Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Important Note: This item is in mature support as of February 2023 and will be retired in December 2025. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version. This layer displays change in pixels of the Sentinel-2 10m Land Use/Land Cover product developed by Esri, Impact Observatory, and Microsoft. Available years to compare with 2021 are 2018, 2019 and 2020. By default, the layer shows all comparisons together, in effect showing what changed 2018-2021. But the layer may be changed to show one of three specific pairs of years, 2018-2021, 2019-2021, or 2020-2021.Showing just one pair of years in ArcGIS Online Map ViewerTo show just one pair of years in ArcGIS Online Map viewer, create a filter. 1. Click the filter button. 2. Next, click add expression. 3. In the expression dialogue, specify a pair of years with the ProductName attribute. Use the following example in your expression dialogue to show only places that changed between 2020 and 2021:ProductNameis2020-2021By default, places that do not change appear as a
transparent symbol in ArcGIS Pro. But in ArcGIS Online Map Viewer, a transparent
symbol may need to be set for these places after a filter is
chosen. To do this:4. Click the styles button. 5. Under unique values click style options. 6. Click the symbol next to No Change at the bottom of the legend. 7. Click the slider next to "enable fill" to turn the symbol off.Showing just one pair of years in ArcGIS ProTo show just one pair of years in ArcGIS Pro, choose one of the layer's processing templates to single out a particular pair of years. The processing template applies a definition query that works in ArcGIS Pro. 1. To choose a processing template, right click the layer in the table of contents for ArcGIS Pro and choose properties. 2. In the dialogue that comes up, choose the tab that says processing templates. 3. On the right where it says processing template, choose the pair of years you would like to display. The processing template will stay applied for any analysis you may want to perform as well.How the change layer was created, combining LULC classes from two yearsImpact Observatory, Esri, and Microsoft used artificial intelligence to classify the world in 10 Land Use/Land Cover (LULC) classes for the years 2017-2021. Mosaics serve the following sets of change rasters in a single global layer: Change between 2018 and 2021Change between 2019 and 2021Change between 2020 and 2021To make this change layer, Esri used an arithmetic operation
combining the cells from a source year and 2021 to make a change index
value. ((from year * 16) + to year) In the example of the change between 2020 and 2021, the from year (2020) was multiplied by 16, then added to the to year (2021). Then the combined number is served as an index in an 8 bit unsigned mosaic with an attribute table which describes what changed or did not change in that timeframe. Variable mapped: Change in land cover between 2018, 2019, or 2020 and 2021 Data Projection: Universal Transverse Mercator (UTM)Mosaic Projection: WGS84Extent: GlobalSource imagery: Sentinel-2Cell Size: 10m (0.00008983152098239751 degrees)Type: ThematicSource: Esri Inc.Publication date: January 2022What can you do with this layer?Global LULC maps provide information on conservation planning, food security,
and hydrologic modeling, among other things. This dataset can be used to
visualize land cover anywhere on Earth. This
layer can also be used in analyses that require land cover input. For
example, the Zonal Statistics tools allow a user to understand the
composition of a specified area by reporting the total estimates for
each of the classes. Land Cover processingThis map was produced by a deep learning model trained using over 5 billion hand-labeled Sentinel-2 pixels, sampled from over 20,000 sites distributed across all major biomes of the world. The underlying deep learning model uses 6 bands of Sentinel-2 surface reflectance data: visible blue, green, red, near infrared, and two shortwave infrared bands. To create the final map, the model is run on multiple dates of imagery throughout the year, and the outputs are composited into a final representative map. Processing platformSentinel-2 L2A/B data was accessed via Microsoft’s Planetary Computer and scaled using Microsoft Azure Batch.Class definitions1. WaterAreas
where water was predominantly present throughout the year; may not
cover areas with sporadic or ephemeral water; contains little to no
sparse vegetation, no rock outcrop nor built up features like docks;
examples: rivers, ponds, lakes, oceans, flooded salt plains.2. TreesAny
significant clustering of tall (~15-m or higher) dense vegetation,
typically with a closed or dense canopy; examples: wooded vegetation,
clusters of dense tall vegetation within savannas, plantations, swamp or
mangroves (dense/tall vegetation with ephemeral water or canopy too
thick to detect water underneath).4. Flooded vegetationAreas
of any type of vegetation with obvious intermixing of water throughout a
majority of the year; seasonally flooded area that is a mix of
grass/shrub/trees/bare ground; examples: flooded mangroves, emergent
vegetation, rice paddies and other heavily irrigated and inundated
agriculture.5. CropsHuman
planted/plotted cereals, grasses, and crops not at tree height;
examples: corn, wheat, soy, fallow plots of structured land.7. Built AreaHuman
made structures; major road and rail networks; large homogenous
impervious surfaces including parking structures, office buildings and
residential housing; examples: houses, dense villages / towns / cities,
paved roads, asphalt.8. Bare groundAreas
of rock or soil with very sparse to no vegetation for the entire year;
large areas of sand and deserts with no to little vegetation; examples:
exposed rock or soil, desert and sand dunes, dry salt flats/pans, dried
lake beds, mines.9. Snow/IceLarge
homogenous areas of permanent snow or ice, typically only in mountain
areas or highest latitudes; examples: glaciers, permanent snowpack, snow
fields. 10. CloudsNo land cover information due to persistent cloud cover.11. Rangeland Open
areas covered in homogenous grasses with little to no taller
