This site provides access to download an ArcGIS geodatabase or shapefiles for the 2017 Texas Address Database, compiled by the Center for Water and the Environment (CWE) at the University of Texas at Austin, with guidance and funding from the Texas Division of Emergency Management (TDEM). These addresses are used by TDEM to help anticipate potential impacts of serious weather and flooding events statewide. This is part of the Texas Water Model (TWM), a project to adapt the NOAA National Water Model [1] for use in Texas public safety. This database was compiled over the period from June 2016 to December 2017. A number of gaps remain (towns and cities missing address points), see Address Database Gaps spreadsheet below [4]. Additional datasets include administrative boundaries for Texas counties (including Federal and State disaster-declarations), Councils of Government, and Texas Dept of Public Safety Regions. An Esri ArcGIS Story Map [5] web app provides an interactive map-based portal to explore and access these data layers for download.
The address points in this database include their "height above nearest drainage" (HAND) as attributes in meters and feet. HAND is an elevation model developed through processing by the TauDEM method [2], built on USGS National Elevation Data (NED) with 10m horizontal resolution. The HAND elevation data and 10m NED for the continental United States are available for download from the Texas Advanced Computational Center (TACC) [3].
The complete statewide dataset contains about 9.28 million address points representing a population of about 28 million. The total file size is about 5GB in shapefile format. For better download performance, the shapefile version of this data is divided into 5 regions, based on groupings of major watersheds identified by their hydrologic unit codes (HUC). These are zipped by region, with no zipfile greater than 120mb: - North Tx: HUC1108-1114 (0.52 million address points) - DFW-East Tx: HUC1201-1203 (3.06 million address points) - Houston-SE Tx: HUC1204 (1.84 million address points) - Central Tx: HUC1205-1210 (2.96 million address points) - Rio Grande-SW Tx: HUC2111-1309 (2.96 million address points)
Additional state and county boundaries are included (Louisiana, Mississippi, Arkansas), as well as disaster-declaration status.
Compilation notes: The Texas Commission for State Emergency Communications (CSEC) provided the first 3 million address points received, in a single batch representing 213 of Texas' 254 counties. The remaining 41 counties were primarily urban areas comprising about 6.28 million addresses (totaling about 9.28 million addresses statewide). We reached the GIS data providers for these areas (see Contributors list below) through these emergency communications networks: Texas 9-1-1 Alliance, the Texas Emergency GIS Response Team (EGRT), and the Texas GIS 9-1-1 User Group. The address data was typically organized in groupings of counties called Councils of Governments (COG) or Regional Planning Commissions (RPC) or Development Councils (DC). Every county in Texas belongs to a COG, RPC or DC. We reconciled all counties' addresses to a common, very simple schema, and merged into a single geodatabase.
November 2023 updates: In 2019, TNRIS took over maintenance of the Texas Address Database, which is now a StratMap program updated annually [6]. In 2023, TNRIS also changed its name to the Texas Geographic Information Office (TxGIO). The datasets available for download below are not being updated, but are current as of the time of Hurricane Harvey.
References: [1] NOAA National Water Model [https://water.noaa.gov/map] [2] TauDEM Downloads [https://hydrology.usu.edu/taudem/taudem5/downloads.html] [3] NFIE Continental Flood Inundation Mapping - Data Repository [https://web.corral.tacc.utexas.edu/nfiedata/] [4] Address Database Gaps, Dec 2017 (download spreadsheet below) [5] Texas Address and Base Layers Story Map [https://www.hydroshare.org/resource/6d5c7dbe0762413fbe6d7a39e4ba1986/] [6] TNRIS/TxGIO StratMap Address Points data downloads [https://tnris.org/stratmap/address-points/]
Point locations of churches, cemeteries, post offices, libraries, recreational facilities, and the like within the 16-county NCTCOG region. Data can be viewed in the Development Monitoring in North Central Texas web mapping application. For the program overview, visit NCTCOG Development Monitoring Program Overview.pdf
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Unpublished geologic field maps scanned as images (JPG) and organized into 13 topographic 7.5 minute quadrangle from primarily Mason County, Texas.
