5 datasets found
  1. d

    ARCHIVED: Parking Citations

    • catalog.data.gov
    • data.lacity.org
    • +1more
    Updated Jan 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.lacity.org (2024). ARCHIVED: Parking Citations [Dataset]. https://catalog.data.gov/dataset/parking-citations-0e4fd
    Explore at:
    Dataset updated
    Jan 5, 2024
    Dataset provided by
    data.lacity.org
    Description

    New Parking Citations dataset here: https://data.lacity.org/Transportation/Parking-Citations/4f5p-udkv/about_data ---Archived as of September 2023--- Parking citations with latitude / longitude (XY) in US Feet coordinates according to the California State Plane Coordinate System - Zone 5 (https://www.conservation.ca.gov/cgs/rgm/state-plane-coordinate-system). For more information on Geographic vs Projected coordinate systems, read here: https://www.esri.com/arcgis-blog/products/arcgis-pro/mapping/gcs_vs_pcs/ For information on how to change map projections, read here: https://learn.arcgis.com/en/projects/make-a-web-map-without-web-mercator/

  2. a

    Connecticut 3D Lidar Viewer

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated Jan 7, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UConn Center for Land use Education and Research (2020). Connecticut 3D Lidar Viewer [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/maps/788d121c4a1f4980b529f914c8df19f4
    Explore at:
    Dataset updated
    Jan 7, 2020
    Dataset authored and provided by
    UConn Center for Land use Education and Research
    Area covered
    Connecticut
    Description

    Statewide 2016 Lidar points colorized with 2018 NAIP imagery as a scene created by Esri using ArcGIS Pro for the entire State of Connecticut. This service provides the colorized Lidar point in interactive 3D for visualization, interaction of the ability to make measurements without downloading.Lidar is referenced at https://cteco.uconn.edu/data/lidar/ and can be downloaded at https://cteco.uconn.edu/data/download/flight2016/. Metadata: https://cteco.uconn.edu/data/flight2016/info.htm#metadata. The Connecticut 2016 Lidar was captured between March 11, 2016 and April 16, 2016. Is covers 5,240 sq miles and is divided into 23, 381 tiles. It was acquired by the Captiol Region Council of Governments with funding from multiple state agencies. It was flown and processed by Sanborn. The delivery included classified point clouds and 1 meter QL2 DEMs. The 2016 Lidar is published on the Connecticut Environmental Conditions Online (CT ECO) website. CT ECO is the collaborative work of the Connecticut Department of Energy and Environmental Protection (DEEP) and the University of Connecticut Center for Land Use Education and Research (CLEAR) to share environmental and natural resource information with the general public. CT ECO's mission is to encourage, support, and promote informed land use and development decisions in Connecticut by providing local, state and federal agencies, and the public with convenient access to the most up-to-date and complete natural resource information available statewide.Process used:Extract Building Footprints from Lidar1. Prepare Lidar - Download 2016 Lidar from CT ECO- Create LAS Dataset2. Extract Building Footprints from LidarUse the LAS Dataset in the Classify Las Building Tool in ArcGIS Pro 2.4.Colorize LidarColorizing the Lidar points means that each point in the point cloud is given a color based on the imagery color value at that exact location.1. Prepare Imagery- Acquire 2018 NAIP tif tiles from UConn (originally from USDA NRCS).- Create mosaic dataset of the NAIP imagery.2. Prepare and Analyze Lidar Points- Change the coordinate system of each of the lidar tiles to the Projected Coordinate System CT NAD 83 (2011) Feet (EPSG 6434). This is because the downloaded tiles come in to ArcGIS as a Custom Projection which cannot be published as a Point Cloud Scene Layer Package.- Convert Lidar to zlas format and rearrange. - Create LAS Datasets of the lidar tiles.- Colorize Lidar using the Colorize LAS tool in ArcGIS Pro. - Create a new LAS dataset with a division of Eastern half and Western half due to size limitation of 500GB per scene layer package. - Create scene layer packages (.slpk) using Create Cloud Point Scene Layer Package. - Load package to ArcGIS Online using Share Package. - Publish on ArcGIS.com and delete the scene layer package to save storage cost.Additional layers added:Visit https://cteco.uconn.edu/projects/lidar3D/layers.htm for a complete list and links. 3D Buildings and Trees extracted by Esri from the lidarShaded Relief from CTECOImpervious Surface 2012 from CT ECONAIP Imagery 2018 from CTECOContours (2016) from CTECOLidar 2016 Download Link derived from https://www.cteco.uconn.edu/data/download/flight2016/index.htm

