Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Attributes of sites in Hamilton City which collect anonymised data from a sample of vehicles. Note: A Link is the section of the road between two sites
Column_InfoSite_Id, int : Unique identiferNumber, int : Asset number. Note: If the site is at a signalised intersection, Number will match 'Site_Number' in the table 'Traffic Signal Site Location'Is_Enabled, varchar : Site is currently enabledDisabled_Date, datetime : If currently disabled, the date at which the site was disabledSite_Name, varchar : Description of the site locationLatitude, numeric : North-south geographic coordinatesLongitude, numeric : East-west geographic coordinates
Relationship
Disclaimer
Hamilton City Council does not make any representation or give any warranty as to the accuracy or exhaustiveness of the data released for public download. Levels, locations and dimensions of works depicted in the data may not be accurate due to circumstances not notified to Council. A physical check should be made on all levels, locations and dimensions before starting design or works.
Hamilton City Council shall not be liable for any loss, damage, cost or expense (whether direct or indirect) arising from reliance upon or use of any data provided, or Council's failure to provide this data.
While you are free to crop, export and re-purpose the data, we ask that you attribute the Hamilton City Council and clearly state that your work is a derivative and not the authoritative data source. Please include the following statement when distributing any work derived from this data:
‘This work is derived entirely or in part from Hamilton City Council data; the provided information may be updated at any time, and may at times be out of date, inaccurate, and/or incomplete.'
Mobile accounts for approximately half of web traffic worldwide. In the last quarter of 2024, mobile devices (excluding tablets) generated 62.54 percent of global website traffic. Mobiles and smartphones consistently hoovered around the 50 percent mark since the beginning of 2017, before surpassing it in 2020. Mobile traffic Due to low infrastructure and financial restraints, many emerging digital markets skipped the desktop internet phase entirely and moved straight onto mobile internet via smartphone and tablet devices. India is a prime example of a market with a significant mobile-first online population. Other countries with a significant share of mobile internet traffic include Nigeria, Ghana and Kenya. In most African markets, mobile accounts for more than half of the web traffic. By contrast, mobile only makes up around 45.49 percent of online traffic in the United States. Mobile usage The most popular mobile internet activities worldwide include watching movies or videos online, e-mail usage and accessing social media. Apps are a very popular way to watch video on the go and the most-downloaded entertainment apps in the Apple App Store are Netflix, Tencent Video and Amazon Prime Video.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Code:
Packet_Features_Generator.py & Features.py
To run this code:
pkt_features.py [-h] -i TXTFILE [-x X] [-y Y] [-z Z] [-ml] [-s S] -j
-h, --help show this help message and exit -i TXTFILE input text file -x X Add first X number of total packets as features. -y Y Add first Y number of negative packets as features. -z Z Add first Z number of positive packets as features. -ml Output to text file all websites in the format of websiteNumber1,feature1,feature2,... -s S Generate samples using size s. -j
Purpose:
Turns a text file containing lists of incomeing and outgoing network packet sizes into separate website objects with associative features.
Uses Features.py to calcualte the features.
startMachineLearning.sh & machineLearning.py
To run this code:
bash startMachineLearning.sh
This code then runs machineLearning.py in a tmux session with the nessisary file paths and flags
Options (to be edited within this file):
--evaluate-only to test 5 fold cross validation accuracy
--test-scaling-normalization to test 6 different combinations of scalers and normalizers
Note: once the best combination is determined, it should be added to the data_preprocessing function in machineLearning.py for future use
--grid-search to test the best grid search hyperparameters - note: the possible hyperparameters must be added to train_model under 'if not evaluateOnly:' - once best hyperparameters are determined, add them to train_model under 'if evaluateOnly:'
Purpose:
Using the .ml file generated by Packet_Features_Generator.py & Features.py, this program trains a RandomForest Classifier on the provided data and provides results using cross validation. These results include the best scaling and normailzation options for each data set as well as the best grid search hyperparameters based on the provided ranges.
Data
Encrypted network traffic was collected on an isolated computer visiting different Wikipedia and New York Times articles, different Google search queres (collected in the form of their autocomplete results and their results page), and different actions taken on a Virtual Reality head set.
Data for this experiment was stored and analyzed in the form of a txt file for each experiment which contains:
First number is a classification number to denote what website, query, or vr action is taking place.