vegetation; wild cereals and grasses with no obvious human plotting
(i.e., not a plotted field); examples: natural meadows and fields with
sparse to no tree cover, open savanna with few to no trees, parks/golf
courses/lawns, pastures. Mix of small clusters of plants or single
plants dispersed on a landscape that shows exposed soil or rock;
scrub-filled clearings within dense forests that are clearly not taller
than trees; examples: moderate to sparse cover of bushes, shrubs and
tufts of grass, savannas with very sparse grasses, trees or other
plants.CitationKarra,
Kontgis, et al. “Global land use/land cover with Sentinel-2 and deep
learning.” IGARSS 2021-2021 IEEE International Geoscience and Remote
Sensing Symposium. IEEE, 2021.AcknowledgementsTraining
data for this project makes use of the National Geographic Society
Dynamic World training dataset, produced for the Dynamic World Project
by National Geographic Society in partnership with Google and the World
Resources Institute.For questions please email environment@esri.com
This layer displays change in pixels of the Sentinel-2 10m Land Use/Land Cover product developed by Esri, Impact Observatory, and Microsoft. Available years to compare with 2021 are 2018, 2019 and 2020.By default, the layer shows all comparisons together, in effect showing what changed 2018-2021. But the layer may be changed to show one of three specific pairs of years, 2018-2021, 2019-2021, or 2020-2021.Showing just one pair of years in ArcGIS Online Map ViewerTo show just one pair of years in ArcGIS Online Map viewer, create a filter.1. Click the filter button.2. Next, click add expression.3. In the expression dialogue, specify a pair of years with the ProductName attribute. Use the following example in your expression dialogue to show only places that changed between 2020 and 2021:ProductNameis2020-2021By default, places that do not change appear as a transparent symbol in ArcGIS Pro. But in ArcGIS Online Map Viewer, a transparent symbol may need to be set for these places after a filter is chosen. To do this:4. Click the styles button.5. Under unique values click style options.6. Click the symbol next to No Change at the bottom of the legend.7. Click the slider next to "enable fill" to turn the symbol off.Showing just one pair of years in ArcGIS ProTo show just one pair of years in ArcGIS Pro, choose one of the layer's processing templates to single out a particular pair of years. The processing template applies a definition query that works in ArcGIS Pro.1. To choose a processing template, right click the layer in the table of contents for ArcGIS Pro and choose properties.2. In the dialogue that comes up, choose the tab that says processing templates.3. On the right where it says processing template, choose the pair of years you would like to display.The processing template will stay applied for any analysis you may want to perform as well.How the change layer was created, combining LULC classes from two yearsImpact Observatory, Esri, and Microsoft used artificial intelligence to classify the world in 10 Land Use/Land Cover (LULC) classes for the years 2017-2021. Mosaics serve the following sets of change rasters in a single global layer:Change between 2018 and 2021Change between 2019 and 2021Change between 2020 and 2021To make this change layer, Esri used an arithmetic operation combining the cells from a source year and 2021 to make a change index value. ((from year * 16) + to year) In the example of the change between 2020 and 2021, the from year (2020) was multiplied by 16, then added to the to year (2021). Then the combined number is served as an index in an 8 bit unsigned mosaic with an attribute table which describes what changed or did not change in that timeframe.Variable mapped: Change in land cover between 2018, 2019, or 2020 and 2021Data Projection: Universal Transverse Mercator (UTM)Mosaic Projection: WGS84Extent: GlobalSource imagery: Sentinel-2Cell Size: 10m (0.00008983152098239751 degrees)Type: ThematicSource: Esri Inc.Publication date: January 2022What can you do with this layer?Global LULC maps provide information on conservation planning, food security, and hydrologic modeling, among other things. This dataset can be used to visualize land cover anywhere on Earth. This layer can also be used in analyses that require land cover input. For example, the Zonal Statistics tools allow a user to understand the composition of a specified area by reporting the total estimates for each of the classes.Land Cover processingThis map was produced by a deep learning model trained using over 5 billion hand-labeled Sentinel-2 pixels, sampled from over 20,000 sites distributed across all major biomes of the world. The underlying deep learning model uses 6 bands of Sentinel-2 surface reflectance data: visible blue, green, red, near infrared, and two shortwave infrared bands. To create the final map, the model is run on multiple dates of imagery throughout the year, and the outputs are composited into a final representative map.Processing platformSentinel-2 L2A/B data was accessed via Microsoft’s Planetary Computer and scaled using Microsoft Azure Batch.Class definitions1. WaterAreas where water was predominantly present throughout the year; may not cover areas with sporadic or ephemeral water; contains little to no sparse vegetation, no rock outcrop nor built up features like docks; examples: rivers, ponds, lakes, oceans, flooded salt plains.2. TreesAny significant clustering of tall (~15-m or higher) dense vegetation, typically with a closed or dense canopy; examples: wooded vegetation, clusters of dense tall vegetation within savannas, plantations, swamp or mangroves (dense/tall vegetation with ephemeral water or canopy too thick to detect water underneath).4. Flooded vegetationAreas of any type of vegetation with obvious intermixing of water throughout a majority of the year; seasonally flooded area that is a mix of grass/shrub/trees/bare ground; examples: flooded mangroves, emergent vegetation, rice paddies and other heavily irrigated and inundated agriculture.5. CropsHuman planted/plotted cereals, grasses, and crops not at tree height; examples: corn, wheat, soy, fallow plots of structured land.7. Built AreaHuman made structures; major road and rail networks; large homogenous impervious surfaces including parking structures, office buildings and residential housing; examples: houses, dense villages / towns / cities, paved roads, asphalt.8. Bare groundAreas of rock or soil with very sparse to no vegetation for the entire year; large areas of sand and deserts with no to little vegetation; examples: exposed rock or soil, desert and sand dunes, dry salt flats/pans, dried lake beds, mines.9. Snow/IceLarge homogenous areas of permanent snow or ice, typically only in mountain areas or highest latitudes; examples: glaciers, permanent snowpack, snow fields. 