Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains all available conversations from chatlogs.net between users and ChatGPT. Version 1 contains all conversations available up to the cutoff date of April 4, 2023. Version 1 contains all conversations available up to the cutoff date of April 20, 2023.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset consists of daily-updated user reviews and ratings for the ChatGPT Android App. The dataset includes several key attributes that capture various aspects of the reviews, providing insights into user experiences and feedback over time.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This project investigated teacher attitudes towards Generative Artificial Intelligence Tools (GAITs). In excess of three hundred teachers were surveyed across a broad variety of teaching levels, demographic areas, experience levels, and disciplinary areas, to better understand how they believe teaching and assessment should change as a result of GAITs such as ChatGPT.Teachers were invited to complete an online survey relating to their perceptions of the open Artificial Intelligence (AI) tool ChatGPT, and how it will influence what they teach and how they assess. The purpose of the study is to provide teachers, policymakers, and society at large with an understanding of the potential impact of tools such as ChatGPT on Education.This dataset contains public data files used for the ChatGPT survey (XLSX) and the survey containing variable selection codes (DOCX). See the second sheet of the XLSX file for variable descriptions.
Facebook
TwitterThe rapid advancements in generative AI models present new opportunities in the education sector. However, it is imperative to acknowledge and address the potential risks and concerns that may arise with their use. We collected Twitter data to identify key concerns related to the use of ChatGPT in education. This dataset is used to support the study "ChatGPT in education: A discourse analysis of worries and concerns on social media."
In this study, we particularly explored two research questions. RQ1 (Concerns): What are the key concerns that Twitter users perceive with using ChatGPT in education? RQ2 (Accounts): Which accounts are implicated in the discussion of these concerns? In summary, our study underscores the importance of responsible and ethical use of AI in education and highlights the need for collaboration among stakeholders to regulate AI policy.
Facebook
TwitterAttribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
This dataset contains academic and behavioral information of computer science students, including their CGPA, ChatGPT usage patterns, and an evaluated aptitude score. It is designed to study the correlation between AI tool usage and critical thinking ability.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This repository contains two datasets used in the study exploring the impact of Generative AI, specifically ChatGPT, on the public sector workforce in the United States. The datasets provide detailed information on the core tasks of public sector occupations and their estimated performance metrics, including potential for automation and augmentation by ChatGPT. These estimations are generated by OpenAI’s GPT-4 model (GPT-4-1106-preview) through OpenAI API.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset for this research project was meticulously constructed to investigate the adoption of ChatGPT among students in the United States. The primary objective was to gain insights into the technological barriers and resistances faced by students in integrating ChatGPT into their information systems. The dataset was designed to capture the diverse adoption patterns among students in various public and private schools and universities across the United States. By examining adoption rates, frequency of usage, and the contexts in which ChatGPT is employed, the research sought to provide a comprehensive understanding of how students are incorporating this technology into their information systems. Moreover, by including participants from diverse educational institutions, the research sought to ensure a comprehensive representation of the student population in the United States. This approach aimed to provide nuanced insights into how factors such as educational background, institution type, and technological familiarity influence ChatGPT adoption.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset presents ChatGPT usage patterns across different age groups, showing the percentage of users who have followed its advice, used it without following advice, or have never used it, based on a 2025 U.S. survey.
Facebook
TwitterAttribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
We have compiled a dataset that consists of textual articles including common terminology, concepts and definitions in the field of computer science, artificial intelligence, and cyber security. This dataset consists of both human-generated text and OpenAI’s ChatGPT-generated text. Human-generated answers were collected from different computer science dictionaries and encyclopedias including “The Encyclopedia of Computer Science and Technology” and "Encyclopedia of Human-Computer Interaction". AI-generated content in our dataset was produced by simply posting questions to OpenAI’s ChatGPT and manually documenting the resulting responses. A rigorous data-cleaning process has been performed to remove unwanted Unicode characters, styling and formatting tags. To structure our dataset for binary classification, we combined both AI-generated and Human-generated answers into a single column and assigned appropriate labels to each data point (Human-generated = 0 and AI-generated = 1).
