Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The researcher tests the QA capability of ChatGPT in the medical field from the following aspects:1. Test their reserve capacity for medical knowledge2. Check their ability to read literature and understand medical literature3. Test their ability of auxiliary diagnosis after reading case data4. Test its error correction ability for case data5. Test its ability to standardize medical terms6. Test their evaluation ability to experts7. Check their ability to evaluate medical institutionsThe conclusion is:ChatGPT has great potential in the application of medical and health care, and may directly replace human beings or even professionals at a certain level in some fields;The researcher preliminarily believe that ChatGPT has basic medical knowledge and the ability of multiple rounds of dialogue, and its ability to understand Chinese is not weak;ChatGPT has the ability to read, understand and correct cases;ChatGPT has the ability of information extraction and terminology standardization, and is quite excellent;ChatGPT has the reasoning ability of medical knowledge;ChatGPT has the ability of continuous learning. After continuous training, its level has improved significantly;ChatGPT does not have the academic evaluation ability of Chinese medical talents, and the results are not ideal;ChatGPT does not have the academic evaluation ability of Chinese medical institutions, and the results are not ideal;ChatGPT is an epoch-making product, which can become a useful assistant for medical diagnosis and treatment, knowledge service, literature reading, review and paper writing.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset was compiled to examine the use of ChatGPT 3.5 in educational settings, particularly for creating and personalizing concept maps. The data has been organized into three folders: Maps, Texts, and Questionnaires. The Maps folder contains the graphical representation of the concept maps and the PlanUML code for drawing them in Italian and English. The Texts folder contains the source text used as input for the map's creation The Questionnaires folder includes the students' responses to the three administered questionnaires.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Abstract:This dataset presents survey responses from first-year engineering students on their use of ChatGPT and other AI tools in a project-based learning environment. Collected as part of a study on AI’s role in engineering education, the data captures key insights into how students utilize ChatGPT for coding assistance, conceptual understanding, and collaborative work. The dataset includes responses on frequency of AI usage, perceived benefits and challenges, ethical concerns, and the impact of AI on learning outcomes and problem-solving skills.With AI increasingly integrated into education, this dataset provides valuable empirical evidence for researchers, educators, and policymakers interested in AI-assisted learning, STEM education, and academic integrity. It enables further analysis of student perceptions, responsible AI use, and the evolving role of generative AI in higher education.By making this dataset publicly available, we aim to support future research on AI literacy, pedagogy, and best practices for integrating AI into engineering and science curricula..................................................................................................................................................................Related PublicationThis dataset supports the findings presented in the following peer-reviewed article:ChatGPT in Engineering Education: A Breakthrough or a Challenge?Davood KhodadadPublished: 7 May 2025 | Physics Education, Volume 60, Number 4© 2025 The Author(s). Published by IOP Publishing LtdCitation: Davood Khodadad 2025 Phys. Educ. 60 045006DOI: 10.1088/1361-6552/add073If you use or reference this dataset, please consider citing the above publication......................................................................................................................................................................Description of the data and file structureTitle: ChatGPT in Engineering Education: Survey Data on AI Usage, Learning Impact, and CollaborationDescription of Data Collection:This dataset was collected through a survey distributed via the Canvas learning platform following the completion of group projects in an introductory engineering course. The survey aimed to investigate how students engaged with ChatGPT and other AI tools in a project-based learning environment, particularly in relation to coding, report writing, idea generation, and collaboration.The survey consisted of 15 questions:12 multiple-choice questions to capture quantitative insights on AI usage patterns, frequency, and perceived benefits.3 open-ended questions to collect qualitative perspectives on challenges, ethical concerns, and students' reflections on AI-assisted learning.Key areas assessed in the survey include:Students’ prior familiarity with AI tools before the course.Frequency and purpose of ChatGPT usage (e.g., coding assistance, conceptual learning, collaboration).Perceived benefits and limitations of using AI tools in an engineering learning environment.Ethical considerations, including concerns about over-reliance and academic integrity.The dataset provides valuable empirical insights into the evolving role of AI in STEM education and can support further research on AI-assisted learning, responsible AI usage, and best practices for integrating AI tools in engineering education.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