This data release supports the U.S. Geological Survey Scientific Investigation Map (SIM) by Clark and others (2020) by documenting the data used to create the geologic maps and describe geologic framework and hydrostratigraphy of the Edwards and Trinity aquifers for a 442 square-mile area in northern Medina County in south Texas. The karstic Edwards and Trinity aquifers that are the subject of the SIM by Clark and others (2020) are classified as major sources of water in south-central Texas by the Texas Water Development Board (George and others, 2011). The geologic framework and hydrostratigraphy of the Edwards and Trinity aquifers largely control groundwater-flow paths and storage in northern Medina County (Kuniasky and Ardis, 2004). The data provided in this data release and the detailed maps and descriptions of the geologic framework and hydrostratigraphy in Clark and others (2020) are intended to help provide water managers information that is useful for effectively managing available groundwater resources in the study area. These digital data accompany Clark, A.K., Morris, R.E., and Pedraza, D.E., 2020, Geologic framework and hydrostratigraphy of the Edwards and Trinity aquifers within northern Medina County, Texas: U.S. Geological Survey Scientific Investigations Map 3461, 13 p. pamphlet, 1 pl., scale 1:24,000, https://doi.org/10.3133/sim3461.
The Texas Water Development Board classifies the karstic Edwards and Trinity aquifers as major sources of water in south-central Texas. To effectively manage the water resources in the area, detailed maps and descriptions of the geologic framework and hydrostratigraphic units of the aquifers outcropping in Hays County, Tex. are needed. In 2016 and 2018, the U.S. Geological Survey, in cooperation with the Edwards Aquifer Authority, mapped the geologic framework and hydrostratigraphy of the Edwards and Trinity aquifers within Hays County, Tex. at 1:24,000 scale. These digital data accompany Clark, A.K., Pedraza, D.E., and Morris, R.R., 2018, Geologic framework and hydrostratigraphy of the Edwards and Trinity aquifers within Hays County, Texas: U.S. Geological Survey Scientific Investigations Map 3418, pamphlet XX p., 1 sheet, scale 1:24,000, https://doi.org/10.3133/sim3418.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This project updates the geothermal resources beneath our oil and gas fields, as part of the research for the Texas GEO project. This report "Analysis of Geothermal Resources in Three Texas Counties" (October 2020) improves on previous mapping of the Texas resources for the counties of Crockett (West Texas), Jackson (central Gulf Coast) and Webb (South Texas). Through additional bottom-hole temperatures (BHT), the number of well sites increased from 532 to 5,410 in total for these counties. The improved methodology to calculate formation temperatures from 3.5 km (11,500 ft) to 10 km (32,800 ft) includes thermal conductivity values more closely related to the actual county geological formations, incorporated radiogenic heat production of formations, and the related mapped depth to basement. The results show deep temperatures as hotter than previously calculated, with temperatures of 150 degrees Celcius possible for Webb County between depths of 2.6 - 5.1 km, Jackson County between depths 3.0 - 5.4 km, and Crockett County between depths of 2.7 - 8.0 km.
The karstic Edwards and Trinity aquifers are classified as major sources of water in south-central Texas by the Texas Water Development Board, and both are classified as major aquifers by the State of Texas. The Edwards and Trinity aquifers developed because of the original depositional history of the carbonate limestone and dolomite rocks that contain them, and the primary and secondary porosity, diagenesis, fracturing, and faulting that modified the porosity, permeability, and transmissivity of each aquifer and of the geologic units separating the aquifers. Previous studies such as those by the U.S. Geological Survey (USGS) and the Edwards Aquifer Authority (EAA) have mapped the geology, hydrostratigraphy, and structure in these areas at various scales. The purpose of this data release is to present the data that were collected and compiled to describe the geologic framework and hydrostratigraphy within Hays County, Texas in order to help water managers, water purveyors, and local residents better understand and manage water resources. The scope of the larger work and this accompanying data release is focused on the geologic framework and hydrostratigraphy of the outcrops and hydrostratigraphy of the rocks that contain the Edwards and Trinity aquifers within Hays County, Texas. These digital data are a revision to a previous publication of the geologic framework and hydrostratigraphy of the Edwards and Trinity aquifers that was completed in 2018 within Hays County, Texas. These digital data accompany USGS Scientific Investigations Map 3540 (Clark and others, 2025), which supersedes USGS Scientific Investigations Map 3418.