10. CloudsNo land cover information due to persistent cloud cover.11. RangelandOpen areas covered in homogenous grasses with little to no taller vegetation; wild cereals and grasses with no obvious human plotting (i.e., not a plotted field); examples: natural meadows and fields with sparse to no tree cover, open savanna with few to no trees, parks/golf courses/lawns, pastures. Mix of small clusters of plants or single plants dispersed on a landscape that shows exposed soil or rock; scrub-filled clearings within dense forests that are clearly not taller than trees; examples: moderate to sparse cover of bushes, shrubs and tufts of grass, savannas with very sparse grasses, trees or other plants.CitationKarra, Kontgis, et al. “Global land use/land cover with Sentinel-2 and deep learning.” IGARSS 2021-2021 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2021.AcknowledgementsTraining data for this project makes use of the National Geographic Society Dynamic World training dataset, produced for the Dynamic World Project by National Geographic Society in partnership with Google and the World Resources Institute.For questions please email environment@esri.com
Statewide 2016 Lidar points colorized with 2018 NAIP imagery as a scene created by Esri using ArcGIS Pro for the entire State of Connecticut. This service provides the colorized Lidar point in interactive 3D for visualization, interaction of the ability to make measurements without downloading.Lidar is referenced at https://cteco.uconn.edu/data/lidar/ and can be downloaded at https://cteco.uconn.edu/data/download/flight2016/. Metadata: https://cteco.uconn.edu/data/flight2016/info.htm#metadata. The Connecticut 2016 Lidar was captured between March 11, 2016 and April 16, 2016. Is covers 5,240 sq miles and is divided into 23, 381 tiles. It was acquired by the Captiol Region Council of Governments with funding from multiple state agencies. It was flown and processed by Sanborn. The delivery included classified point clouds and 1 meter QL2 DEMs. The 2016 Lidar is published on the Connecticut Environmental Conditions Online (CT ECO) website. CT ECO is the collaborative work of the Connecticut Department of Energy and Environmental Protection (DEEP) and the University of Connecticut Center for Land Use Education and Research (CLEAR) to share environmental and natural resource information with the general public. CT ECO's mission is to encourage, support, and promote informed land use and development decisions in Connecticut by providing local, state and federal agencies, and the public with convenient access to the most up-to-date and complete natural resource information available statewide.Process used:Extract Building Footprints from Lidar1. Prepare Lidar - Download 2016 Lidar from CT ECO- Create LAS Dataset2. Extract Building Footprints from LidarUse the LAS Dataset in the Classify Las Building Tool in ArcGIS Pro 2.4.Colorize LidarColorizing the Lidar points means that each point in the point cloud is given a color based on the imagery color value at that exact location.1. Prepare Imagery- Acquire 2018 NAIP tif tiles from UConn (originally from USDA NRCS).- Create mosaic dataset of the NAIP imagery.2. Prepare and Analyze Lidar Points- Change the coordinate system of each of the lidar tiles to the Projected Coordinate System CT NAD 83 (2011) Feet (EPSG 6434). This is because the downloaded tiles come in to ArcGIS as a Custom Projection which cannot be published as a Point Cloud Scene Layer Package.- Convert Lidar to zlas format and rearrange. - Create LAS Datasets of the lidar tiles.- Colorize Lidar using the Colorize LAS tool in ArcGIS Pro. - Create a new LAS dataset with a division of Eastern half and Western half due to size limitation of 500GB per scene layer package. - Create scene layer packages (.slpk) using Create Cloud Point Scene Layer Package. - Load package to ArcGIS Online using Share Package. - Publish on ArcGIS.com and delete the scene layer package to save storage cost.Additional layers added:Visit https://cteco.uconn.edu/projects/lidar3D/layers.htm for a complete list and links. 3D Buildings and Trees extracted by Esri from the lidarShaded Relief from CTECOImpervious Surface 2012 from CT ECONAIP Imagery 2018 from CTECOContours (2016) from CTECOLidar 2016 Download Link derived from https://www.cteco.uconn.edu/data/download/flight2016/index.htm
BY USING THIS WEBSITE OR THE CONTENT THEREIN, YOU AGREE TO THE TERMS OF USE. The Classified Point Cloud (LAS) for the 2017 Michigan LiDAR project covering approximately 907 square miles, covering Oakland County. LAS data products are suitable for 1 foot contour generation. USGS LiDAR Base Specification 1.2, QL2. 19.6 cm NVA.This data is for planning purposes only and should not be used for legal or cadastral purposes. Any conclusions drawn from analysis of this information are not the responsibility of Sanborn Map Company. Users should be aware that temporal changes may have occurred since this dataset was collected and some parts of this dataset may no longer represent actual surface conditions. Users should not use these data for critical applications without a full awareness of its limitations. This service is best used directly within ArcMap or ArcGIS Pro.If the raw LiDAR points are needed, use these clients to extract project area size portions. Due to the density of the data, downloading the entire County from this service is not possible. For further questions, contact the Oakland County Service Center at 248-858-8812, servicecenter@oakgov.com.