along with the corresponding answers from students and ChatGPT.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
IntroductionIn recent years, numerous AI tools have been employed to equip learners with diverse technical skills such as coding, data analysis, and other competencies related to computational sciences. However, the desired outcomes have not been consistently achieved. This study aims to analyze the perspectives of students and professionals from non-computational fields on the use of generative AI tools, augmented with visualization support, to tackle data analytics projects. The focus is on promoting the development of coding skills and fostering a deep understanding of the solutions generated. Consequently, our research seeks to introduce innovative approaches for incorporating visualization and generative AI tools into educational practices.MethodsThis article examines how learners perform and their perspectives when using traditional tools vs. LLM-based tools to acquire data analytics skills. To explore this, we conducted a case study with a cohort of 59 participants among students and professionals without computational thinking skills. These participants developed a data analytics project in the context of a Data Analytics short session. Our case study focused on examining the participants' performance using traditional programming tools, ChatGPT, and LIDA with GPT as an advanced generative AI tool.ResultsThe results shown the transformative potential of approaches based on integrating advanced generative AI tools like GPT with specialized frameworks such as LIDA. The higher levels of participant preference indicate the superiority of these approaches over traditional development methods. Additionally, our findings suggest that the learning curves for the different approaches vary significantly. Since learners encountered technical difficulties in developing the project and interpreting the results. Our findings suggest that the integration of LIDA with GPT can significantly enhance the learning of advanced skills, especially those related to data analytics. We aim to establish this study as a foundation for the methodical adoption of generative AI tools in educational settings, paving the way for more effective and comprehensive training in these critical areas.DiscussionIt is important to highlight that when using general-purpose generative AI tools such as ChatGPT, users must be aware of the data analytics process and take responsibility for filtering out potential errors or incompleteness in the requirements of a data analytics project. These deficiencies can be mitigated by using more advanced tools specialized in supporting data analytics tasks, such as LIDA with GPT. However, users still need advanced programming knowledge to properly configure this connection via API. There is a significant opportunity for generative AI tools to improve their performance, providing accurate, complete, and convincing results for data analytics projects, thereby increasing user confidence in adopting these technologies. We hope this work underscores the opportunities and needs for integrating advanced LLMs into educational practices, particularly in developing computational thinking skills.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is the raw data that is used in the publication: ChatGPT as an education and learning tool for engineering, technology and general studies: performance analysis of ChatGPT 3.0 on CSE, GATE and JEE examinations of India.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
We implement the calculation of cosine similarity using the sklearn package [45].
Large Language Model content safety considerations text data, about 570,000 in total, this dataset can be used for tasks such as LLM training, chatgpt
GPT-3's water consumption for the training phase was estimated at roughly 4.8 billion liters of water, when assuming the model was trained on Microsoft's Iowa data center (OpeanAI has disclosed that the data center was used for training parts of the GPT-4 model). If the model were to have been fully trained in the Washington data center, water consumption could have been as high as 15 billion liters. That would've amounted to more than Microsoft's total water withdrawals in 2023.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The data set records the perceptions of Bangladeshi university students on the influence that AI tools, especially ChatGPT, have on their academic practices, learning experiences, and problem-solving abilities. The varying role of AI in education, which covers common usage statistics, what AI does to our creative abilities, its impact on our learning, and whether it could invade our privacy. This dataset reveals perspective on how AI tools are changing education in the country and offering valuable information for researchers, educators, policymakers, to understand trends, challenges, and opportunities in the adoption of AI in the academic contex.
Methodology Data Collection Method: Online survey using google from Participants: A total of 3,512 students from various Bangladeshi universities participated. Survey Questions:The survey included questions on demographic information, frequency of AI tool usage, perceived benefits, concerns regarding privacy, and impacts on creativity and learning.