The remaining numbers in each line denote:
The size of a packet,
and the direction it is traveling.
negative numbers denote incoming packets
positive numbers denote outgoing packets
Figure 4 Data
This data uses specific lines from the Virtual Reality.txt file.
The action 'LongText Search' refers to a user searching for "Saint Basils Cathedral" with text in the Wander app.
The action 'ShortText Search' refers to a user searching for "Mexico" with text in the Wander app.
The .xlsx and .csv file are identical
Each file includes (from right to left):
The origional packet data,
each line of data organized from smallest to largest packet size in order to calculate the mean and standard deviation of each packet capture,
and the final Cumulative Distrubution Function (CDF) caluclation that generated the Figure 4 Graph.
https://www.semrush.com/company/legal/terms-of-service/https://www.semrush.com/company/legal/terms-of-service/
shopify.com is ranked #82 in US with 245.63M Traffic. Categories: Computer Software and Development, Online Services. Learn more about website traffic, market share, and more!
https://www.semrush.com/company/legal/terms-of-service/https://www.semrush.com/company/legal/terms-of-service/
amazon.in is ranked #7 in IN with 237.37M Traffic. Categories: Retail, Online Services. Learn more about website traffic, market share, and more!
https://scoop.market.us/privacy-policyhttps://scoop.market.us/privacy-policy
DataForSEO Labs API offers three powerful keyword research algorithms and historical keyword data:
• Related Keywords from the “searches related to” element of Google SERP. • Keyword Suggestions that match the specified seed keyword with additional words before, after, or within the seed key phrase. • Keyword Ideas that fall into the same category as specified seed keywords. • Historical Search Volume with current cost-per-click, and competition values.
Based on in-market categories of Google Ads, you can get keyword ideas from the relevant Categories For Domain and discover relevant Keywords For Categories. You can also obtain Top Google Searches with AdWords and Bing Ads metrics, product categories, and Google SERP data.
You will find well-rounded ways to scout the competitors:
• Domain Whois Overview with ranking and traffic info from organic and paid search. • Ranked Keywords that any domain or URL has positions for in SERP. • SERP Competitors and the rankings they hold for the keywords you specify. • Competitors Domain with a full overview of its rankings and traffic from organic and paid search. • Domain Intersection keywords for which both specified domains rank within the same SERPs. • Subdomains for the target domain you specify along with the ranking distribution across organic and paid search. • Relevant Pages of the specified domain with rankings and traffic data. • Domain Rank Overview with ranking and traffic data from organic and paid search. • Historical Rank Overview with historical data on rankings and traffic of the specified domain from organic and paid search. • Page Intersection keywords for which the specified pages rank within the same SERP.
All DataForSEO Labs API endpoints function in the Live mode. This means you will be provided with the results in response right after sending the necessary parameters with a POST request.
The limit is 2000 API calls per minute, however, you can contact our support team if your project requires higher rates.
We offer well-rounded API documentation, GUI for API usage control, comprehensive client libraries for different programming languages, free sandbox API testing, ad hoc integration, and deployment support.
We have a pay-as-you-go pricing model. You simply add funds to your account and use them to get data. The account balance doesn't expire.
In March 2024, search platform Google.com generated approximately 85.5 billion visits, down from 87 billion platform visits in October 2023. Google is a global search platform and one of the biggest online companies worldwide.
In November 2024, Google.com was the most popular website worldwide with 136 billion average monthly visits. The online platform has held the top spot as the most popular website since June 2010, when it pulled ahead of Yahoo into first place. Second-ranked YouTube generated more than 72.8 billion monthly visits in the measured period. The internet leaders: search, social, and e-commerce Social networks, search engines, and e-commerce websites shape the online experience as we know it. While Google leads the global online search market by far, YouTube and Facebook have become the world’s most popular websites for user generated content, solidifying Alphabet’s and Meta’s leadership over the online landscape. Meanwhile, websites such as Amazon and eBay generate millions in profits from the sale and distribution of goods, making the e-market sector an integral part of the global retail scene. What is next for online content? Powering social media and websites like Reddit and Wikipedia, user-generated content keeps moving the internet’s engines. However, the rise of generative artificial intelligence will bring significant changes to how online content is produced and handled. ChatGPT is already transforming how online search is performed, and news of Google's 2024 deal for licensing Reddit content to train large language models (LLMs) signal that the internet is likely to go through a new revolution. While AI's impact on the online market might bring both opportunities and challenges, effective content management will remain crucial for profitability on the web.
