This dataset was created by Vinit Singh
This dataset includes FAQ data and their categories to train a chatbot specialized for e-learning system used in Tokyo Metropolitan University. We report accuracies of the chatbot in the following paper.
Yasunobu Sumikawa, Masaaki Fujiyoshi, Hisashi Hatakeyama, and Masahiro Nagai "Supporting Creation of FAQ Dataset for E-learning Chatbot", Intelligent Decision Technologies, Smart Innovation, IDT'19, Springer, 2019, to appear.
Yasunobu Sumikawa, Masaaki Fujiyoshi, Hisashi Hatakeyama, and Masahiro Nagai "An FAQ Dataset for E-learning System Used on a Japanese University", Data in Brief, Elsevier, in press.
This dataset is based on real Q&A data about how to use the e-learning system asked by students and teachers who use it in practical classes. The duration we collected the Q&A data is from April 2015 to July 2018.
We attach an English version dataset translated from the Japanese dataset to ease understanding what contents our dataset has. Note here that we did not perform any evaluations on the English version dataset; there are no results how accurate chatbots responds to questions.
File contents:
Results of statistical analyses for the dataset. We used Calinski and Harabaz method, mutual information, Jaccard Index, TF-IDF+KL divergence, and TF-IDF+JS divergence in order to measure qualities of the dataset. In the analyses, we regard each answer as a cluster for questions. We also perform the same analyses for categories by regarding them as clusters for answers.
Grants: JSPS KAKENHI Grant Number 18H01057
https://choosealicense.com/licenses/cdla-sharing-1.0/https://choosealicense.com/licenses/cdla-sharing-1.0/
Bitext - Retail (eCommerce) Tagged Training Dataset for LLM-based Virtual Assistants
Overview
This hybrid synthetic dataset is designed to be used to fine-tune Large Language Models such as GPT, Mistral and OpenELM, and has been generated using our NLP/NLG technology and our automated Data Labeling (DAL) tools. The goal is to demonstrate how Verticalization/Domain Adaptation for the [Retail (eCommerce)] sector can be easily achieved using our two-step approach to… See the full description on the dataset page: https://huggingface.co/datasets/bitext/Bitext-retail-ecommerce-llm-chatbot-training-dataset.
https://www.futurebeeai.com/data-license-agreementhttps://www.futurebeeai.com/data-license-agreement
The dataset comprises over 12,000 chat conversations, each focusing on specific Healthcare related topics. Each conversation provides a detailed interaction between a call center agent and a customer, capturing real-life scenarios and language nuances.
The chat dataset covers a wide range of conversations on Healthcare topics, ensuring that the dataset is comprehensive and relevant for training and fine-tuning models for various Healthcare use cases. It offers diversity in terms of conversation topics, chat types, and outcomes, including both inbound and outbound chats with positive, neutral, and negative outcomes.
The conversations in this dataset capture the diverse language styles and expressions prevalent in German Healthcare interactions. This diversity ensures the dataset accurately represents the language used by German speakers in Healthcare contexts.
The dataset encompasses a wide array of language elements, including:
This linguistic authenticity ensures that the dataset equips researchers and developers with a comprehensive understanding of the intricate language patterns, cultural references, and communication styles inherent to German Healthcare interactions.
The dataset includes a broad range of conversations, from simple inquiries to detailed discussions, capturing the dynamic nature of Healthcare customer-agent interactions.
Each of these conversations contains various aspects of conversation flow like:
This structured and varied conversational flow enables the creation of advanced NLP models that can effectively manage and respond to a wide range of customer service scenarios.
The dataset is available in JSON, CSV, and TXT formats, with each conversation containing attributes like participant identifiers and chat messages,
https://www.futurebeeai.com/data-license-agreementhttps://www.futurebeeai.com/data-license-agreement
The dataset comprises over 10,000 chat conversations, each focusing on specific Healthcare related topics. Each conversation provides a detailed interaction between a call center agent and a customer, capturing real-life scenarios and language nuances.