  3. u

    USA NLCD Impervious Surface Time Series

    • colorado-river-portal.usgs.gov
    • community-climatesolutions.hub.arcgis.com
    Updated Sep 26, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2019). USA NLCD Impervious Surface Time Series [Dataset]. https://colorado-river-portal.usgs.gov/datasets/1fdbb561c58b45c58f8f966c00c78ae6
    Explore at:
    Dataset updated
    Sep 26, 2019
    Dataset authored and provided by
    Esri
    Area covered
    Description

    Impervious surfaces are surfaces that do not allow water to pass through. Examples of these surfaces include highways, parking lots, rooftops, and airport runways. Instead of allowing rain to pass into the soil, impervious surfaces cause water to collect at the surface, then run off. An increase in impervious surface area causes an increase of water volume which needs to be managed by stormwater systems. With the flow come pollutants, which collect on impervious surfaces then discharge with the runoff into streams and the ocean. Runoff water does not enter the water table, and that can cause other management issues, such as interruptions in baseline stream flow.The NLCD imperviousness layer represents urban impervious surfaces as a percentage of developed surface over every 30-meter pixel in the United States. Phenomenon Mapped: The proportion of the landscape that is impervious to water.Time Extent: 2001, 2004, 2006, 2008, 2011, 2013, 2016, 2019, and 2021 for the lower 48 conterminous US states. A small portion of Alaska around Anchorage displays a time series of 2001, 2011, and 2016. Hawaii, Puerto Rico, and the US Virgin Islands unfortunately only have data for 2001 so there is only one image in the series. This information may be used in conjunction with the USA NLCD Land Cover layer.Units: PercentCell Size: 30 metersSource Type: DiscretePixel Type: Unsigned integerData Coordinate System: North America Albers Equal Area Conic (102008)Mosaic Projection: North America Albers Equal Area Conic (102008)Extent: CONUS, Hawaii, A portion of Alaska around Anchorage, District of Columbia, Puerto RicoNoData Value: 127Source: Multi-Resolution Land Characteristics ConsortiumPublication Date: June 30, 2023ArcGIS Server URL: https://landscape10.arcgis.com/arcgis/Time SeriesBy default, this layer will appear in your client with a time slider which allows you to play the series as an animation. The animation will advance year by year, but the layer only changes appearance every few years in the lower 48 states, in 2001, 2004, 2006, 2008, 2011, 2013, 2016, 2019, and 2021. To select just one year in the series, first turn the time series off on the time slider, then create a definition query on the layer which selects only the desired year.Time Series DescriptorMRLC issued a set of companion rasters with this impervious surface layer showing the reason why each pixel is impervious. This companion layer, called the Developed Imperviousness Descriptor, is not currently available in this map service. The descriptor layer identifies types of roads, core urban areas, and energy production sites for each impervious pixel to allow deeper analysis of developed features. The descriptor layer may be downloaded directly from MRLC and added to ArcGIS Pro.Alaska, Hawaii, and Puerto RicoAt this time Alaska, Hawaii, and Puerto Rico are produced with a different methodology, and are not set up to be directly compared the way the CONUS time series is. To analyze change between the latest two data years for this portion of Alaska, be sure to use the NLCD 2011 to 2016 Developed Impervious Change raster. For Hawaii and Puerto Rico, only the year 2001 is available for download at the MRLC.North America Albers ProjectionAll NLCD layers in the Living Atlas are projected into the North America Albers Projection before serving in the Living Atlas. This allows the coterminous USA, Puerto Rico, Hawaii, and Alaska to be served from a common projection and analyzed together. In tests performed by esri, the NLCD land cover classes after projection to North America Albers had the exact same number of pixels in input as output, but pixels had been slightly rearranged after projection. Processing TemplatesThis layer comes with two color schemes, cool and warm. The default is a cool gray color scheme, designed to look good on light and dark gray web maps. To choose a warm color scheme which was the default until 2021, change the processing template to the Impervious Surface Warm Renderer in your map client.Dataset SummaryThe National Land Cover Database products are created through a cooperative project conducted by the Multi-Resolution Land Characteristics Consortium (MRLC). The MRLC Consortium is a partnership of federal agencies, consisting of the U.S. Geological Survey, the National Oceanic and Atmospheric Administration, the U.S. Environmental Protection Agency, the U.S. Department of Agriculture, the U.S. Forest Service, the National Park Service, the U.S. Fish and Wildlife Service, the Bureau of Land Management and the USDA Natural Resources Conservation Service.What can you do with this layer?This layer can be used to create maps and to visualize the underlying data. This layer can be used as an analytic input in ArcGIS Desktop.This layer is part of a larger collection of landscape layers that you can use to perform a wide variety of mapping and analysis tasks.The Living Atlas of the World provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.

