such as -222222222, -666666666, -888888888, and -999999999, all represent estimates or MOEs that can't be calculated or can't be published, usually due to small sample sizes. All of these are rendered in this dataset as null (blank) values.
https://www.icpsr.umich.edu/web/ICPSR/studies/8663/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/8663/terms
Standard labor force activity data for the week prior to the survey are provided in this data collection. Comprehensive data are supplied on the employment status, occupation, and industry of persons 14 years old and over. Also presented are personal characteristics such as age, sex, race, marital status, veteran status, household relationship, educational background, and Spanish origin. Supplemental data pertaining to work schedules include items on the usual number of hours worked daily and weekly, usual number of days and specific days worked weekly, starting and ending times of an individual's work day, and whether these starting and ending times could be varied. For deviations from regular work schedules, the main reason a particular schedule or shift was worked is elicited. Questions dealing with overtime include number of extra hours worked and rate of pay. For dual jobholders, data are provided on starting and ending times of the work day, number of weekly hours worked, earnings, occupation, industry, and main reason for working more than one job. This is the first Current Population Survey to contain questions about temporary work and about primary job-related activities completed at home.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Home township. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.
Key observations: Insights from 2023
Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Home township, the median income for all workers aged 15 years and older, regardless of work hours, was $32,699 for males and $17,438 for females.
These income figures highlight a substantial gender-based income gap in Home township. Women, regardless of work hours, earn 53 cents for each dollar earned by men. This significant gender pay gap, approximately 47%, underscores concerning gender-based income inequality in the township of Home township.
- Full-time workers, aged 15 years and older: In Home township, among full-time, year-round workers aged 15 years and older, males earned a median income of $57,986, while females earned $40,926, leading to a 29% gender pay gap among full-time workers. This illustrates that women earn 71 cents for each dollar earned by men in full-time roles. This analysis indicates a widening gender pay gap, showing a substantial income disparity where women, despite working full-time, face a more significant wage discrepancy compared to men in the same roles.Surprisingly, the gender pay gap percentage was higher across all roles, including non-full-time employment, for women compared to men. This suggests that full-time employment offers a more equitable income scenario for women compared to other employment patterns in Home township.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.
Gender classifications include:
Employment type classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Home township median household income by race. You can refer the same here
The layers on this map contain population, employed labour force counts, private dwelling counts, and employment counts at Census Subdivision and Census Tract geographies from the 2006, 2011, and 2016 Census. Definitions include:Population counts: the total population aggregated from different ages in each census tract.Employment counts: the number of labour force aged 15 years and over having an usual work place or working at home at places of work in each census tract, excluding workers with a non-fixed place-of-work.Employed labour force counts: the number of employed labour force aged 15 years and over having a usual work place or working at home at places of residence in each census tract including workers with a non-fixed place-of-work.Private dwellings count: the number of households aggregated from different types of dwellings in each census tract.Note: Population counts are from long census survey forms, covering 25% of the population. The other three variables are from short census survey forms, covering 100% population.Note about the Legend: the Employment and Population values are normalized by Quantiles. Each colour has the same number of features and will not necessarily represent the same values in different layers.CSDUID census subdivision idCSDNAME, census subdivision namePopulation, population in 2006LaborForce, labour force in 2006Household, household in 2006Job, employment in 2006Les couches de cette carte comprennent la population, la population active occupée, les logements privés et le nombre d’emplois dans les secteurs et subdivisions de recensement de 2006, 2011 et 2016. Quelques définitions :• Chiffres de population : population totale, agrégée par âge dans chacun des secteurs de recensement.• Chiffres de l’emploi : population active occupée âgée de 15 ans et plus ayant un lieu habituel de travail ou travaillant à domicile dans chacun des secteurs de recensement, excluant les travailleurs dont le lieu de travail est variable.• Chiffres de la population active occupée : population active occupée âgée de 15 ans et plus ayant un lieu habituel de travail ou travaillant au lieu de résidence dans chacun des secteurs de recensement, incluant les travailleurs dont le lieu de travail est variable.• Chiffres des logements privés : nombre de ménages agrégés selon différents types de logements dans chacun des secteurs de recensement.Nota : Les chiffres de population active occupée sont issus du questionnaire détaillé du recensement, qui couvre le quart de la population. Les trois autres variables sont issues du questionnaire abrégé, qui couvre la totalité de la population.Remarque concernant la légende : Les chiffres de population et les chiffres de l’emploi sont normalisés par quantile. Chaque couleur présente la même portion des cas, mais ne représente pas nécessairement les mêmes valeurs pour chaque couche.CSDUID identifiant de la subdivision de recensementCSDNAME, nom de la subdivision de recensementPopulation, population en 2006LaborForce, population active en 2006Household, ménages en 2006Job, emplois en 2006
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
This dataset contains the percentage of workers who report working from home for each county in the U.S. with a population of over 65,000 for the years 2010 to 2019. The data were taken from the U.S. Census Bureau's American Community Survey, 1-year Summary, Commuting Characteristics by Sex (S0801-C01-13).