Facebook
TwitterIn 2024, **** percent of Black people living in the United States were living below the poverty line, compared to *** percent of white people. That year, the overall poverty rate in the U.S. across all races and ethnicities was **** percent. Poverty in the United States The poverty threshold for a single person in the United States was measured at an annual income of ****** U.S. dollars in 2023. Among families of four, the poverty line increases to ****** U.S. dollars a year. Women and children are more likely to suffer from poverty. This is due to the fact that women are more likely than men to stay at home, to care for children. Furthermore, the gender-based wage gap impacts women's earning potential. Poverty data Despite being one of the wealthiest nations in the world, the United States has some of the highest poverty rates among OECD countries. While, the United States poverty rate has fluctuated since 1990, it has trended downwards since 2014. Similarly, the average median household income in the U.S. has mostly increased over the past decade, except for the covid-19 pandemic period. Among U.S. states, Louisiana had the highest poverty rate, which stood at some ** percent in 2024.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This is the proportion of children aged under 16 (0-15) living in families in absolute low income during the year. The figures are based on the count of children aged under 16 (0-15) living in the area derived from ONS mid-year population estimates. The count of children refers to the age of the child at 30 June of each year.
Low income is a family whose equivalised income is below 60 per cent of median household incomes. Gross income measure is Before Housing Costs (BHC) and includes contributions from earnings, state support, and pensions. Equivalisation adjusts incomes for household size and composition, taking an adult couple with no children as the reference point. For example, the process of equivalisation would adjust the income of a single person upwards, so their income can be compared directly to the standard of living for a couple.
Absolute low income is income Before Housing Costs (BHC) in the reference year in comparison with incomes in 2010/11 adjusted for inflation. A family must have claimed one or more of Universal Credit, Tax Credits, or Housing Benefit at any point in the year to be classed as low income in these statistics. Children are dependent individuals aged under 16; or aged 16 to 19 in full-time non-advanced education. The count of children refers to the age of the child at 31 March of each year.
Data are calibrated to the Households Below Average Income (HBAI) survey regional estimates of children in low income but provide more granular local area information not available from the HBAI. For further information and methodology on the construction of these statistics, visit this link. Totals may not sum due to rounding.Data is Powered by LG Inform Plus and automatically checked for new data on the 4th of each month.
Facebook
TwitterOpen Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
This poverty rate data shows what percentage of the measured population* falls below the poverty line. Poverty is closely related to income: different “poverty thresholds” are in place for different sizes and types of household. A family or individual is considered to be below the poverty line if that family or individual’s income falls below their relevant poverty threshold. For more information on how poverty is measured by the U.S. Census Bureau (the source for this indicator’s data), visit the U.S. Census Bureau’s poverty webpage.
The poverty rate is an important piece of information when evaluating an area’s economic health and well-being. The poverty rate can also be illustrative when considered in the contexts of other indicators and categories. As a piece of data, it is too important and too useful to omit from any indicator set.
The poverty rate for all individuals in the measured population in Champaign County has hovered around roughly 20% since 2005. However, it reached its lowest rate in 2021 at 14.9%, and its second lowest rate in 2023 at 16.3%. Although the American Community Survey (ACS) data shows fluctuations between years, given their margins of error, none of the differences between consecutive years’ estimates are statistically significant, making it impossible to identify a trend.
Poverty rate data was sourced from the U.S. Census Bureau’s American Community Survey 1-Year Estimates, which are released annually.
As with any datasets that are estimates rather than exact counts, it is important to take into account the margins of error (listed in the column beside each figure) when drawing conclusions from the data.
Due to the impact of the COVID-19 pandemic, instead of providing the standard 1-year data products, the Census Bureau released experimental estimates from the 1-year data in 2020. This includes a limited number of data tables for the nation, states, and the District of Columbia. The Census Bureau states that the 2020 ACS 1-year experimental tables use an experimental estimation methodology and should not be compared with other ACS data. For these reasons, and because data is not available for Champaign County, no data for 2020 is included in this Indicator.
For interested data users, the 2020 ACS 1-Year Experimental data release includes a dataset on Poverty Status in the Past 12 Months by Age.