This map contains a dynamic traffic map service with capabilities for visualizing traffic speeds relative to free-flow speeds as well as traffic incidents which can be visualized and identified. The traffic data is updated every five minutes. Traffic speeds are displayed as a percentage of free-flow speeds, which is frequently the speed limit or how fast cars tend to travel when unencumbered by other vehicles. The streets are color coded as follows:Green (fast): 85 - 100% of free flow speedsYellow (moderate): 65 - 85%Orange (slow); 45 - 65%Red (stop and go): 0 - 45%Esri's historical, live, and predictive traffic feeds come directly from TomTom (www.tomtom.com). Historical traffic is based on the average of observed speeds over the past year. The live and predictive traffic data is updated every five minutes through traffic feeds. The color coded traffic map layer can be used to represent relative traffic speeds; this is a common type of a map for online services and is used to provide context for routing, navigation and field operations. The traffic map layer contains two sublayers: Traffic and Live Traffic. The Traffic sublayer (shown by default) leverages historical, live and predictive traffic data; while the Live Traffic sublayer is calculated from just the live and predictive traffic data only. A color coded traffic map can be requested for the current time and any time in the future. A map for a future request might be used for planning purposes. The map also includes dynamic traffic incidents showing the location of accidents, construction, closures and other issues that could potentially impact the flow of traffic. Traffic incidents are commonly used to provide context for routing, navigation and field operations. Incidents are not features; they cannot be exported and stored for later use or additional analysis. The service works globally and can be used to visualize traffic speeds and incidents in many countries. Check the service coverage web map to determine availability in your area of interest. In the coverage map, the countries color coded in dark green support visualizing live traffic. The support for traffic incidents can be determined by identifying a country. For detailed information on this service, including a data coverage map, visit the directions and routing documentation and ArcGIS Help.
This is a dynamic traffic map service with capabilities for visualizing traffic speeds relative to free-flow speeds as well as traffic incidents which can be visualized and identified. The traffic data is updated every five minutes. Traffic speeds are displayed as a percentage of free-flow speeds, which is frequently the speed limit or how fast cars tend to travel when unencumbered by other vehicles. The streets are color coded as follows: Green (fast): 85 - 100% of free flow speeds Yellow (moderate): 65 - 85% Orange (slow); 45 - 65% Red (stop and go): 0 - 45%Esri's historical, live, and predictive traffic feeds come directly from TomTom (www.tomtom.com). Historical traffic is based on the average of observed speeds over the past year. The live and predictive traffic data is updated every five minutes through traffic feeds. The color coded traffic map layer can be used to represent relative traffic speeds; this is a common type of a map for online services and is used to provide context for routing, navigation and field operations. The traffic map layer contains two sublayers: Traffic and Live Traffic. The Traffic sublayer (shown by default) leverages historical, live and predictive traffic data; while the Live Traffic sublayer is calculated from just the live and predictive traffic data only. A color coded traffic map image can be requested for the current time and any time in the future. A map image for a future request might be used for planning purposes. The map layer also includes dynamic traffic incidents showing the location of accidents, construction, closures and other issues that could potentially impact the flow of traffic. Traffic incidents are commonly used to provide context for routing, navigation and field operations. Incidents are not features; they cannot be exported and stored for later use or additional analysis. The service works globally and can be used to visualize traffic speeds and incidents in many countries. Check the service coverage web map to determine availability in your area of interest. In the coverage map, the countries color coded in dark green support visualizing live traffic. The support for traffic incidents can be determined by identifying a country. For detailed information on this service, including a data coverage map, visit the directions and routing documentation and ArcGIS Help.