The chat dataset covers a wide range of conversations on Healthcare topics, ensuring that the dataset is comprehensive and relevant for training and fine-tuning models for various Healthcare use cases. It offers diversity in terms of conversation topics, chat types, and outcomes, including both inbound and outbound chats with positive, neutral, and negative outcomes.
The conversations in this dataset capture the diverse language styles and expressions prevalent in Bahasa Healthcare interactions. This diversity ensures the dataset accurately represents the language used by Bahasa speakers in Healthcare contexts.
The dataset encompasses a wide array of language elements, including:
This linguistic authenticity ensures that the dataset equips researchers and developers with a comprehensive understanding of the intricate language patterns, cultural references, and communication styles inherent to Bahasa Healthcare interactions.
The dataset includes a broad range of conversations, from simple inquiries to detailed discussions, capturing the dynamic nature of Healthcare customer-agent interactions.
Each of these conversations contains various aspects of conversation flow like:
This structured and varied conversational flow enables the creation of advanced NLP models that can effectively manage and respond to a wide range of customer service scenarios.
The dataset is available in JSON, CSV, and TXT formats, with each conversation containing attributes like participant identifiers and chat messages,
https://www.futurebeeai.com/data-license-agreementhttps://www.futurebeeai.com/data-license-agreement
The dataset comprises over 12,000 chat conversations, each focusing on specific Healthcare related topics. Each conversation provides a detailed interaction between a call center agent and a customer, capturing real-life scenarios and language nuances.
The chat dataset covers a wide range of conversations on Healthcare topics, ensuring that the dataset is comprehensive and relevant for training and fine-tuning models for various Healthcare use cases. It offers diversity in terms of conversation topics, chat types, and outcomes, including both inbound and outbound chats with positive, neutral, and negative outcomes.
The conversations in this dataset capture the diverse language styles and expressions prevalent in Tamil Healthcare interactions. This diversity ensures the dataset accurately represents the language used by Tamil speakers in Healthcare contexts.
The dataset encompasses a wide array of language elements, including:
This linguistic authenticity ensures that the dataset equips researchers and developers with a comprehensive understanding of the intricate language patterns, cultural references, and communication styles inherent to Tamil Healthcare interactions.
The dataset includes a broad range of conversations, from simple inquiries to detailed discussions, capturing the dynamic nature of Healthcare customer-agent interactions.
Each of these conversations contains various aspects of conversation flow like:
This structured and varied conversational flow enables the creation of advanced NLP models that can effectively manage and respond to a wide range of customer service scenarios.
The dataset is available in JSON, CSV, and TXT formats, with each conversation containing attributes like participant identifiers and chat messages, designed to
https://www.futurebeeai.com/data-license-agreementhttps://www.futurebeeai.com/data-license-agreement
The dataset comprises over 10,000 chat conversations, each focusing on specific Healthcare related topics. Each conversation provides a detailed interaction between a call center agent and a customer, capturing real-life scenarios and language nuances.
The chat dataset covers a wide range of conversations on Healthcare topics, ensuring that the dataset is comprehensive and relevant for training and fine-tuning models for various Healthcare use cases. It offers diversity in terms of conversation topics, chat types, and outcomes, including both inbound and outbound chats with positive, neutral, and negative outcomes.
The conversations in this dataset capture the diverse language styles and expressions prevalent in Dutch Healthcare interactions. This diversity ensures the dataset accurately represents the language used by Dutch speakers in Healthcare contexts.
The dataset encompasses a wide array of language elements, including:
This linguistic authenticity ensures that the dataset equips researchers and developers with a comprehensive understanding of the intricate language patterns, cultural references, and communication styles inherent to Dutch Healthcare interactions.
The dataset includes a broad range of conversations, from simple inquiries to detailed discussions, capturing the dynamic nature of Healthcare customer-agent interactions.
Each of these conversations contains various aspects of conversation flow like:
This structured and varied conversational flow enables the creation of advanced NLP models that can effectively manage and respond to a wide range of customer service scenarios.