*According to the U.S. Census Bureau document “How Poverty is Calculated in the ACS," poverty status is calculated for everyone but those in the following groups: “people living in institutional group quarters (such as prisons or nursing homes), people in military barracks, people in college dormitories, living situations without conventional housing, and unrelated individuals under 15 years old."
Sources: U.S. Census Bureau; American Community Survey, 2023 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using data.census.gov; (17 October 2024).; U.S. Census Bureau; American Community Survey, 2022 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using data.census.gov; (25 September 2023).; U.S. Census Bureau; American Community Survey, 2021 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using data.census.gov; (16 September 2022).; U.S. Census Bureau; American Community Survey, 2019 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using data.census.gov; (8 June 2021).; U.S. Census Bureau; American Community Survey, 2018 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using data.census.gov; (8 June 2021).; U.S. Census Bureau; American Community Survey, 2017 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2016 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (14 September 2017).; U.S. Census Bureau; American Community Survey, 2015 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (19 September 2016).; U.S. Census Bureau; American Community Survey, 2014 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2013 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2012 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2011 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2010 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2009 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2008 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2007 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2006 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2005 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).
Facebook
TwitterThis table contains data on the percent of households paying more than 30% (or 50%) of monthly household income towards housing costs for California, its regions, counties, cities/towns, and census tracts. Data is from the U.S. Department of Housing and Urban Development (HUD), Consolidated Planning Comprehensive Housing Affordability Strategy (CHAS) and the U.S. Census Bureau, American Community Survey (ACS). The table is part of a series of indicators in the [Healthy Communities Data and Indicators Project of the Office of Health Equity] Affordable, quality housing is central to health, conferring protection from the environment and supporting family life. Housing costs—typically the largest, single expense in a family's budget—also impact decisions that affect health. As housing consumes larger proportions of household income, families have less income for nutrition, health care, transportation, education, etc. Severe cost burdens may induce poverty—which is associated with developmental and behavioral problems in children and accelerated cognitive and physical decline in adults. Low-income families and minority communities are disproportionately affected by the lack of affordable, quality housing. More information about the data table and a data dictionary can be found in the Attachments.
Facebook
TwitterThe Rooftop Energy Potential of Low Income Communities in America REPLICA data set provides estimates of residential rooftop solar technical potential at the tract-level with emphasis on estimates for Low and Moderate Income LMI populations. In addition to technical potential REPLICA is comprised of 10 additional datasets at the tract-level to provide socio-demographic and market context. The model year vintage of REPLICA is 2015. The LMI solar potential estimates are made at the tract level grouped by Area Median Income AMI income tenure and building type. These estimates are based off of LiDAR data of 128 metropolitan areas statistical modeling and ACS 2011-2015 demographic data. The remaining datasets are supplemental datasets that can be used in conjunction with the technical potential data for general LMI solar analysis planning and policy making. The core dataset is a wide-format CSV file seeds_ii_replica.csv that can be tagged to a tract geometry using the GEOID or GISJOIN fields. In addition users can download geographic shapefiles for the main or supplemental datasets. This dataset was generated as part of the larger NREL-led SEEDSII Solar Energy Evolution and Diffusion Studies project and specifically for the NREL technical report titled Rooftop Solar Technical Potential for Low-to-Moderate Income Households in the United States by Sigrin and Mooney 2018. This dataset is intended to give researchers planners advocates and policy-makers access to credible data to analyze low-income solar issues and potentially perform cost-benefit analysis for program design. To explore the data in an interactive web mapping environment use the NREL SolarForAll app.
Facebook
TwitterIn 2024, just over 45 percent of American households had an annual income that was less than 75,000 U.S. dollars. On the other hand, some 16 percent had an annual income of 200,000 U.S. dollars or more. The median household income in the country reached almost 84,000 U.S. dollars in 2024. Income and wealth in the United States After the economic recession in 2009, income inequality in the U.S. is more prominent across many metropolitan areas. The Northeast region is regarded as one of the wealthiest in the country. Massachusetts, New Hampshire, and Maryland were among the states with the highest median household income in 2024. In terms of income by race and ethnicity, the average income of Asian households was highest, at over 120,000 U.S. dollars, while the median income among Black households was around half of that figure. What is the U.S. poverty threshold? The U.S. Census Bureau annually updates the poverty threshold based on the income of various household types. As of 2023, the threshold for a single-person household was 15,480 U.S. dollars. For a family of four, the poverty line increased to 31,200 U.S. dollars. There were an estimated 38.9 million people living in poverty across the United States in 2024, which reflects a poverty rate of 10.6 percent.