http://opendata.regionpaca.fr/fileadmin//user_upload/tx_ausyopendata/licences/Licence-Ouverte-Open-Licence-ETALAB.pdfhttp://opendata.regionpaca.fr/fileadmin//user_upload/tx_ausyopendata/licences/Licence-Ouverte-Open-Licence-ETALAB.pdf
The map layers in this service provide color-coded maps of the traffic conditions you can expect for the present time (the default). The map shows present traffic as a blend of live and typical information. Live speeds are used wherever available and are established from real-time sensor readings. Typical speeds come from a record of average speeds, which are collected over several weeks within the last year or so. Layers also show current incident locations where available. By changing the map time, the service can also provide past and future conditions. Live readings from sensors are saved for 12 hours, so setting the map time back within 12 hours allows you to see a actual recorded traffic speeds, supplemented with typical averages by default. You can choose to turn off the average speeds and see only the recorded live traffic speeds for any time within the 12-hour window. Predictive traffic conditions are shown for any time in the future.The color-coded traffic map layer can be used to represent relative traffic speeds; this is a common type of a map for online services and is used to provide context for routing, navigation, and field operations. A color-coded traffic map can be requested for the current time and any time in the future. A map for a future request might be used for planning purposes.The map also includes dynamic traffic incidents showing the location of accidents, construction, closures, and other issues that could potentially impact the flow of traffic. Traffic incidents are commonly used to provide context for routing, navigation and field operations. Incidents are not features; they cannot be exported and stored for later use or additional analysis.Data sourceEsri’s typical speed records and live and predictive traffic feeds come directly from HERE (www.HERE.com). HERE collects billions of GPS and cell phone probe records per month and, where available, uses sensor and toll-tag data to augment the probe data collected. An advanced algorithm compiles the data and computes accurate speeds. The real-time and predictive traffic data is updated every five minutes through traffic feeds.Data coverageThe service works globally and can be used to visualize traffic speeds and incidents in many countries. Check the service coverage web map to determine availability in your area of interest. Look at the coverage map to learn whether a country currently supports traffic. The support for traffic incidents can be determined by identifying a country. For detailed information on this service, visit the directions and routing documentation and the ArcGIS Help.SymbologyTraffic speeds are displayed as a percentage of free-flow speeds, which is frequently the speed limit or how fast cars tend to travel when unencumbered by other vehicles. The streets are color coded as follows:Green (fast): 85 - 100% of free flow speedsYellow (moderate): 65 - 85%Orange (slow); 45 - 65%Red (stop and go): 0 - 45%To view live traffic only—that is, excluding typical traffic conditions—enable the Live Traffic layer and disable the Traffic layer. (You can find these layers under World/Traffic > [region] > [region] Traffic). To view more comprehensive traffic information that includes live and typical conditions, disable the Live Traffic layer and enable the Traffic layer.ArcGIS Online organization subscriptionImportant Note:The World Traffic map service is available for users with an ArcGIS Online organizational subscription. To access this map service, you'll need to sign in with an account that is a member of an organizational subscription. If you don't have an organizational subscription, you can create a new account and then sign up for a 30-day trial of ArcGIS Online.
This map contains a dynamic traffic map service with capabilities for visualizing traffic speeds relative to free-flow speeds as well as traffic incidents which can be visualized and identified. The traffic data is updated every five minutes. Traffic speeds are displayed as a percentage of free-flow speeds, which is frequently the speed limit or how fast cars tend to travel when unencumbered by other vehicles. The streets are color coded as follows:Green (fast): 85 - 100% of free flow speedsYellow (moderate): 65 - 85%Orange (slow); 45 - 65%Red (stop and go): 0 - 45%Esri's historical, live, and predictive traffic feeds come directly from HERE (www.HERE.com). HERE collects billions of GPS and cell phone probe records per month and, where available, uses sensor and toll-tag data to augment the probe data collected. An advanced algorithm compiles the data and computes accurate speeds. The real-time and predictive traffic data is updated every five minutes through traffic feeds. The color coded traffic map layer can be used to represent relative traffic speeds; this is a common type of a map for online services and is used to provide context for routing, navigation and field operations. The color coded map leverages historical, real time and predictive traffic data. Historical traffic is based on the average of observed speeds over the past three years. A color coded traffic map can be requested for the current time and any time in the future. A map for a future request might be used for planning purposes. The map also includes dynamic traffic incidents showing the location of accidents, construction, closures and other issues that could potentially impact the flow of traffic. Traffic incidents are commonly used to provide context for routing, navigation and field operations. Incidents are not features; they cannot be exported and stored for later use or additional analysis. The service works globally and can be used to visualize traffic speeds and incidents in many countries. Check the service coverage web map to determine availability in your area of interest. In the coverage map, the countries color coded in dark green support visualizing live traffic. The support for traffic incidents can be determined by identifying a country. For detailed information on this service, including a data coverage map, visit the directions and routing documentation and ArcGIS Help.