  4. d

    SF Bay Eelgrass (BCDC 2020)

    • catalog.data.gov
    • data.ca.gov
    • +6more
    Updated Nov 27, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    San Francisco Bay Conservation and Development Commission (2024). SF Bay Eelgrass (BCDC 2020) [Dataset]. https://catalog.data.gov/dataset/sf-bay-eelgrass-bcdc-2020-6899a
    Explore at:
    Dataset updated
    Nov 27, 2024
    Dataset provided by
    San Francisco Bay Conservation and Development Commissionhttps://bcdc.ca.gov/
    Area covered
    San Francisco Bay
    Description

    This eelgrass layer includes the maximum extent of eelgrass beds that have been surveyed in the San Francisco Bay shown in green. It was created by merging the Bay-wide eelgrass surveys conducted by Merkel & Associates, Inc. (Merkel) in 2003, 2009, 2014, and a Richardson Bay survey conducted by Merkel in 2019. Merkel has granted permission for public use of these data. These eelgrass surveys represent the best available data on comprehensive eelgrass extent throughout San Francisco Bay in 2021 and are developed using a combination of acoustic and aerial surveys and site-specific ground truthing. This layer may be used as a reference to determine potential direct and indirect impacts to eelgrass habitat from dredging projects. These data do not replace the need for site-specific eelgrass surveys.Data from the 2003, 2009, and 2014 eelgrass surveys and associated Merkel reports which include information on mapping methodology are available for download on the San Francisco Estuary Institute’s (SFEI) website. Methods for creating this layer are as follows:Downloaded the Merkel Baywide Eelgrass Surveys for 2003, 2009, and 2014 from SFEI and combined into a single layer. Obtained original Richardson Bay 2019 eelgrass survey data from Merkel. Loaded all layers into ArcGIS Pro © ESRI and re-projected all data to the NAD 1983 UTM Zone 10N coordinate system. Ran union of both the SFEI and Richardson Bay 2019 layers. Merged features to create one single attribute table for eelgrass cover from all survey years. Removed extraneous columns in the attribute table, recalculated area fields based on new extent, and applied symbology.