Sampling Technique: Random sampling of university students Data Collection Period: June 2024 to December 2024
Privacy Compliance This dataset has been anonymized to remove any personally identifiable information (PII). It adheres to relevant privacy regulations to ensure the confidentiality of participants.
For further inquiries, please contact: Name: Md Jhirul Islam, Daffodil International University Email: jhirul15-4063@diu.edu.bd Phone: 01316317573
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data on ChatGPT 3's and ChatGPT 4's performance on self-assessment questions for dentistry (SFLEDM) and allergy and clinical immunology (EEAACI), sourced from the University of Bern’s Institute for Medical Education platform.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundClinical data is instrumental to medical research, machine learning (ML) model development, and advancing surgical care, but access is often constrained by privacy regulations and missing data. Synthetic data offers a promising solution to preserve privacy while enabling broader data access. Recent advances in large language models (LLMs) provide an opportunity to generate synthetic data with reduced reliance on domain expertise, computational resources, and pre-training.ObjectiveThis study aims to assess the feasibility of generating realistic tabular clinical data with OpenAI’s GPT-4o using zero-shot prompting, and evaluate the fidelity of LLM-generated data by comparing its statistical properties to the Vital Signs DataBase (VitalDB), a real-world open-source perioperative dataset.MethodsIn Phase 1, GPT-4o was prompted to generate a dataset with qualitative descriptions of 13 clinical parameters. The resultant data was assessed for general errors, plausibility of outputs, and cross-verification of related parameters. In Phase 2, GPT-4o was prompted to generate a dataset using descriptive statistics of the VitalDB dataset. Fidelity was assessed using two-sample t-tests, two-sample proportion tests, and 95% confidence interval (CI) overlap.ResultsIn Phase 1, GPT-4o generated a complete and structured dataset comprising 6,166 case files. The dataset was plausible in range and correctly calculated body mass index for all case files based on respective heights and weights. Statistical comparison between the LLM-generated datasets and VitalDB revealed that Phase 2 data achieved significant fidelity. Phase 2 data demonstrated statistical similarity in 12/13 (92.31%) parameters, whereby no statistically significant differences were observed in 6/6 (100.0%) categorical/binary and 6/7 (85.71%) continuous parameters. Overlap of 95% CIs were observed in 6/7 (85.71%) continuous parameters.ConclusionZero-shot prompting with GPT-4o can generate realistic tabular synthetic datasets, which can replicate key statistical properties of real-world perioperative data. This study highlights the potential of LLMs as a novel and accessible modality for synthetic data generation, which may address critical barriers in clinical data access and eliminate the need for technical expertise, extensive computational resources, and pre-training. Further research is warranted to enhance fidelity and investigate the use of LLMs to amplify and augment datasets, preserve multivariate relationships, and train robust ML models.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is version 2 of the dataset created and used to explore ChatGPT-3.5's ability to write, justify and analyse English poems. This version was created after the reviewers decision that this paper may be published, if some changes are made.
The purpose of the research was to determine if ChatGPT-3.5 would be adopted in English poetry classrooms. As none of the theoretical models were applicable, the Artificial Intelligence Adoption Prediction Model (AIAPM) was designed. Based on this model, an Artificial Intelligence Adoption Prediction tool (AIAPT) was designed to calculate an Adoption Prediction Score (APS). Then, ChatGPT-3.5's ability to write, justify and analyse poems were explored.
It was found that ChatGPT-3.5 could write, justify, and analyse poems, but it could also make errors and hallucinate convincingly. Thus, the AIAPT was used to calculate the Adoption Prediction Score. The APS was 9, thus all factors of the AIAPM could drive the adoption decision. Thus, it could be predicted that ChatGPT-3.5 would be adopted in English poetry classrooms, both for ethical and unethical purposes. Based on the results, a few pro-active strategies were suggested.
This dataset contains all data created and used during the research, including the poems which were integrated in the paper: "An Artificial Intelligence Adoption Prediction Model to determine if ChatGPT-3.5 would be adopted in English poetry classrooms" which was submitted toe Heliyon for publication.