Water Meter points within Fuquay-Varina. Most meter devices are owned and maintained by the Town, which provides water utility services. However, on some commercial sites, for example, the meter box and meter yoke are actually privately owned and maintained while the meter device is owned and maintained by the Town. This water meter dataset is constantly under development and improvement as there is increasing demand to integrate GIS meter information with other solutions. Please note that some meter points are not field-validated and some are not associated with a valid METERID for water service, and may essentially be duplicated legacy locations from old GIS data. Please note that ALL public utility data layers can be downloaded in a single .mpkx (ArcGIS Pro map package file), updated every Friday evening. This .mpkx file can be opened directly with ArcGIS Pro version 3+. Alternatively, you can extract the file geodatabase within it by renaming the file ending .mpkx to .zip and treating it like a zip archive file, for use in any version of ArcGIS Pro or ArcMap software. You can also use QGIS, a powerful, free, and open-source GIS software.The Town of Fuquay-Varina creates, maintains, and serves out a variety of utility information to the public, including its Potable Water System, Sanitary Sewer System, and Stormwater Collection System features. This is the same utility data displayed in our public web map. This utility data includes some features designated as 'private' that are not owned or maintained by the Town, but may be helpful for modeling and other informational purposes. Please pay particular attention to the terms of use and disclaimer associated with these data. Some data includes the use of Subtypes and Domains that may not translate well to Shapefile or GeoJSON downloads available through our Open Data site. Please beware the dangers of cartographic misrepresentation if you are unfamiliar with filtering and symbolizing data based on attributes. Water System Layers:Water LinesWater ValvesWater ManholesFire HydrantsFire Department ConnectionsWater MetersRPZ (Backflow Preventers)Water TankWater Booster StationsHarnett County Water District AreaSewer System Layers:Gravity Sewer LinesForced Sewer LinesSewer ManholesSewer ValvesSewer CleanoutsSewer Pump StationsWastewater Treatment PlantsStormwater System Layers:Stormwater Lines (Pipes)Stormwater Points (Inlets/Outlets/Manholes)Stormwater Control Measure Points (SCM's, such as Wet Ponds / Retention Basins)
It is an ArcGIS multirole locator with two roles:
Instructions for using the Geocoder via ArcGIS Pro, ArcGIS Online, and REST Services are below:
The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) conducted research to identify areas of seafloor elevation stability and instability based on elevation changes between the years of 2016 and 2019 along the Florida Reef Tract (FRT) from Miami to Key West within a 939.4 square-kilometer area. USGS SPCMSC staff used seafloor elevation-change data from Fehr and others (2021) derived from an elevation-change analysis between two elevation datasets acquired in 2016/2017 and 2019 using the methods of Yates and others (2017). Most of the elevation data from the 2016/2017 time period were collected during 2016, so as an abbreviated naming convention, we refer to this time period as 2016. Due to file size limitations, the elevation-change data was divided into five blocks. A seafloor stability threshold was determined for the 2016-2019 FRT elevation-change datasets based on the vertical uncertainty of the 2016 and 2019 digital elevation models (DEMs). Five stability categories (which include, Stable: 0.0 meters (m) to ±0.24 m or 0.0 m to ±0.49 m; Moderately stable: ±0.25 m to ±0.49 m; Moderately unstable: ±0.50 m to ±0.74 m; Mostly unstable: ±0.75 m to ±0.99 m; and Unstable: ±1.00 m to Max/Min elevation change) were created and used to define levels of stability and instability for each elevation-change value (total of 235,153,117 data points at 2-m horizontal resolution) based on the amount of erosion and accretion during the 2016 to 2019 time period. Seafloor-stability point and triangulated irregular network (TIN) surface models were created for each block at five different elevation-change data resolutions (1st order through 5th order) with each resolution becoming increasingly more detailed. The stability models were used to determine the level of seafloor stability at potential areas of interest for coral restoration and 14 habitat types found along the FRT. Stability surface (TIN) models were used for areas defined by specific XY geographic points, while stability point models were used for areas defined by bounding box coordinate locations. This data release includes ArcGIS Pro map packages containing the binned and color-coded stability point and surface (TIN) models, potential coral restoration locations, and habitat files for each block; maps of each stability model; and data tables containing stability and elevation-change data for the potential coral restoration locations and habitat types. Data were collected under Florida Keys National Marine Sanctuary permit FKNMS-2016-068. Coral restoration locations were provided by Mote Marine Laboratory under Special Activity License SAL-18-1724-SCRP.