This layer is a component of Parcel Viewer.
This map document contains the parcel boundaries for Kerr County, Texas. The property ID number can be used to find more information about a parcel at the Kerr CAD website.
This map document also includes the municipal boundaries, extraterritorial jurisdiction, and FEMA floodplains for reference.
© Kerr Central Appraisal District, City of Kerrville, Texas, FEMA
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundChagas disease, caused by Trypanosoma cruzi, remains a serious public health concern in many areas of Latin America, including México. It is also endemic in Texas with an autochthonous canine cycle, abundant vectors (Triatoma species) in many counties, and established domestic and peridomestic cycles which make competent reservoirs available throughout the state. Yet, Chagas disease is not reportable in Texas, blood donor screening is not mandatory, and the serological profiles of human and canine populations remain unknown. The purpose of this analysis was to provide a formal risk assessment, including risk maps, which recommends the removal of these lacunae.Methods and FindingsThe spatial relative risk of the establishment of autochthonous Chagas disease cycles in Texas was assessed using a five–stage analysis. 1. Ecological risk for Chagas disease was established at a fine spatial resolution using a maximum entropy algorithm that takes as input occurrence points of vectors and environmental layers. The analysis was restricted to triatomine vector species for which new data were generated through field collection and through collation of post–1960 museum records in both México and the United States with sufficiently low georeferenced error to be admissible given the spatial resolution of the analysis (1 arc–minute). The new data extended the distribution of vector species to 10 new Texas counties. The models predicted that Triatoma gerstaeckeri has a large region of contiguous suitable habitat in the southern United States and México, T. lecticularia has a diffuse suitable habitat distribution along both coasts of the same region, and T. sanguisuga has a disjoint suitable habitat distribution along the coasts of the United States. The ecological risk is highest in south Texas. 2. Incidence–based relative risk was computed at the county level using the Bayesian Besag–York–Mollié model and post–1960 T. cruzi incidence data. This risk is concentrated in south Texas. 3. The ecological and incidence–based risks were analyzed together in a multi–criteria dominance analysis of all counties and those counties in which there were as yet no reports of parasite incidence. Both analyses picked out counties in south Texas as those at highest risk. 4. As an alternative to the multi–criteria analysis, the ecological and incidence–based risks were compounded in a multiplicative composite risk model. Counties in south Texas emerged as those with the highest risk. 5. Risk as the relative expected exposure rate was computed using a multiplicative model for the composite risk and a scaled population county map for Texas. Counties with highest risk were those in south Texas and a few counties with high human populations in north, east, and central Texas showing that, though Chagas disease risk is concentrated in south Texas, it is not restricted to it.ConclusionsFor all of Texas, Chagas disease should be designated as reportable, as it is in Arizona and Massachusetts. At least for south Texas, lower than N, blood donor screening should be mandatory, and the serological profiles of human and canine populations should be established. It is also recommended that a joint initiative be undertaken by the United States and México to combat Chagas disease in the trans–border region. The methodology developed for this analysis can be easily exported to other geographical and disease contexts in which risk assessment is of potential value.