Many NLP applications require manual text annotations for a variety of tasks, notably to train classifiers or evaluate the performance of unsupervised models. Depending on the size and degree of complexity, the tasks may be conducted by crowd-workers on platforms such as MTurk as well as trained annotators, such as research assistants. Using four samples of tweets and news articles (n = 6,183), we show that ChatGPT outperforms crowd-workers for several annotation tasks, including relevance, stance, topics, and frame detection. Across the four datasets, the zero-shot accuracy of ChatGPT exceeds that of crowd-workers by about 25 percentage points on average, while ChatGPT's intercoder agreement exceeds that of both crowd-workers and trained annotators for all tasks. Moreover, the per-annotation cost of ChatGPT is less than $0.003---about thirty times cheaper than MTurk. These results demonstrate the potential of large language models to drastically increase the efficiency of text classification.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data supporting the paper entitled "Extracting Accurate Materials Data from Research Papers with Conversational Language Models and Prompt Engineering" by Maciej P. Polak and Dane Morganhttps://arxiv.org/abs/2303.05352BulkModulus_test_database_MPPolak_DMorgan.xlsx - dataset of bulk modulus text passages and sentences used for methods assessment.CriticalCoolingRates_MGs_database_MPPolak_DMorgan.xlsx - a database of critical cooling rates of metallic glasses. The data is presented in three versions and (described in detail in the paper), i.e. "raw", "cleaned", and "standardized". The critical cooling rate additionally includes manually extracted data serving as ground truth for tests, in sheets labeled as "manual". In addition, a "standardized_MG" database is included, which limits the results to metallic glasses only, together with "standardized_tables_MG" for values extracted from tables, and "Figure_Classification" which contains Figure numbers, captions, and DOIs of their source documents.YieldStrength_HEAs_database_MPPolak_DMorgan.xlsx - a database of yield strengths in the context of high entropy alloys. The data is presented in three versions and (described in detail in the paper), i.e. "raw", "cleaned", and "standardized". In addition, a "standardized_HEA" database is included, which limits the results to HEAs only, together with "standardized_tables_HEA" for values extracted from tables, and "Figure_Classification" which contains Figure numbers, captions, and DOIs of their source documents.ChatExtract_Code_MPPolak_DMorgan.zip - These files contain the ChatExtract code with a short example and instructions.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset complements the data I have presented in an academic paper submitted to an academic journal. It contains a satirical poem and several versions of ChatGPT-3.5's analysis of two famous poems, namely Morning at the Window (Eliot) and Sonnet 18 (Shakespeare). The versions were generated to determine if ChatGPT would generate a new version, or not, and it would generate different versions for two users.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
We tested ChatGPT on 25 tasks focusing on solving common NLP problems and requiring analytical reasoning. These tasks include (1) a relatively simple binary classification of texts like spam, humor, sarcasm, aggression detection, or grammatical correctness of the text; (2) a more complex multiclass and multi-label classification of texts such as sentiment analysis, emotion recognition; (3) reasoning with the personal context, i.e., personalized versions of the problems that make use of additional information about text perception of a given user (user’s examples provided to ChatGPT); (4) semantic annotation and acceptance of the text going towards natural language understanding (NLU) like word sense disambiguation (WSD), and (5) answering questions based on the input text. More information in the paper: https://www.sciencedirect.com/science/article/pii/S156625352300177X
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Objective:
Our objective is to evaluate the efficacy of ChatGPT 4 in accurately and effectively delivering genetic information, building on previous findings with ChatGPT 3.5. We focus on assessing the utility, limitations, and ethical implications of using ChatGPT in medical settings.
Materials and Methods:
A structured questionnaire, including the Brief User Survey (BUS-15) and custom questions, was developed to assess ChatGPT 4's clinical value. An expert panel of genetic counselors and clinical geneticists independently evaluated ChatGPT 4's responses to these questions. We also involved comparative analysis with ChatGPT 3.5, utilizing descriptive statistics and using R for data analysis.