  5. Power Line Classification

    • hub.arcgis.com
    • morocco.africageoportal.com
    • +1more
    Updated Dec 15, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2020). Power Line Classification [Dataset]. https://hub.arcgis.com/content/6ce6dae2d62c4037afc3a3abd19afb11
    Explore at:
    Dataset updated
    Dec 15, 2020
    Dataset authored and provided by
    Esrihttp://esri.com/
    Description

    The classification of point cloud datasets to identify distribution wires is useful for identifying vegetation encroachment around power lines. Such workflows are important for preventing fires and power outages and are typically manual, recurring, and labor-intensive. This model is designed to extract distribution wires at the street level. Its predictions for high-tension transmission wires are less consistent with changes in geography as compared to street-level distribution wires. In the case of high-tension transmission wires, a lower ‘recall’ value is observed as compared to the value observed for low-lying street wires and poles.Using the modelFollow the guide to use the model. The model can be used with ArcGIS Pro's Classify Point Cloud Using Trained Model tool. Before using this model, ensure that the supported deep learning libraries are installed. For more details, check Deep Learning Libraries Installer for ArcGIS.InputThe model accepts unclassified point clouds with point geometry (X, Y and Z values). Note: The model is not dependent on any additional attributes such as Intensity, Number of Returns, etc. This model is trained to work on unclassified point clouds that are in a projected coordinate system, in which the units of X, Y and Z are based on the metric system of measurement. If the dataset is in degrees or feet, it needs to be re-projected accordingly. The model was trained using a training dataset with the full set of points. Therefore, it is important to make the full set of points available to the neural network while predicting - allowing it to better discriminate points of 'class of interest' versus background points. It is recommended to use 'selective/target classification' and 'class preservation' functionalities during prediction to have better control over the classification and scenarios with false positives.The model was trained on airborne lidar datasets and is expected to perform best with similar datasets. Classification of terrestrial point cloud datasets may work but has not been validated. For such cases, this pre-trained model may be fine-tuned to save on cost, time, and compute resources while improving accuracy. Another example where fine-tuning this model can be useful is when the object of interest is tram wires, railway wires, etc. which are geometrically similar to electricity wires. When fine-tuning this model, the target training data characteristics such as class structure, maximum number of points per block and extra attributes should match those of the data originally used for training this model (see Training data section below).OutputThe model will classify the point cloud into the following classes with their meaning as defined by the American Society for Photogrammetry and Remote Sensing (ASPRS) described below: Classcode Class Description 0 Background Class 14 Distribution Wires 15 Distribution Tower/PolesApplicable geographiesThe model is expected to work within any geography. It's seen to produce favorable results as shown here in many regions. However, results can vary for datasets that are statistically dissimilar to training data.Model architectureThis model uses the RandLANet model architecture implemented in ArcGIS API for Python.Accuracy metricsThe table below summarizes the accuracy of the predictions on the validation dataset. - Precision Recall F1-score Background (0) 0.999679 0.999876 0.999778 Distribution Wires (14) 0.955085 0.936825 0.945867 Distribution Poles (15) 0.707983 0.553888 0.621527Training dataThis model is trained on manually classified training dataset provided to Esri by AAM group. The training data used has the following characteristics: X, Y, and Z linear unitmeter Z range-240.34 m to 731.17 m Number of Returns1 to 5 Intensity1 to 4095 Point spacing0.2 ± 0.1 Scan angle-42 to +35 Maximum points per block20000 Extra attributesNone Class structure[0, 14, 15]Sample resultsHere are a few results from the model.

  6. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
data.lacity.org (2024). ARCHIVED: Parking Citations [Dataset]. https://catalog.data.gov/dataset/parking-citations-0e4fd

ARCHIVED: Parking Citations

Explore at:
Dataset updated
Jan 5, 2024
Dataset provided by
data.lacity.org
Description

New Parking Citations dataset here: https://data.lacity.org/Transportation/Parking-Citations/4f5p-udkv/about_data ---Archived as of September 2023--- Parking citations with latitude / longitude (XY) in US Feet coordinates according to the California State Plane Coordinate System - Zone 5 (https://www.conservation.ca.gov/cgs/rgm/state-plane-coordinate-system). For more information on Geographic vs Projected coordinate systems, read here: https://www.esri.com/arcgis-blog/products/arcgis-pro/mapping/gcs_vs_pcs/ For information on how to change map projections, read here: https://learn.arcgis.com/en/projects/make-a-web-map-without-web-mercator/

Search
Clear search
Close search
Google apps
Main menu