The karstic Edwards and Trinity aquifers are classified as major sources of water in south-central Texas by the Texas Water Development Board, and both are classified as major aquifers by the State of Texas. The Edwards and Trinity aquifers developed because of the original depositional history of the carbonate limestone and dolomite rocks that contain them, and the primary and secondary porosity, diagenesis, fracturing, and faulting that modified the porosity, permeability, and transmissivity of each aquifer and of the geologic units separating the aquifers. Previous studies such as those by the U.S. Geological Survey (USGS) and the Edwards Aquifer Authority (EAA) have mapped the geology, hydrostratigraphy, and structure in these areas at various scales. The purpose of this data release is to present the data that were collected and compiled to describe the geologic framework and hydrostratigraphy of northern Medina county, Texas in order to help water managers, water purveyors, and local residents better understand and manage water resources. The scope of the larger work and this accompanying data release is focused on the geologic framework and hydrostratigraphy of the outcrops and hydrostratigraphy of the rocks that contain the Edwards and Trinity aquifers within northern Medina county, Texas. These digital data accompany Clark and others (2024), which supersedes Scientific Investigations Map 3461.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The Digital Flood Insurance Rate Map (DFIRM) Database depicts flood risk information and supporting data used to develop the risk data. The primary risk classifications used are the 1-percent-annual-chance flood event, the 0.2-percent-annual- chance flood event, and areas of minimal flood risk. The DFIRM Database is derived from Flood Insurance Studies (FISs), previously published Flood Insurance Rate Maps (FIRMs), flood hazard analyses performed in support of the FISs and FIRMs, and new mapping data, where available. The FISs and FIRMs are published by the Federal Emergency Management Agency (FEMA). The file is georeferenced to earth's surface using the Texas Central (FIPS 4203) State Plane projection and coordinate system. The specifications for the horizontal control of DFIRM data files are consistent with those required for mapping at a scale of 1:12,000.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The Digital Flood Insurance Rate Map (DFIRM) Database depicts flood risk information and supporting data used to develop the risk data. The primary risk classifications used are the 1-percent-annual-chance flood event, the 0.2-percent-annual- chance flood event, and areas of minimal flood risk. The DFIRM Database is derived from Flood Insurance Studies (FISs), previously published Flood Insurance Rate Maps (FIRMs), flood hazard analyses performed in support of the FISs and FIRMs, and new mapping data, where available. The FISs and FIRMs are published by the Federal Emergency Management Agency (FEMA). This file is georeferenced to the earth's surface using the Lambert Conformal Conic projection and the Texas State Plane NAD83 Central Zone coordinate system, projection and coordinate system. The specifications for the horizontal control of DFIRM data files are consistent with those required for mapping at a scale of 1:12,000. The Vertical Datum of this data set is North American Vertical Datum 1988 (NAVD88). The specifications for the vertical control of DFIRM data files are consistent with those required for mapping at a vertical accuracy of 2.4 feet or better.
This zipfile contains the Tax Maps for Williamson County, Texas. The PDFs are created and maintained by the Williamson Central Appraisal District Mapping Department.
This dataset combines the work of several different projects to create a seamless data set for the contiguous United States. Data from four regional Gap Analysis Projects and the LANDFIRE project were combined to make this dataset. In the northwestern United States (Idaho, Oregon, Montana, Washington and Wyoming) data in this map came from the Northwest Gap Analysis Project. In the southwestern United States (Colorado, Arizona, Nevada, New Mexico, and Utah) data used in this map came from the Southwest Gap Analysis Project. The data for Alabama, Florida, Georgia, Kentucky, North Carolina, South Carolina, Mississippi, Tennessee, and Virginia came from the Southeast Gap Analysis Project and the California data was generated by the updated California Gap land cover project. The Hawaii Gap Analysis project provided the data for Hawaii. In areas of the county (central U.S., Northeast, Alaska) that have not yet been covered by a regional Gap Analysis Project, data from the Landfire project was used. Similarities in the methods used by these projects made possible the combining of the data they derived into one seamless coverage. They all used multi-season satellite imagery (Landsat ETM+) from 1999-2001 in conjunction with digital elevation model (DEM) derived datasets (e.g. elevation, landform) to model natural and semi-natural vegetation. Vegetation classes were drawn from NatureServe's Ecological System Classification (Comer et al. 2003) or classes developed by the Hawaii Gap project. Additionally, all of the projects included land use classes that were employed to describe areas where natural vegetation has been altered. In many areas of the country these classes were derived from the National Land Cover Dataset (NLCD). For the majority of classes and, in most areas of the country, a decision tree classifier was used to discriminate ecological system types. In some areas of the country, more manual techniques were used to discriminate small