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset consists of nitrogen dioxide, meteorological data, and traffic data from January to June 2019, which were generated taking into account the spatial distribution of the monitoring stations. Using the ArcGIS Pro software, a grid was created (Top -4,486,449.725263 m; Bottom - 4,466,449.725263 m; Left - 434,215.234430 m; Right - 451,215.234430 m) with a cell size having a width and height equal to 1000 m. There are 340 cells in total (20 by 17). Each cell value includes nitrogen dioxide, meteorological, and traffic attributes from assigned stations at a certain time. The cell value without stations was assigned to zero. The generated grid was exported as Comma Separated Values (CSV) files. Overall, 4,344 CSV files were generated every hour during the first six months of 2019. Meteorological data include ultraviolet radiation, wind speed, wind direction, temperature, relative humidity, barometric pressure, solar irradiance, and precipitation, traffic data includes intensity, occupation, load, and average speed. The datasets have an hourly rate. The data were obtained from the Open Data portal of the Madrid City Council. There are 24 air quality monitoring stations, 26 meteorological monitoring stations, and more than 4,000 traffic measurement points (the location of the measurement points was provided on a monthly basis as these points changed monthly).
In the Prince William Sound region of Alaska, recent glacier retreat started in the mid-1800s and began to accelerate in the mid-2000s in response to warming air temperatures (Maraldo and others, 2020). Prince William Sound is surrounded by the central Chugach Mountains and consists of numerous ocean-terminating glaciers, with rapid deglaciation increasingly exposing oversteepened bedrock walls of fiords. Deglaciation may accelerate the occurrence of rapidly moving rock avalanches (RAs), which have the potential to generate tsunamis and adversely impact maritime vessels, marine activities, and coastal infrastructure and populations in the Prince William Sound region. RAs have been documented in the Chugach Mountains in the past (Post, 1967; McSaveney, 1978; Uhlmann and others, 2013), but a time series of RAs in the Chugach Mountains is not currently available. A systematic inventory of RAs in the Chugach is needed as a baseline to evaluate any future changes in RA frequency, magnitude, and mobility. This data release presents a comprehensive historical inventory of RAs in a 4600 km2 area of the Prince William Sound. The inventory was generated from: (1) visual inspection of 30-m resolution Landsat satellite images collected between July 1984 and August 2024; and (2) the use of an automated image classification script (Google earth Engine supRaglAciaL Debris INput dEtector (GERALDINE, Smith and others, 2020)) designed to detect new rock-on-snow events from repeat Landsat images from the same time period. RAs were visually identified and mapped in a Geographic Information System (GIS) from the near-infrared (NIR) band of Landsat satellite images. This band provides significant contrast between rock and snow to detect newly deposited rock debris. A total of 252 Landsat images were visually examined, with more images available in recent years compared to earlier years (Figure 1). Calendar year 1984 was the first year when 30-m resolution Landsat data were available, and thus provided a historical starting point from which RAs could be detected with consistent certainty. By 2017, higher resolution (<5-m) daily Planet satellite images became consistently available and were used to better constrain RA timing and extent. Figure 1. Diagram showing the number of usable Landsat images per year. This inventory reveals 118 RAs ranging in size from 0.1 km2 to 2.3 km2. All of these RAs occurred during the months of May through September (Figure 2). The data release includes three GIS feature classes (polygons, points, and polylines), each with its own attribute information. The polygon feature class contains the entire extent of individual RAs and does not differentiate the source and deposit areas. The point feature class contains headscarp and toe locations, and the polyline feature class contains curvilinear RA travel distance lines that connect the headscarp and toe points. Additional attribute information includes the following: _location of headscarp and toe points, date of earliest identified occurrence, if and when the RA was sequestered into the glacier, presence and delineation confidence levels (see Table 1 for definition of A, B, and C confidence levels), identification method (visual inspection versus automated detection), image platform, satellite, estimated cloud cover, if the RA is lobate, image ID, image year, image band, affected area in km2, length, height, length/height, height/length, notes, minimum and maximum elevation, aspect at the headscarp point, slope at the headscarp point, and geology at the headscarp point. Topographic information was derived from 5-m interferometric synthetic aperture radar (IfSAR) Digital Elevation