Facebook
Twitterhttps://www.icpsr.umich.edu/web/ICPSR/studies/39430/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/39430/terms
In 2019, RWJF commissioned the National Opinion Research Center (NORC) to survey U.S. adults and develop a typology to better understand current mindsets within the U.S. adult population related to resource problems such as: adequate incomes and access to healthy food, child-care programs, and preschool. The idea was to use a typology to understand values and beliefs related to promoting solutions to the problems, including differing views about the deservingness of low-income families, the importance of systemic-level causes, and the proper role for government to play in addressing the problems. The work was to be modeled on previous NORC American Health Values Survey work completed for RWJF. Specific objectives of the work were to: Identify prevailing values and beliefs related to child and family health promotion among U.S. adults, especially those related to the causes, solutions, and impacts of important problems facing families with young children along with who should be responsible for addressing the problems. Better understand differences in these values and beliefs through development of a typology. Generate strategic insights for stakeholders working to address the important problems facing families with young children.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
A lack of affordable housing is a pressing issue for many low-income American families and can lead to eviction from their homes. Housing assistance programs to address this problem include public housing and other assistance, including vouchers, through which a government agency offsets the cost of private market housing. This paper assesses whether the receipt of either category of assistance reduces the probability that a family will be evicted from their home in the subsequent six years. Because no randomized trial has assessed these effects, we use observational data and formalize the conditions under which a causal interpretation is warranted. Families living in public housing experience less eviction conditional on pre-treatment variables. We argue that this evidence points toward a causal conclusion that assistance, particularly public housing, protects families from eviction.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This paper examines the association between the Great Recession and real assets among families with young children. Real assets such as homes and cars are key indicators of economic well-being that may be especially valuable to low-income families. Using longitudinal data from the Fragile Families and Child Wellbeing Study (N = 4,898), we investigate the association between the city unemployment rate and home and car ownership and how the relationship varies by family structure (married, cohabiting, and single parents) and by race/ethnicity (White, Black, and Hispanic mothers). Using mother fixed-effects models, we find that a one percentage point increase in the unemployment rate is associated with a -0.5 percentage point decline in the probability of home ownership and a -0.7 percentage point decline in the probability of car ownership. We also find that the recession was associated with lower levels of home ownership for cohabiting families and for Hispanic families, as well as lower car ownership among single mothers and among Black mothers, whereas no change was observed among married families or White households. Considering that homes and cars are the most important assets among middle and low-income households in the U.S., these results suggest that the rise in the unemployment rate during the Great Recession may have increased household asset inequality across family structures and race/ethnicities, limiting economic mobility, and exacerbating the cycle of poverty.
Facebook
TwitterThe latest release of these statistics can be found in the Children in low income families: local area statistics collection.
For both Relative and Absolute measures, before housing costs, these annual statistics include counts of children by:
geography – including by:
More detailed breakdowns of the statistics can be found on https://stat-xplore.dwp.gov.uk/">Stat-Xplore.
For more information, read the background information and methodology.
Send feedback and comments to: stats.consultation-2018@dwp.gov.uk.