patch systems and systems not distinguishable through topography. The data contains multiple levels of thematic detail. At the most detailed level natural vegetation is represented by NatureServe's Ecological System classification (or in Hawaii the Hawaii GAP classification). These most detailed classifications have been crosswalked to the five highest levels of the National Vegetation Classification (NVC), Class, Subclass, Formation, Division and Macrogroup. This crosswalk allows users to display and analyze the data at different levels of thematic resolution. Developed areas, or areas dominated by introduced species, timber harvest, or water are represented by other classes, collectively refered to as land use classes; these land use classes occur at each of the thematic levels. Raster data in both ArcGIS Grid and ERDAS Imagine format is available for download at http://gis1.usgs.gov/csas/gap/viewer/land_cover/Map.aspx Six layer files are included in the download packages to assist the user in displaying the data at each of the Thematic levels in ArcGIS. In adition to the raster datasets the data is available in Web Mapping Services (WMS) format for each of the six NVC classification levels (Class, Subclass, Formation, Division, Macrogroup, Ecological System) at the following links. http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Class_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Subclass_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Formation_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Division_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Macrogroup_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_Ecological_Systems_Landuse/MapServer
The geographic extent of a County, this file represents 3 counties (Dallas, Collin, Denton) clipped from a statewide 2010 Census dataset that are in the Tx N. Central 4202 State Plane projection. The TIGER/Line Files are shapefiles and related database files (.dbf) that are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line File is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. The primary legal divisions of most States are termed counties. The 2010 Census boundaries for counties and equivalent entities are as of January 1, 2010, primarily as reported through the Census Bureau's Boundary and Annexation Survey (BAS).Metadata edited 01/2021
Hurricane Harvey made landfall near Rockport, Texas on August 25 as a category 4 hurricane with wind gusts exceeding 150 miles per hour. As Harvey moved inland the forward motion of the storm slowed down and produced tremendous rainfall amounts to southeastern Texas and southwestern Louisiana. Historic flooding occurred in Texas and Louisiana as a result of the widespread, heavy rainfall over an 8-day period in Louisiana in August and September 2017. Following the storm event, U.S. Geological Survey (USGS) hydrographers recovered and documented 2,123 high-water marks in Texas, noting location and height of the water above land surface. Many of these high-water marks were used to create flood-inundation maps for selected communities of Texas that experienced flooding in August and September, 2017. The mapped area boundary, flood inundation extents, and depth rasters were created to provide an estimated extent of flood inundation along the Neches River within counties of Orange, Jasper, Hardin, Jefferson, and Tyler, including the communities of Beaumont, Evadale, Port Neches, and Central Gardens, Texas. The mapped area of the Neches Basin was separated into two sections due to the availability and location of high-water marks. The upper reach of the Neches River extends from near the confluence with the Angelina River to the confluence of Black Creek in the Big Thicket National Preserve. The lower reach of the Neches River extends from the confluence of Black Creek in the Big Thicket National Preserve to Sabine Lake. These geospatial data include the following items: 1. bnd_neches_upper and bnd_neches_lower; shapefiles containing the polygon showing the mapped area boundary for the upper and lower Neches River flood maps, 2. hwm_neches_upper and hwm_neches_lower; shapefiles containing high-water mark points used for inundation maps, 3. polygon_neches_upper and polygon_neches_lower; shapefiles containing mapped extent of flood inundation for the upper and lower mapped sections of the Neches River, derived from the water-surface elevation surveyed at high-water marks, and 4. depth_upper and depth_lower; raster files for the flood depths derived from the water-surface elevation surveyed at high-water marks. The upstream and downstream mapped area extent is limited to the upstream-most and downstream-most high-water mark locations. In areas of uncertainty of flood extent, the mapped area boundary is lined up with the flood inundation polygon extent. The mapped area boundary polygon was used to extract the final flood inundation polygon and depth raster from the water-surface elevation raster file. Depth raster files were created using the "Topo to Raster" tool in ArcMap (ESRI, 2012). These data show the area of inundation within communities along the Neches River, Texas. The HWM elevation data from the USGS Short-tern Network (STN) was used to create the flood water-surface raster file (U.S. Geological Survey [USGS], 2018, Short-Term Network Data Portal: USGS flood information web page, accessed February 13, 2018, at https://water.usgs.gov/floods/FEV.). The water-surface raster was the basis for the creation of the final flood inundation polygon and depth layer to support the development of flood inundation map for the Federal Emergency Management Agency's (FEMA) response and recovery operations.