The MUTCD Official Rulings is a resource that allows web site visitors to obtain information about requests for changes, experiments, and interpretations related to the MUTCD that have been received by the FHWA. Copies of various documents (such as incoming request letters, response letters from the FHWA, progress reports, and final reports) that are available in both pdf and html formats may be viewed on this web site. The current status of experiments, as well as any contact information for the requestor that has been made a part of the public record, is also available.
Between January 2021 and March 2023, the remote-focused job search site Justremote.co was the fastest-growing job search site page based on the increase in web traffic in the United States. The page saw U.S.-based traffic growth of over 886 percent during the measured period.
In March 2024, Google.com was the leading website in the United States. The search platform accounted for over 19 percent of desktop web traffic in the United States, ahead of second-ranked YouTube.com with 10.71 percent.
In 2024, most of the global website traffic was still generated by humans, but bot traffic is constantly growing. Fraudulent traffic through bad bot actors accounted for 37 percent of global web traffic in the most recently measured period, representing an increase of 12 percent from the previous year. Sophistication of Bad Bots on the rise The complexity of malicious bot activity has dramatically increased in recent years. Advanced bad bots have doubled in prevalence over the past 2 years, indicating a surge in the sophistication of cyber threats. Simultaneously, the share of simple bad bots drastically increased over the last years, suggesting a shift in the landscape of automated threats. Meanwhile, areas like food and groceries, sports, gambling, and entertainment faced the highest amount of advanced bad bots, with more than 70 percent of their bot traffic affected by evasive applications. Good and bad bots across industries The impact of bot traffic varies across different sectors. Bad bots accounted for over 50 percent of the telecom and ISPs, community and society, and computing and IT segments web traffic. However, not all bot traffic is considered bad. Some of these applications help index websites for search engines or monitor website performance, assisting users throughout their online search. Therefore, areas like entertainment, food and groceries, and even areas targeted by bad bots themselves experienced notable levels of good bot traffic, demonstrating the diverse applications of benign automated systems across different sectors.
In June 2020, direct traffic accounted for over ** percent of visits to kids e-commerce websites in the United States, indicating a strong brand preference and product awareness among parent consumers. Search traffic accounted for a further **** percent of traffic in the segment.
Google is the leading search engine in South Africa. As of January 2023, almost ** percent of the searches on the web were conducted through this search engine. Its closest contender was Bing, with a share of *** percent. Yahoo! ranked third with a share of only *** percent.
In May 2020, YouTube generated over 5.3 billion global visits via organic search traffic. Second-ranked Wikipedia accumulated less than half of that, claiming 2.2 billion organic search visits. Social network Facebook rounded off the top properties with more than a billion organic search visits during the measured period.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Attributes of sites in Hamilton City which collect anonymised data from a sample of vehicles. Note: A Link is the section of the road between two sites
Column_InfoSite_Id, int : Unique identiferNumber, int : Asset number. Note: If the site is at a signalised intersection, Number will match 'Site_Number' in the table 'Traffic Signal Site Location'Is_Enabled, varchar : Site is currently enabledDisabled_Date, datetime : If currently disabled, the date at which the site was disabledSite_Name, varchar : Description of the site locationLatitude, numeric : North-south geographic coordinatesLongitude, numeric : East-west geographic coordinates
Relationship
Disclaimer
Hamilton City Council does not make any representation or give any warranty as to the accuracy or exhaustiveness of the data released for public download. Levels, locations and dimensions of works depicted in the data may not be accurate due to circumstances not notified to Council. A physical check should be made on all levels, locations and dimensions before starting design or works.
Hamilton City Council shall not be liable for any loss, damage, cost or expense (whether direct or indirect) arising from reliance upon or use of any data provided, or Council's failure to provide this data.
While you are free to crop, export and re-purpose the data, we ask that you attribute the Hamilton City Council and clearly state that your work is a derivative and not the authoritative data source. Please include the following statement when distributing any work derived from this data:
‘This work is derived entirely or in part from Hamilton City Council data; the provided information may be updated at any time, and may at times be out of date, inaccurate, and/or incomplete.'