This creates our article-level dataset (article_level_data.csv) which consists of a total of 1018 articles, 509 AI-generated and 509 Human-generated. Additionally, we have divided each article into its sentences and labelled them accordingly. This is mainly to evaluate the performance of classification models and pipelines when it comes to shorter sentence-level data points. This constructs our sentence-level dataset (sentence_level_data.csv) which consists of a total of 7344 entries (4008 AI-generated and 3336 Human-generated).
We appreciate it, if you cite the following article if you happen to use this dataset in any scientific publication:
Maktab Dar Oghaz, M., Dhame, K., Singaram, G., & Babu Saheer, L. (2023). Detection and Classification of ChatGPT Generated Contents Using Deep Transformer Models. Frontiers in Artificial Intelligence.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The data set records the perceptions of Bangladeshi university students on the influence that AI tools, especially ChatGPT, have on their academic practices, learning experiences, and problem-solving abilities. The varying role of AI in education, which covers common usage statistics, what AI does to our creative abilities, its impact on our learning, and whether it could invade our privacy. This dataset reveals perspective on how AI tools are changing education in the country and offering valuable information for researchers, educators, policymakers, to understand trends, challenges, and opportunities in the adoption of AI in the academic contex.
Methodology Data Collection Method: Online survey using google from Participants: A total of 3,512 students from various Bangladeshi universities participated. Survey Questions:The survey included questions on demographic information, frequency of AI tool usage, perceived benefits, concerns regarding privacy, and impacts on creativity and learning.
Sampling Technique: Random sampling of university students Data Collection Period: June 2024 to December 2024
Privacy Compliance This dataset has been anonymized to remove any personally identifiable information (PII). It adheres to relevant privacy regulations to ensure the confidentiality of participants.
For further inquiries, please contact: Name: Md Jhirul Islam, Daffodil International University Email: jhirul15-4063@diu.edu.bd Phone: 01316317573
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset shows how men and women in the U.S. reported using ChatGPT in a 2025 survey, including whether they followed its advice or chose not to use it.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset shows the types of advice users sought from ChatGPT based on a 2025 U.S. survey, including education, financial, medical, and legal topics.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset was compiled to examine the use of ChatGPT 3.5 in educational settings, particularly for creating and personalizing concept maps. The data has been organized into three folders: Maps, Texts, and Questionnaires. The Maps folder contains the graphical representation of the concept maps and the PlanUML code for drawing them in Italian and English. The Texts folder contains the source text used as input for the map's creation The Questionnaires folder includes the students' responses to the three administered questionnaires.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundClinical data is instrumental to medical research, machine learning (ML) model development, and advancing surgical care, but access is often constrained by privacy regulations and missing data. Synthetic data offers a promising solution to preserve privacy while enabling broader data access. Recent advances in large language models (LLMs) provide an opportunity to generate synthetic data with reduced reliance on domain expertise, computational resources, and pre-training.ObjectiveThis study aims to assess the feasibility of generating realistic tabular clinical data with OpenAI’s GPT-4o using zero-shot prompting, and evaluate the fidelity of LLM-generated data by comparing its statistical properties to the Vital Signs DataBase (VitalDB), a real-world open-source perioperative dataset.MethodsIn Phase 1, GPT-4o was prompted to generate a dataset with qualitative descriptions of 13 clinical parameters. The resultant data was assessed for general errors, plausibility of outputs, and cross-verification of related parameters. In Phase 2, GPT-4o was prompted to generate a dataset using descriptive statistics of the VitalDB dataset. Fidelity was assessed using two-sample t-tests, two-sample proportion tests, and 95% confidence interval (CI) overlap.ResultsIn Phase 1, GPT-4o generated a complete and structured dataset comprising 6,166 case files. The dataset was plausible in range and correctly calculated body mass index for all case files based on respective heights and weights. Statistical comparison between the LLM-generated datasets and VitalDB revealed that Phase 2 data achieved significant fidelity. Phase 2 data demonstrated statistical similarity in 12/13 (92.31%) parameters, whereby no statistically significant differences were observed in 6/6 (100.0%) categorical/binary and 6/7 (85.71%) continuous parameters. Overlap of 95% CIs were observed in 6/7 (85.71%) continuous parameters.ConclusionZero-shot prompting with GPT-4o can generate realistic tabular synthetic datasets, which can replicate key statistical properties of real-world perioperative data. This study highlights the potential of LLMs as a novel and accessible modality for synthetic data generation, which may address critical barriers in clinical data access and eliminate the need for technical expertise, extensive computational resources, and pre-training. Further research is warranted to enhance fidelity and investigate the use of LLMs to amplify and augment datasets, preserve multivariate relationships, and train robust ML models.