The dataset is available in JSON, CSV, and TXT formats, with each conversation containing attributes like participant identifiers and chat messages, designed to
https://www.futurebeeai.com/data-license-agreementhttps://www.futurebeeai.com/data-license-agreement
The dataset comprises over 10,000 chat conversations, each focusing on specific Healthcare related topics. Each conversation provides a detailed interaction between a call center agent and a customer, capturing real-life scenarios and language nuances.
The chat dataset covers a wide range of conversations on Healthcare topics, ensuring that the dataset is comprehensive and relevant for training and fine-tuning models for various Healthcare use cases. It offers diversity in terms of conversation topics, chat types, and outcomes, including both inbound and outbound chats with positive, neutral, and negative outcomes.
The conversations in this dataset capture the diverse language styles and expressions prevalent in Norwegian Healthcare interactions. This diversity ensures the dataset accurately represents the language used by Norwegian speakers in Healthcare contexts.
The dataset encompasses a wide array of language elements, including:
This linguistic authenticity ensures that the dataset equips researchers and developers with a comprehensive understanding of the intricate language patterns, cultural references, and communication styles inherent to Norwegian Healthcare interactions.
The dataset includes a broad range of conversations, from simple inquiries to detailed discussions, capturing the dynamic nature of Healthcare customer-agent interactions.
Each of these conversations contains various aspects of conversation flow like:
This structured and varied conversational flow enables the creation of advanced NLP models that can effectively manage and respond to a wide range of customer service scenarios.
The dataset is available in JSON, CSV, and TXT formats, with each conversation containing attributes like participant identifiers
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Dataset Card for Alpaca
Dataset Summary
Alpaca is a dataset of 52,000 instructions and demonstrations generated by OpenAI's text-davinci-003 engine. This instruction data can be used to conduct instruction-tuning for language models and make the language model follow instruction better. The authors built on the data generation pipeline from Self-Instruct framework and made the following modifications:
The text-davinci-003 engine to generate the instruction data instead… See the full description on the dataset page: https://huggingface.co/datasets/tatsu-lab/alpaca.
https://www.futurebeeai.com/data-license-agreementhttps://www.futurebeeai.com/data-license-agreement
The dataset comprises over 10,000 chat conversations, each focusing on specific Healthcare related topics. Each conversation provides a detailed interaction between a call center agent and a customer, capturing real-life scenarios and language nuances.
The chat dataset covers a wide range of conversations on Healthcare topics, ensuring that the dataset is comprehensive and relevant for training and fine-tuning models for various Healthcare use cases. It offers diversity in terms of conversation topics, chat types, and outcomes, including both inbound and outbound chats with positive, neutral, and negative outcomes.
The conversations in this dataset capture the diverse language styles and expressions prevalent in Malay Healthcare interactions. This diversity ensures the dataset accurately represents the language used by Malay speakers in Healthcare contexts.
The dataset encompasses a wide array of language elements, including:
This linguistic authenticity ensures that the dataset equips researchers and developers with a comprehensive understanding of the intricate language patterns, cultural references, and communication styles inherent to Malay Healthcare interactions.
The dataset includes a broad range of conversations, from simple inquiries to detailed discussions, capturing the dynamic nature of Healthcare customer-agent interactions.
Each of these conversations contains various aspects of conversation flow like:
This structured and varied conversational flow enables the creation of advanced NLP models that can effectively manage and respond to a wide range of customer service scenarios.
The dataset is available in JSON, CSV, and TXT formats, with each conversation containing attributes like participant identifiers and chat messages, designed to
https://www.futurebeeai.com/data-license-agreementhttps://www.futurebeeai.com/data-license-agreement
The dataset comprises over 12,000 chat conversations, each focusing on specific Healthcare related topics. Each conversation provides a detailed interaction between a call center agent and a customer, capturing real-life scenarios and language nuances.
The chat dataset covers a wide range of conversations on Healthcare topics, ensuring that the dataset is comprehensive and relevant for training and fine-tuning models for various Healthcare use cases. It offers diversity in terms of conversation topics, chat types, and outcomes, including both inbound and outbound chats with positive, neutral, and negative outcomes.