Models (DEMs) that were downloaded from the USGS National Elevation Dataset website (U.S. Geological Survey, 2015) and were mosaicked together in ArcGIS Pro. The aspect and slope layers were generated from the downloaded 5-m DEM with the “Aspect” and “Slope” tools in ArcGIS Pro. Aspect and slope at the headscarp mid-point were then recorded in the attribute table. A shapefile of Alaska state geology was downloaded from Wilson and others (2015) and was used to determine the geology at the headscarp _location. The 118 identified RAs have the following confidence level breakdown for presence: 66 are A-level, 51 are B-level, and 1 is C-level. The 118 identified RAs have the following confidence level breakdown for delineation: 39 are A-level and 79 are B-level. Please see the provided attribute table spreadsheet for more detailed information. Figure 2. Diagram showing seasonal timing of mapped rock avalanches. Table 1. Rock avalanche presence and delineation confidence levels Category Grade Justification Presence A Feature is clearly visible in one or more satellite images. B Feature is clearly visible in one or more satellite images but has low contrast with the surroundings and may be surficial debris from rock fall, rather than from a rock avalanche. C Feature presence is possible but uncertain due to poor quality of imagery (e.g., heavy cloud cover or shadows) or lack of multiple views. Delineation A Exact outline of the feature from headscarp to toe is clear. B General shape of the feature is clear but the exact headscarp or toe _location is unclear (e.g., due to clouds or shadows). Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. References Maraldo, D.R., 2020, Accelerated retreat of coastal glaciers in the Western Prince William Sound, Alaska: Arctic, Antarctic, and Alpine Research, v. 52, p. 617-634, https://doi.org/10.1080/15230430.2020.1837715 McSaveney, M.J., 1978, Sherman glacier rock avalanche, Alaska, U.S.A. in Voight, B., ed., Rockslides and Avalanches, Developments in Geotechnical Engineering, Amsterdam, Elsevier, v. 14, p. 197–258. Post, A., 1967, Effects of the March 1964 Alaska earthquake on glaciers: U.S. Geological Survey Professional Paper 544-D, Reston, Virgina, p. 42, https://pubs.usgs.gov/pp/0544d/ Smith, W. D., Dunning, S. A., Brough, S., Ross, N., and Telling, J., 2020, GERALDINE (Google Earth Engine supRaglAciaL Debris INput dEtector): A new tool for identifying and monitoring supraglacial landslide inputs: Earth Surface Dynamics, v. 8, p. 1053-1065, https://doi.org/10.5194/esurf-8-1053-2020 Uhlmann, M., Korup, O., Huggel, C., Fischer, L., and Kargel, J. S., 2013, Supra-glacial deposition and flux of catastrophic rock-slope failure debris, south-central Alaska: Earth Surface Processes and Landforms, v. 38, p. 675–682, https://doi.org/10.1002/esp.3311 U.S. Geological Survey, 2015, USGS NED Digital Surface Model AK IFSAR-Cell37 2010 TIFF 2015: U.S. Geological Survey, https://elevation.alaska.gov/#60.67183:-147.68372:8 Wilson, F.H., Hults, C.P., Mull, C.G, and Karl, S.M, compilers, 2015, Geologic map of Alaska: U.S. Geological Survey Scientific Investigations Map 3340, pamphlet p. 196, 2 sheets, scale 1:1,584,000, https://pubs.usgs.gov/publication/sim3340
A style containing 34 assorted 3D people models for use in large-scale visualizations, providing vertical context.To Match Layer Symbology to Style in ArcGIS Pro, populate a person_type text field to match the values shown below. Next, copy these values to a table, then join the height value(s) to the people points for use in pop-ups or charts. person_type name height_m height_feet height_inches
Man 1 Gerald 1.7899 5 10.47
Man 2 Ethan 1.8879 6 2.33
Man 3 Cliff 1.7015 5 6.99
Man 4 Dustin 1.7965 5 10.73
Man 5 Jorge 1.8787 6 1.96
Man 6 Phillip 1.6752 5 5.95
Man 7 Dmitri 1.71 5 7.32
Man 8 Luke 1.793 5 10.59
Man 9 Carlos 1.7028 5 7.04
Man 10 Jimmy 1.7625 5 9.39
Man 11 Helmut 1.8331 6 0.17
Man 12 Guy 1.812 5 11.34
Man 13 Leon 1.8219 5 11.73
Man 14 Matthias 1.753 5 9.02
Man 15 Kendrick 1.8787 6 1.96
Man 16 Seth 1.8272 5 11.94
Man 17 Gomer 1.8982 6 2.73
Man 18 Robert 1.7853 5 10.29
Man 19 Jack 1.779 5 10.04
Man 20 Andy 1.8794 6 1.99
Man 21 Hamish 1.67 5 5.75
Man 22 Felix 1.86 6 1.23
Man 23 Adrian 1.75 5 8.90
Woman 1 Greta 1.5371 5 0.52
Woman 2 Simone 1.6366 5 4.43
Woman 3 Alison 1.679 5 6.10
Woman 4 Felicia 1.7433 5 8.63
Woman 5 Jessica 1.7322 5 8.20
Woman 6 Claire 1.6405 5 4.59
Woman 7 Maude 1.7795 5 10.06
Woman 8 Jenny 1.659 5 5.31
Woman 9 Diane 1.67 5 5.75
Woman 10 Carla 1.75 5 8.90
Woman 11 Lauren 1.69 5 6.54
Official style (.stylx) for ArcGIS Pro created by the National Park Service The original National Park Service style file was an attempt to create an easy way for users to style their cartographic products in ArcGIS ArcMap in a way that resembles an official NPS, Harpers Ferry Center (HFC) product. It has been updated for use in ArcGIS Pro by the GISC Cartography & Web Mapping Subcommittee, who addressed changes and additions to HFC cartography, but also longstanding issues with the style itself.How-to add styles to a ArcGIS Pro projectIRMA Reference Update Oct 2, 2021:Fixes the National Park Service North Arrow Adds HFC-styled scale bars.