Facebook
TwitterThis dataset was created by Ayush Nagar
Facebook
TwitterComprehensive dataset of AEO statistics, AI search usage data, and optimization effectiveness metrics
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The DataSet consists of user reviews of ChatGPT, including Textual Feedback, Ratings, and Review Dates. The Reviews Range from brief comments to more detailed feedback by covering a wide range of user sentiments. The ratings are on a scale of 1 to 5, representing varying levels of Satisfaction. The dataset spans multiple months, providing a temporal dimension for analysis. Each review is accompanied by a timestamp, allowing for Time-Series analysis of sentiment trends.
Facebook
TwitterChatGPT is widely used for writing tasks, yet its effects on medical students’ academic writing remain underexplored. This study aims to elucidate ChatGPT’s impact on academic writing efficiency and quality among medical students, while also evaluating students’ attitudes towards its use in academic writing. We collected systematic reviews from 130 third-year medical students and administered a questionnaire to assess ChatGPT usage and student attitudes. Three independent reviewers graded the papers using EASE guidelines, and statistical analysis compared articles generated with or without ChatGPT assistance across various parameters, with rigorous quality control ensuring survey reliability and validity. In this study, 33 students (25.8%) utilized ChatGPT for writing (ChatGPT group) and 95 (74.2%) did not (Control group). The ChatGPT group exhibited significantly higher daily technology use and prior experience with ChatGPT (p < 0.05). Writing time was significantly reduced in the ChatGPT group (p = 0.04), with 69.7% completing tasks within 2–3 days compared to 48.4% in the control group. They also achieved higher article quality scores (p < 0.0001) with improvements in completeness, credibility, and scientific content. Self-assessment indicated enhanced writing skills (p < 0.01), confidence (p < 0.001), satisfaction (p < 0.001) and a positive attitude toward its future use in the ChatGPT group. Integrating ChatGPT in medical academic writing, with proper guidance, improves efficiency and quality, illustrating artificial intelligence’s potential in shaping medical education methodologies.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The introduction of ChatGPT in November 2022 marked a significant milestone in the application of artificial intelligence in higher education. Due to its advanced natural language processing capabilities, ChatGPT quickly became popular among students worldwide. However, the increasing acceptance of ChatGPT among students has attracted significant attention, sparking both excitement and scepticism globally. Building on the early students' perceptions of ChatGPT after the first year of introduction, a comprehensive and large-scale global survey was repeated between October 2024 and February 2025. The questionnaire was distributed in seven different languages: English, Italian, Spanish, Turkish, Japanese, Arabic, and Hebrew. It covered several aspects relevant to ChatGPT, including sociodemographic characteristics, usage, capabilities, regulation and ethical concerns, satisfaction and attitude, study issues and outcomes, skills development, labour market and skills mismatch, emotions, study and personal information, and general reflections. The survey targeted higher education students who are currently enrolled at any level in a higher education institution, are at least 18 years old, and have the legal capacity to provide free and voluntary consent to participate in an anonymous survey. Survey participants were recruited using a convenience sampling method, which involved promoting the survey in classrooms and through advertisements on university communication systems. The final dataset consists of 22,963 student responses from 120 different countries and territories. The data may prove useful for researchers studying students' perceptions of ChatGPT, including its implications across various aspects. Moreover, also higher education stakeholders may benefit from these data. While educators may benefit from the data in formulating curricula, including designing teaching methods and assessment tools, policymakers may consider the data when formulating strategies for higher education system development in the future.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset reflects how Americans perceive ChatGPT's broader societal impact, based on a 2025 survey that asked whether the AI will help or harm humanity.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains all available conversations from chatlogs.net between users and ChatGPT. Version 1 contains all conversations available up to the cutoff date of April 4, 2023. Version 1 contains all conversations available up to the cutoff date of April 20, 2023.