The conversations in this dataset capture the diverse language styles and expressions prevalent in Kannada Healthcare interactions. This diversity ensures the dataset accurately represents the language used by Kannada speakers in Healthcare contexts.
The dataset encompasses a wide array of language elements, including:
This linguistic authenticity ensures that the dataset equips researchers and developers with a comprehensive understanding of the intricate language patterns, cultural references, and communication styles inherent to Kannada Healthcare interactions.
The dataset includes a broad range of conversations, from simple inquiries to detailed discussions, capturing the dynamic nature of Healthcare customer-agent interactions.
Each of these conversations contains various aspects of conversation flow like:
This structured and varied conversational flow enables the creation of advanced NLP models that can effectively manage and respond to a wide range of customer service scenarios.
The dataset is available in JSON, CSV, and TXT formats, with each conversation containing attributes like participant identifiers and chat
https://www.futurebeeai.com/data-license-agreementhttps://www.futurebeeai.com/data-license-agreement
The dataset comprises over 10,000 chat conversations, each focusing on specific Healthcare related topics. Each conversation provides a detailed interaction between a call center agent and a customer, capturing real-life scenarios and language nuances.
The chat dataset covers a wide range of conversations on Healthcare topics, ensuring that the dataset is comprehensive and relevant for training and fine-tuning models for various Healthcare use cases. It offers diversity in terms of conversation topics, chat types, and outcomes, including both inbound and outbound chats with positive, neutral, and negative outcomes.
The conversations in this dataset capture the diverse language styles and expressions prevalent in Portuguese Healthcare interactions. This diversity ensures the dataset accurately represents the language used by Portuguese speakers in Healthcare contexts.
The dataset encompasses a wide array of language elements, including:
This linguistic authenticity ensures that the dataset equips researchers and developers with a comprehensive understanding of the intricate language patterns, cultural references, and communication styles inherent to Portuguese Healthcare interactions.
The dataset includes a broad range of conversations, from simple inquiries to detailed discussions, capturing the dynamic nature of Healthcare customer-agent interactions.
Each of these conversations contains various aspects of conversation flow like:
This structured and varied conversational flow enables the creation of advanced NLP models that can effectively manage and respond to a wide range of customer service scenarios.
The dataset is available in JSON, CSV, and TXT formats, with each conversation containing attributes like participant
https://www.futurebeeai.com/data-license-agreementhttps://www.futurebeeai.com/data-license-agreement
The dataset comprises over 12,000 chat conversations, each focusing on specific Healthcare related topics. Each conversation provides a detailed interaction between a call center agent and a customer, capturing real-life scenarios and language nuances.
The chat dataset covers a wide range of conversations on Healthcare topics, ensuring that the dataset is comprehensive and relevant for training and fine-tuning models for various Healthcare use cases. It offers diversity in terms of conversation topics, chat types, and outcomes, including both inbound and outbound chats with positive, neutral, and negative outcomes.
The conversations in this dataset capture the diverse language styles and expressions prevalent in Odia Healthcare interactions. This diversity ensures the dataset accurately represents the language used by Odia speakers in Healthcare contexts.
The dataset encompasses a wide array of language elements, including:
This linguistic authenticity ensures that the dataset equips researchers and developers with a comprehensive understanding of the intricate language patterns, cultural references, and communication styles inherent to Odia Healthcare interactions.
The dataset includes a broad range of conversations, from simple inquiries to detailed discussions, capturing the dynamic nature of Healthcare customer-agent interactions.
Each of these conversations contains various aspects of conversation flow like:
This structured and varied conversational flow enables the creation of advanced NLP models that can effectively manage and respond to a wide range of customer service scenarios.
The dataset is available in JSON, CSV, and TXT formats, with each conversation containing attributes like participant identifiers and chat messages, designed to be
Not seeing a result you expected?
Learn how you can add new datasets to our index.
This dataset was created by Vinit Singh