Facebook
TwitterAbout the dataset This dataset uses information from the DWP benefit system to provide estimates of children living in poverty for wards in London. In order to be counted in this dataset, a family must have claimed Child Benefit and at least one other household benefit (Universal Credit, tax credits or Housing Benefit) during the year. The numbers are calibrated to the Households Below Average Income (HBAI) dataset used to provide the government's headline poverty statistics. The definition of relative low income is living in a household with equivalised* income before housing costs (BHC) below 60% of contemporary national median income. The income measure includes contributions from earnings, state support and pensions. Further detail on the estimates of dependent children living in relative low income, including alternative geographical breakdowns and additional variables, such as age of children, family type and work status are available from DWP's statistical tabulation tool Stat-Xplore. Minor adjustments to the data have been applied to guard against the identification of individual claimants. This dataset replaced the DWP children in out-of-work benefit households and HMRC children in low income families local measure releases. This dataset includes estimates for all wards in London of numbers of dependent children living in relative low income families for each financial year from 2014/15 to the latest available (2022/23). The figures for the latest year are provisional and are subject to minor revision when the next dataset is released by DWP. Headlines Number of children The number of dependent children living in relative low income across London, rose from below 310,000 in the financial year ending 2015 to over 420,000 in the financial year ending 2020, but has decreased since then to below 350,000, which is well below the number for financial year ending 2018. While many wards in London have followed a similar pattern, the numbers of children in low income families in some wards have fallen more sharply, while the numbers in other wards have continued to grow. Proportion of children in each London ward Ward population sizes vary across London, the age profile of that population also varies and both the size and make-up of the population can change over time, so in order to make more meaningful comparisons between wards or over time, DWP have also published rates, though see note below regarding caution when using these figures. A dependent child is anyone aged under 16; or aged 16 to 19 in full-time non-advanced education or in unwaged government training. Ward level estimates for the total number of dependent children are not available, so percentages cannot be derived. Ward level estimates for the percentage of children under 16 living in low income families are usually published by DWP but, in its latest release, ward-level population estimates were not available at the time, so no rates were published. To derive the rates in this dataset, the GLA has used the ONS's latest ward-level population estimates (official statistics in development). Percentages for 2021/22 are calculated using the 2021 mid year estimates, while percentages for 2022/23 are calculated using the 2022 mid year estimates. As these are official statistics in development, rates therefore need to be treated with some caution. Notes *equivalised income is adjusted for household size and composition in order to compare living standards between households of different types.
Facebook
TwitterLow-income cut-offs, after tax (LICO-AT) - The Low-income cut-offs, after tax refers to an income threshold, defined using 1992 expenditure data, below which economic families or persons not in economic families would likely have devoted a larger share of their after-tax income than average to the necessities of food, shelter and clothing. More specifically, the thresholds represented income levels at which these families or persons were expected to spend 20 percentage points or more of their after-tax income than average on food, shelter and clothing. These thresholds have been adjusted to current dollars using the all-items Consumer Price Index (CPI).The LICO-AT has 35 cut-offs varying by seven family sizes and five different sizes of area of residence to account for economies of scale and potential differences in cost of living in communities of different sizes. These thresholds are presented in Table 4.3 Low-income cut-offs, after tax (LICO-AT - 1992 base) for economic families and persons not in economic families, 2015, Dictionary, Census of Population, 2016.When the after-tax income of an economic family member or a person not in an economic family falls below the threshold applicable to the person, the person is considered to be in low income according to LICO-AT. Since the LICO-AT threshold and family income are unique within each economic family, low-income status based on LICO-AT can also be reported for economic families.Return to footnote1referrerFootnote 2Low-income status - The income situation of the statistical unit in relation to a specific low-income line in a reference year. Statistical units with income that is below the low-income line are considered to be in low income.For the 2016 Census, the reference period is the calendar year 2015 for all income variables.Return to footnote2referrerFootnote 3The low-income concepts are not applied in the territories and in certain areas based on census subdivision type (such as Indian reserves). The existence of substantial in-kind transfers (such as subsidized housing and First Nations band housing) and sizeable barter economies or consumption from own production (such as product from hunting, farming or fishing) could make the interpretation of low-income statistics more difficult in these situations.Return to footnote3referrerFootnote 4Prevalence of low income - The proportion or percentage of units whose income falls below a specified low-income line.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The StatXplore Children in low-income families' local area statistics (CiLIF) provides information on the number of children living in Relative low income by local area across the United Kingdom.The summary Statistical Release and tables which also show the proportions of children living in low income families are available here: Children in low income families: local area statistics - GOV.UK (www.gov.uk)Statistics on the number of children (by age) in low income families by financial year are published on Stat-Xplore. Figures are calibrated to the Households Below Average Income (HBAI) survey regional estimates of children in low income but provide more granular local area information not available from the HBAI, for example by Local Authority, Westminster Parliamentary Constituency and Ward.
Relative low-income is defined as a family in low income Before Housing Costs (BHC) in the reference year. A family must have claimed Child Benefit and at least one other household benefit (Universal Credit, tax credits, or Housing Benefit) at any point in the year to be classed as low income in these statistics. Gross income measure is Before Housing Costs (BHC) and includes contributions from earnings, state support and pensions.