This map shows the change in particulate matter 2.5 (PM 2.5) air quality data for the US between 2010 and 2016 based on NASA SEDAC gridded data. The color indicates better or worse air quality, and the size of the symbol indicates population growth.This map shows particulate matter in the air sized 2.5 micrometers of smaller (PM 2.5). The data is aggregated from NASA Socioeconomic Data and Applications Center (SEDAC) gridded data into state, county, congressional district (116th) and 50 km hex bins. The unit of measurement is micrograms per cubic meter.The data is averaged for each year and over the the 19 years to provide an overall picture of air quality in the United States, including Puerto Rico. A space time cube was performed on a multidimensional mosaic version of the data in order to derive an emerging hot spot analysis. The county and state layers provide a population-weighted PM 2.5 value to emphasize which areas have a higher human impact. Each layer has been enriched with a set of 2019 US demographic attributes (excluding Puerto Rico) apportioned to the geography in order to map patterns alongside each other. Citations:van Donkelaar, A., R. V. Martin, M. Brauer, N. C. Hsu, R. A. Kahn, R. C. Levy, A. Lyapustin, A. M. Sayer, and D. M. Winker. 2018. Global Annual PM2.5 Grids from MODIS, MISR and SeaWiFS Aerosol Optical Depth (AOD) with GWR, 1998-2016. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). https://doi.org/10.7927/H4ZK5DQS. Accessed 1 April 2020van Donkelaar, A., R. V. Martin, M. Brauer, N. C. Hsu, R. A. Kahn, R. C. Levy, A. Lyapustin, A. M. Sayer, and D. M. Winker. 2016. Global Estimates of Fine Particulate Matter Using a Combined Geophysical-Statistical Method with Information from Satellites. Environmental Science & Technology 50 (7): 3762-3772. https://doi.org/10.1021/acs.est.5b05833.Boundaries:50km hex bins generated using the Generate Tessellation toolStates and counties come from 2018 TIGER boundaries with coastlines clipped116th Congressional Districts come from this ArcGIS Living Atlas layerData processing notes:NASA's GeoTIFF files for 19 years (1998-2016) were first brought into ArcGIS Pro 2.5.0 and put into a multidimensional mosaic dataset.For each geography level, the following was performed: Zonal Statistics were run against the mosaic as a multidimensional layer.A Space Time Cube was created to compare the 19 years of PM 2.5 values and detect hot/cold spot patterns. To learn more about Space Time Cubes, visit this page.The Space Time Cube is processed for Emerging Hot Spots where we gain the trends and hot spot results.The Enrich tool was run to add 2019 Esri demographic and 2014-2018 ACS attributes to the geographies. Attributes such as population, poverty, minority population, and others were added to the layer.To create the population-weighted attributes on the state and county layers, the hex value population values were used to create the weighting. Within each hex bin, the total population figure and average PM 2.5 were multiplied.The hex bins were converted into centroids and summarized within the state and county boundaries.The summation of these values were then divided by the total population of each state/county.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Important Note: This item is in mature support as of February 2023 and will be retired in December 2025. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version. This layer displays change in pixels of the Sentinel-2 10m Land Use/Land Cover product developed by Esri, Impact Observatory, and Microsoft. Available years to compare with 2021 are 2018, 2019 and 2020. By default, the layer shows all comparisons together, in effect showing what changed 2018-2021. But the layer may be changed to show one of three specific pairs of years, 2018-2021, 2019-2021, or 2020-2021.Showing just one pair of years in ArcGIS Online Map ViewerTo show just one pair of years in ArcGIS Online Map viewer, create a filter. 1. Click the filter button. 2. Next, click add expression. 3. In the expression dialogue, specify a pair of years with the ProductName attribute. Use the following example in your expression dialogue to show only places that changed between 2020 and 2021:ProductNameis2020-2021By default, places that do not change appear as a
transparent symbol in ArcGIS Pro. But in ArcGIS Online Map Viewer, a transparent
symbol may need to be set for these places after a filter is
chosen. To do this:4. Click the styles button. 5. Under unique values click style options. 6. Click the symbol next to No Change at the bottom of the legend. 7. Click the slider next to "enable fill" to turn the symbol off.Showing just one pair of years in ArcGIS ProTo show just one pair of years in ArcGIS Pro, choose one of the layer's processing templates to single out a particular pair of years. The processing template applies a definition query that works in ArcGIS Pro. 1. To choose a processing template, right click the layer in the table of contents for ArcGIS Pro and choose properties. 2. In the dialogue that comes up, choose the tab that says processing templates. 3. On the right where it says processing template, choose the pair of years you would like to display. The processing template will stay applied for any analysis you may want to perform as well.How the change layer was created, combining LULC classes from two yearsImpact Observatory, Esri, and Microsoft used artificial intelligence to classify the world in 10 Land Use/Land Cover (LULC) classes for the years 2017-2021. Mosaics serve the following sets of change rasters in a single global layer: Change between 2018 and 2021Change between 2019 and 2021Change between 2020 and 2021To make this change layer, Esri used an arithmetic operation