The Tax Parcel Boundaries and Attributes dataset contains boundary information and relevant attributes for tax parcels located within Montgomery County, Texas. Tax parcels are used for property taxation purposes and serve as legal representations of land ownership. This dataset includes information such as parcel IDs, boundaries, ownership details, land use codes, and other relevant attributes sourced from the Montgomery Central Appraisal District.This dataset is sourced from the Montgomery Central Appraisal District and is updated monthly to ensure accuracy.Data source: Montgomery Central Appraisal District
A work in progress that documents currently-known alignments of historical streetcars and interurbans in North Central Texas. Assembled from historical maps from the Texas State Archives Map Collection, Tarrant County Archives, and other sources.Like many other urban areas in the US, North Central Texas was historically served by a network of electrified streetcar and interurban lines. These systems became popular when electricity, electric motors, and related technology became widespread around the turn of the 20th century. As one of the first means of affordable, widespread transit, it enabled the first wave of suburban development in many urban areas including North Central Texas. At the system's peak, a sprawling network of streetcars served then-new suburban development while the interurbans connected cities in the region as far away as Denison and Waco. As with most other American systems, the streetcar network in North Central Texas declined and was eventually abandoned after WWII due to a combination of factors including disinvestment, the continuing growth of suburbs beyond their reach, and the increasing popularity of personal automobiles. Though little of the historical network remains, the McKinney Avenue Transit Authority has operated a fleet of restored historical streetcars on the streets of Uptown Dallas since 1989. Dallas Area Rapid Transit also operates modern streetcar and light rail systems, the latter of which utilizes abandoned streetcar/interurban right-of-way in some locations.This dataset provides important historical context to the region's transportation system, land use, and growth patterns in the parts of the region that they served. Please contact NCTCOG Transportation if you would like to contribute information to this ongoing effort.
The Kerrville Basic 3D Scene is intended for general reference and visualization, and is not suitable for analysis.The Kerrville Basic 3D Scene combines Kerrville's Trees 3D 2011, Buildings LOD1 2011, and Kerrville DTM 2011 to create a simple 3D view of the Kerrville area. The data in this scene was derived from a 2011 lidar collection and reflects environmental and building conditions at that time.The lidar collection was created from was flown and processed by Merrick & Company, covering portions of Blanco, Caldwell, DeWitt, Gonzales, Kendall and Kerr counties in central Texas. Aerial collection took place from January to March 2011 during the leaf-off season. URS provided third-party quality assurance and quality control (QA/QC). The collection was funded by the Floodplain Mapping Group in tandem with the Strategic Mapping Program (StratMap) and were procured through the Council on Competitive Government’s High Priority Imagery and Datasets (HPIDS) contract.
This map showcases Emergency Service Districts (ESD) across Montgomery County, Texas, superimposed on a detailed street map that includes roads, railroads, rivers, lakes, and municipal boundaries. The ESD boundaries are essential for emergency service planning and operations within the county, providing crucial geographic context for public safety and emergency response efforts. Key features of the map include:Emergency Service Districts (ESD) (Montgomery Central Appraisal District - MCAD)Roads (Montgomery County Emergency Communications District)Railroads (Texas Department of Transportation - TxDOT)Rivers and Lakes (United States Geological Survey - USGS)Municipal Boundaries (Montgomery Central Appraisal District - MCAD)Sam Houston Trails and Paths (US Forest Service)This map is optimized for printing at Arch E size (36x48 inches) and is available in Adobe PDF format. Users may need Adobe Acrobat for viewing and printing.Update Frequency: AnnuallyAccess Requirements: Access to this map is open to the public and stakeholders interested in Montgomery County's transportation infrastructure and natural environment.