Facebook
TwitterThis is a NorthernSTAR renovation project for Urban Homeworks incorporating installation of a combination space and water heater, Overcoat insulation retrofit on the roof, and Excavationless foundation insulation retrofit. STRUCTURE - 1401 North 16th Ave Minneapolis, MN 55411 Various groups from the affordable housing industry have consulted with the University of Minnesota's Cold Climate Housing Program to solve persistent energy and health-related problems such as ice dams, high energy bills, and mold/moisture issues-especially in complicated house types such as 1.5-story homes in cold climates. The NorthernSTAR Building America Partnership has completed multiple research projects on high-performance measures applied during renovation of single-family homes that could help the affordable housing industry address performance concerns. This demonstration project is an example of three high-performance measures applied to one house in Minneapolis, Minnesota. The selected vacant home was completely renovated by Urban Homeworks (UHW), which is a nonprofit housing partner, with the intent of selling the home to a low-income family. The renovation included the addition of the three advanced-performance technologies that were applied to the overall scope of the project. Single-family homes in urban areas that are available for renovation by nonprofit developers are often in need of repair. Budgeting has historically focused on improving homes to meet basic housing standards. A rising interest in the long-term impact of homeownership has introduced the need to balance basic needs with home performance. The goal of this demonstration project was to help UHW and other nonprofit developers become familiar with three U.S. Department of Energy Building America performance measures-including the installation processes, impacts, and benefits of each. To maximize efficiency of application and to address budget issues, the NorthernSTAR team worked with UHW to identify ways to use volunteers and construction training programs to install the measures. An open invitation to visit the job site was provided to other nonprofit developers and support teams to encourage dialog about the systems during live installation.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
ACS 1-year estimates are based on data collected over one calendar year, offering more current information but with a higher margin of error. ACS 5-year estimates combine five years of data, providing more reliable information but less current. Both are based on probability samples. Some racial and ethnic categories are suppressed to avoid misleading estimates when the relative standard error exceeds 30%.
Data Source: American Community Survey (ACS) 1- & 5-Year Estimates
Why This Matters
Poverty threatens the overall well-being of individuals and families, limiting access to stable housing, healthy foods, health care, and educational and employment opportunities, among other basic needs.Poverty is associated with a higher risk of adverse health outcomes, including chronic physical and mental illness, lower life expectancy, developmental delays, and others.
Racist policies and practices have contributed to racial economic inequities. Nationally, Black, Indigenous, and people of color experience poverty at higher rates than white Americans, on average.
The District's Response
Boosting assistance programs that provide temporary cash and health benefits to help low-income residents meet their basic needs, including Medicaid, TANF For District Families, SNAP, etc.
Housing assistance and employment and career training programs to support resident’s housing and employment security. These include the Emergency Rental Assistance Program, Permanent Supportive Housing vouchers, Career MAP, the DC Infrastructure Academy, among other programs and services.
Creation of the DC Commission on Poverty to study poverty issues, evaluate poverty reduction initiatives, and make recommendations to the Mayor and the Council.
Facebook
Twitterhttps://www.wiseguyreports.com/pages/privacy-policyhttps://www.wiseguyreports.com/pages/privacy-policy
| BASE YEAR | 2024 |
| HISTORICAL DATA | 2019 - 2023 |
| REGIONS COVERED | North America, Europe, APAC, South America, MEA |
| REPORT COVERAGE | Revenue Forecast, Competitive Landscape, Growth Factors, and Trends |
| MARKET SIZE 2024 | 179.7(USD Billion) |
| MARKET SIZE 2025 | 185.1(USD Billion) |
| MARKET SIZE 2035 | 250.0(USD Billion) |
| SEGMENTS COVERED | Family Structure, Income Level, Life Stage, Family Size, Regional |
| COUNTRIES COVERED | US, Canada, Germany, UK, France, Russia, Italy, Spain, Rest of Europe, China, India, Japan, South Korea, Malaysia, Thailand, Indonesia, Rest of APAC, Brazil, Mexico, Argentina, Rest of South America, GCC, South Africa, Rest of MEA |
| KEY MARKET DYNAMICS | demographic shifts, economic stability, evolving consumer preferences, technology integration, sustainable practices |
| MARKET FORECAST UNITS | USD Billion |
| KEY COMPANIES PROFILED | Mondelez International, CocaCola, PepsiCo, Henkel, Johnson & Johnson, Danone, General Mills, Procter & Gamble, KimberlyClark, Nestle, Unilever, ColgatePalmolive, Reckitt Benckiser, L'Oréal, H.J. Heinz, Kraft Heinz |
| MARKET FORECAST PERIOD | 2025 - 2035 |
| KEY MARKET OPPORTUNITIES | Affordable childcare solutions, Eco-friendly family products, Digital wellness tools for families, Family-oriented travel experiences, Remote work support for parents |
| COMPOUND ANNUAL GROWTH RATE (CAGR) | 3.0% (2025 - 2035) |
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
ACS 1-year estimates are based on data collected over one calendar year, offering more current information but with a higher margin of error. ACS 5-year estimates combine five years of data, providing more reliable information but less current. Both are based on probability samples. Some racial and ethnic categories are suppressed to avoid misleading estimates when the relative standard error exceeds 30%.