Results:
ChatGPT 4 demonstrated improvements over 3.5 in context recognition, relevance, and informativeness. However, performance variability and concerns about the naturalness of the output were noted. No significant difference in accuracy was found between ChatGPT 3.5 and 4.0. Notably, the efficacy of ChatGPT 4 varied significantly across different genetic conditions, with specific differences identified between responses related to BRCA1 and HFE.
Discussion and Conclusion:
This study highlights ChatGPT 4's potential in genomics, noting significant advancements over its predecessor. Despite these improvements, challenges remain, including the risk of outdated information and the necessity of ongoing refinement. The variability in performance across different genetic conditions underscores the need for expert oversight and continuous AI training. ChatGPT 4, while showing promise, emphasizes the importance of balancing technological innovation with ethical responsibility in healthcare information delivery.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Dataset Card for "Collective Cognition ChatGPT Conversations"
Dataset Description
Dataset Summary
The "Collective Cognition ChatGPT Conversations" dataset is a collection of chat logs between users and the ChatGPT model. These conversations have been shared by users on the "Collective Cognition" website. The dataset provides insights into user interactions with language models and can be utilized for multiple purposes, including training, research, and… See the full description on the dataset page: https://huggingface.co/datasets/CollectiveCognition/chats-data-2023-10-16.
Energy consumption of artificial intelligence (AI) models in training is considerable, with both GPT-3, the original release of the current iteration of OpenAI's popular ChatGPT, and Gopher consuming well over **********-megawatt hours of energy simply for training. As this is only for the training model it is likely that the energy consumption for the entire usage and lifetime of GPT-3 and other large language models (LLMs) is significantly higher. The largest consumer of energy, GPT-3, consumed roughly the equivalent of *** Germans in 2022. While not a staggering amount, it is a considerable use of energy. Energy savings through AI While it is undoubtedly true that training LLMs takes a considerable amount of energy, the energy savings are also likely to be substantial. Any AI model that improves processes by minute numbers might save hours on shipment, liters of fuel, or dozens of computations. Each one of these uses energy as well and the sum of energy saved through a LLM might vastly outperform its energy cost. A good example is mobile phone operators, of which a ***** expect that AI might reduce power consumption by *** to ******* percent. Considering that much of the world uses mobile phones this would be a considerable energy saver. Emissions are considerable The amount of CO2 emissions from training LLMs is also considerable, with GPT-3 producing nearly *** tonnes of CO2. This again could be radically changed based on the types of energy production creating the emissions. Most data center operators for instance would prefer to have nuclear energy play a key role, a significantly low-emission energy producer.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The researcher tests the QA capability of ChatGPT in the medical field from the following aspects:1. Test their reserve capacity for medical knowledge2. Check their ability to read literature and understand medical literature3. Test their ability of auxiliary diagnosis after reading case data4. Test its error correction ability for case data5. Test its ability to standardize medical terms6. Test their evaluation ability to experts7. Check their ability to evaluate medical institutionsThe conclusion is:ChatGPT has great potential in the application of medical and health care, and may directly replace human beings or even professionals at a certain level in some fields;The researcher preliminarily believe that ChatGPT has basic medical knowledge and the ability of multiple rounds of dialogue, and its ability to understand Chinese is not weak;ChatGPT has the ability to read, understand and correct cases;ChatGPT has the ability of information extraction and terminology standardization, and is quite excellent;ChatGPT has the reasoning ability of medical knowledge;ChatGPT has the ability of continuous learning. After continuous training, its level has improved significantly;ChatGPT does not have the academic evaluation ability of Chinese medical talents, and the results are not ideal;ChatGPT does not have the academic evaluation ability of Chinese medical institutions, and the results are not ideal;ChatGPT is an epoch-making product, which can become a useful assistant for medical diagnosis and treatment, knowledge service, literature reading, review and paper writing.