This site provides access to download an ArcGIS geodatabase or shapefiles for the 2017 Texas Address Database, compiled by the Center for Water and the Environment (CWE) at the University of Texas at Austin, with guidance and funding from the Texas Division of Emergency Management (TDEM). These addresses are used by TDEM to help anticipate potential impacts of serious weather and flooding events statewide. This is part of the Texas Water Model (TWM), a project to adapt the NOAA National Water Model [1] for use in Texas public safety. This database was compiled over the period from June 2016 to December 2017. A number of gaps remain (towns and cities missing address points), see Address Database Gaps spreadsheet below [4]. Additional datasets include administrative boundaries for Texas counties (including Federal and State disaster-declarations), Councils of Government, and Texas Dept of Public Safety Regions. An Esri ArcGIS Story Map [5] web app provides an interactive map-based portal to explore and access these data layers for download.
The address points in this database include their "height above nearest drainage" (HAND) as attributes in meters and feet. HAND is an elevation model developed through processing by the TauDEM method [2], built on USGS National Elevation Data (NED) with 10m horizontal resolution. The HAND elevation data and 10m NED for the continental United States are available for download from the Texas Advanced Computational Center (TACC) [3].
The complete statewide dataset contains about 9.28 million address points representing a population of about 28 million. The total file size is about 5GB in shapefile format. For better download performance, the shapefile version of this data is divided into 5 regions, based on groupings of major watersheds identified by their hydrologic unit codes (HUC). These are zipped by region, with no zipfile greater than 120mb: - North Tx: HUC1108-1114 (0.52 million address points) - DFW-East Tx: HUC1201-1203 (3.06 million address points) - Houston-SE Tx: HUC1204 (1.84 million address points) - Central Tx: HUC1205-1210 (2.96 million address points) - Rio Grande-SW Tx: HUC2111-1309 (2.96 million address points)
Additional state and county boundaries are included (Louisiana, Mississippi, Arkansas), as well as disaster-declaration status.
Compilation notes: The Texas Commission for State Emergency Communications (CSEC) provided the first 3 million address points received, in a single batch representing 213 of Texas' 254 counties. The remaining 41 counties were primarily urban areas comprising about 6.28 million addresses (totaling about 9.28 million addresses statewide). We reached the GIS data providers for these areas (see Contributors list below) through these emergency communications networks: Texas 9-1-1 Alliance, the Texas Emergency GIS Response Team (EGRT), and the Texas GIS 9-1-1 User Group. The address data was typically organized in groupings of counties called Councils of Governments (COG) or Regional Planning Commissions (RPC) or Development Councils (DC). Every county in Texas belongs to a COG, RPC or DC. We reconciled all counties' addresses to a common, very simple schema, and merged into a single geodatabase.
November 2023 updates: In 2019, TNRIS took over maintenance of the Texas Address Database, which is now a StratMap program updated annually [6]. In 2023, TNRIS also changed its name to the Texas Geographic Information Office (TxGIO). The datasets available for download below are not being updated, but are current as of the time of Hurricane Harvey.
References: [1] NOAA National Water Model [https://water.noaa.gov/map] [2] TauDEM Downloads [https://hydrology.usu.edu/taudem/taudem5/downloads.html] [3] NFIE Continental Flood Inundation Mapping - Data Repository [https://web.corral.tacc.utexas.edu/nfiedata/] [4] Address Database Gaps, Dec 2017 (download spreadsheet below) [5] Texas Address and Base Layers Story Map [https://www.hydroshare.org/resource/6d5c7dbe0762413fbe6d7a39e4ba1986/] [6] TNRIS/TxGIO StratMap Address Points data downloads [https://tnris.org/stratmap/address-points/]