Data Source: American Community Survey (ACS) 1- & 5-Year Estimates
Why This Matters Housing is a basic necessity, and affordable housing is essential for individuals and families to live and thrive in DC.The rising cost of housing threatens residents’ access to safe and stable housing as well as their ability to cover other essential expenses like food, transportation, and childcare.Racial segregation, housing discrimination, and racist urban renewal programs, among other policies and practices, have meant that Black residents and residents of color in the District disproportionately experience the effects of rapidly rising housing costs. The District's Response Leading the nation in policies and investments for low-income rental households. Target of 12,000 new affordable housing units by 2025. Steps taken to preserve and expand affordable housing include the Housing Production Trust Fund, the Affordable Housing Preservation Fund, and the Home Purchasing Assistance Program, among others.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This dataset shows official annual experimental statistics for numbers and percentages of Children age under 16 living in Relative and Absolute low income families, by Local Authority District and Ward. More detailed data breakdowns (such as Age of Child, Family Type and Work Status, plus data for other small area geographies and trend data), are available at the Source link. Percentages are calculated by dividing the number of children age 0-15 living in low income families by resident children age 0-15 from mid-year population estimates. The latest data is marked P for Provisional and is subject to future revision. Data source: Department for Work and Pensions and HM Revenue and Customs. Updates are according to government statistics releases. For more information about this data and its methodology, please see the Source link.
Facebook
TwitterThe California Tax Credit Allocation Committee and the California Department of Housing and Community Development have created an opportunity map to identify areas across California whose have characteristics to support long-term positive economic, education, and health outcomes for low-income families. These maps were created with the goal to increase access to high opportunity areas for families with children in housing financed with 9% Low Income Housing Tax Credits.Preprocessing methods: Kept all categories to display on the web map.
Facebook
TwitterSouthend as a whole has been consistently below the UK average for the percentage of children living in both relative and absolute low income families across the period 2015-2021 inclusive.Southend has seen a reduction in the percentage of children in relative low income families for the period 2019 (16.2%) to 2021 (14.0%) inclusive, it is still above the start point in 2015 (13.5%). Whereas those in absolute low income families have decreased year on year, 2015 (13.7%) to 2021 (11.6%) with the exception of 2016.The West locality is the only locality to be consistently below the Southend and national averages for the percentage of children in relative low income in the last 7 years. It only exceeded the Southend average for the percentage of children in absolute low income families in 2017.
Facebook
TwitterIn 2024, **** percent of Black people living in the United States were living below the poverty line, compared to *** percent of white people. That year, the overall poverty rate in the U.S. across all races and ethnicities was **** percent. Poverty in the United States The poverty threshold for a single person in the United States was measured at an annual income of ****** U.S. dollars in 2023. Among families of four, the poverty line increases to ****** U.S. dollars a year. Women and children are more likely to suffer from poverty. This is due to the fact that women are more likely than men to stay at home, to care for children. Furthermore, the gender-based wage gap impacts women's earning potential. Poverty data Despite being one of the wealthiest nations in the world, the United States has some of the highest poverty rates among OECD countries. While, the United States poverty rate has fluctuated since 1990, it has trended downwards since 2014. Similarly, the average median household income in the U.S. has mostly increased over the past decade, except for the covid-19 pandemic period. Among U.S. states, Louisiana had the highest poverty rate, which stood at some ** percent in 2024.