combining the cells from a source year and 2021 to make a change index
value. ((from year * 16) + to year) In the example of the change between 2020 and 2021, the from year (2020) was multiplied by 16, then added to the to year (2021). Then the combined number is served as an index in an 8 bit unsigned mosaic with an attribute table which describes what changed or did not change in that timeframe. Variable mapped: Change in land cover between 2018, 2019, or 2020 and 2021 Data Projection: Universal Transverse Mercator (UTM)Mosaic Projection: WGS84Extent: GlobalSource imagery: Sentinel-2Cell Size: 10m (0.00008983152098239751 degrees)Type: ThematicSource: Esri Inc.Publication date: January 2022What can you do with this layer?Global LULC maps provide information on conservation planning, food security,
and hydrologic modeling, among other things. This dataset can be used to
visualize land cover anywhere on Earth. This
layer can also be used in analyses that require land cover input. For
example, the Zonal Statistics tools allow a user to understand the
composition of a specified area by reporting the total estimates for
each of the classes. Land Cover processingThis map was produced by a deep learning model trained using over 5 billion hand-labeled Sentinel-2 pixels, sampled from over 20,000 sites distributed across all major biomes of the world. The underlying deep learning model uses 6 bands of Sentinel-2 surface reflectance data: visible blue, green, red, near infrared, and two shortwave infrared bands. To create the final map, the model is run on multiple dates of imagery throughout the year, and the outputs are composited into a final representative map. Processing platformSentinel-2 L2A/B data was accessed via Microsoft’s Planetary Computer and scaled using Microsoft Azure Batch.Class definitions1. WaterAreas
where water was predominantly present throughout the year; may not
cover areas with sporadic or ephemeral water; contains little to no
sparse vegetation, no rock outcrop nor built up features like docks;
examples: rivers, ponds, lakes, oceans, flooded salt plains.2. TreesAny
significant clustering of tall (~15-m or higher) dense vegetation,
typically with a closed or dense canopy; examples: wooded vegetation,
clusters of dense tall vegetation within savannas, plantations, swamp or
mangroves (dense/tall vegetation with ephemeral water or canopy too
thick to detect water underneath).4. Flooded vegetationAreas
of any type of vegetation with obvious intermixing of water throughout a
majority of the year; seasonally flooded area that is a mix of
grass/shrub/trees/bare ground; examples: flooded mangroves, emergent
vegetation, rice paddies and other heavily irrigated and inundated
agriculture.5. CropsHuman
planted/plotted cereals, grasses, and crops not at tree height;
examples: corn, wheat, soy, fallow plots of structured land.7. Built AreaHuman
made structures; major road and rail networks; large homogenous
impervious surfaces including parking structures, office buildings and
residential housing; examples: houses, dense villages / towns / cities,
paved roads, asphalt.8. Bare groundAreas
of rock or soil with very sparse to no vegetation for the entire year;
large areas of sand and deserts with no to little vegetation; examples:
exposed rock or soil, desert and sand dunes, dry salt flats/pans, dried
lake beds, mines.9. Snow/IceLarge
homogenous areas of permanent snow or ice, typically only in mountain
areas or highest latitudes; examples: glaciers, permanent snowpack, snow
fields. 10. CloudsNo land cover information due to persistent cloud cover.11. Rangeland Open
areas covered in homogenous grasses with little to no taller
vegetation; wild cereals and grasses with no obvious human plotting
(i.e., not a plotted field); examples: natural meadows and fields with
sparse to no tree cover, open savanna with few to no trees, parks/golf
courses/lawns, pastures. Mix of small clusters of plants or single
plants dispersed on a landscape that shows exposed soil or rock;
scrub-filled clearings within dense forests that are clearly not taller
than trees; examples: moderate to sparse cover of bushes, shrubs and
tufts of grass, savannas with very sparse grasses, trees or other
plants.CitationKarra,
Kontgis, et al. “Global land use/land cover with Sentinel-2 and deep
learning.” IGARSS 2021-2021 IEEE International Geoscience and Remote
Sensing Symposium. IEEE, 2021.AcknowledgementsTraining
data for this project makes use of the National Geographic Society
Dynamic World training dataset, produced for the Dynamic World Project
by National Geographic Society in partnership with Google and the World
Resources Institute.For questions please email environment@esri.com