Facebook
TwitterThis data table provides the detailed data quality assessment scores for the Single Digital View dataset. The quality assessment was carried out on the 31st of March. At SPEN, we are dedicated to sharing high-quality data with our stakeholders and being transparent about its' quality. This is why we openly share the results of our data quality assessments. We collaborate closely with Data Owners to address any identified issues and enhance our overall data quality. To demonstrate our progress we conduct, at a minimum, bi-annual assessments of our data quality - for datasets that are refreshed more frequently than this, please note that the quality assessment may be based on an earlier version of the dataset. To learn more about our approach to how we assess data quality, visit Data Quality - SP Energy Networks.We welcome feedback and questions from our stakeholders regarding this process. Our Open Data Team is available to answer any enquiries or receive feedback on the assessments. You can contact them via our Open Data mailbox at opendata@spenergynetworks.co.uk.The first phase of our comprehensive data quality assessment measures the quality of our datasets across three dimensions. Please refer to the data table schema for the definitions of these dimensions. We are now in the process of expanding our quality assessments to include additional dimensions to provide a more comprehensive evaluation and will update the data tables with the results when available.DisclaimerThe data quality assessment may not represent the quality of the current dataset that is published on the Open Data Portal. Please check the date of the latest quality assessment and compare to the 'Modified' date of the corresponding dataset. The data quality assessments will be updated on either a quarterly or annual basis, dependent on the update frequency of the dataset. This information can be found in the dataset metadata, within the Information tab. If you require a more up to date quality assessment, please contact the Open Data Team at opendata@spenergynetworks.co.uk and a member of the team will be in contact.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Metrics used to give an indication of data quality between our test’s groups. This includes whether documentation was used and what proportion of respondents rounded their answers. Unit and item non-response are also reported.
Facebook
TwitterThis data table provides the detailed data quality assessment scores for the Long Term Development Statement dataset. The quality assessment was carried out on 31st March. At SPEN, we are dedicated to sharing high-quality data with our stakeholders and being transparent about its' quality. This is why we openly share the results of our data quality assessments. We collaborate closely with Data Owners to address any identified issues and enhance our overall data quality; to demonstrate our progress we conduct annual assessments of our data quality in line with the dataset refresh rate. To learn more about our approach to how we assess data quality, visit Data Quality - SP Energy Networks.We welcome feedback and questions from our stakeholders regarding this process. Our Open Data Team is available to answer any enquiries or receive feedback on the assessments. You can contact them via our Open Data mailbox at opendata@spenergynetworks.co.uk.The first phase of our comprehensive data quality assessment measures the quality of our datasets across three dimensions. Please refer to the data table schema for the definitions of these dimensions. We are now in the process of expanding our quality assessments to include additional dimensions to provide a more comprehensive evaluation and will update the data tables with the results when available.DisclaimerThe data quality assessment may not represent the quality of the current dataset that is published on the Open Data Portal. Please check the date of the latest quality assessment and compare to the 'Modified' date of the corresponding dataset. The data quality assessments will be updated on either a quarterly or annual basis, dependent on the update frequency of the dataset. This information can be found in the dataset metadata, within the Information tab. If you require a more up to date quality assessment, please contact the Open Data Team at opendata@spenergynetworks.co.uk and a member of the team will be in contact.
Facebook
TwitterThis data table provides the detailed data quality assessment scores for the Curtailment dataset. The quality assessment was carried out on the 31st of March. At SPEN, we are dedicated to sharing high-quality data with our stakeholders and being transparent about its' quality. This is why we openly share the results of our data quality assessments. We collaborate closely with Data Owners to address any identified issues and enhance our overall data quality. To demonstrate our progress we conduct, at a minimum, bi-annual assessments of our data quality - for datasets that are refreshed more frequently than this, please note that the quality assessment may be based on an earlier version of the dataset. To learn more about our approach to how we assess data quality, visit Data Quality - SP Energy Networks.We welcome feedback and questions from our stakeholders regarding this process. Our Open Data Team is available to answer any enquiries or receive feedback on the assessments. You can contact them via our Open Data mailbox at opendata@spenergynetworks.co.uk.The first phase of our comprehensive data quality assessment measures the quality of our datasets across three dimensions. Please refer to the data table schema for the definitions of these dimensions. We are now in the process of expanding our quality assessments to include additional dimensions to provide a more comprehensive evaluation and will update the data tables with the results when available.DisclaimerThe data quality assessment may not represent the quality of the current dataset that is published on the Open Data Portal. Please check the date of the latest quality assessment and compare to the 'Modified' date of the corresponding dataset. The data quality assessments will be updated on either a quarterly or annual basis, dependent on the update frequency of the dataset. This information can be found in the dataset metadata, within the Information tab. If you require a more up to date quality assessment, please contact the Open Data Team at opendata@spenergynetworks.co.uk and a member of the team will be in contact.
Facebook
TwitterThis dataset was created by shamiul islam shifat
Facebook
TwitterThis data table provides the detailed data quality assessment scores for the Technical Limits dataset. The quality assessment was carried out on the 16th of September 2025. At SPEN, we are dedicated to sharing high-quality data with our stakeholders and being transparent about its' quality. This is why we openly share the results of our data quality assessments. We collaborate closely with Data Owners to address any identified issues and enhance our overall data quality. To demonstrate our progress we conduct, at a minimum, bi-annual assessments of our data quality - for datasets that are refreshed more frequently than this, please note that the quality assessment may be based on an earlier version of the dataset. To learn more about our approach to how we assess data quality, visit Data Quality - SP Energy Networks.We welcome feedback and questions from our stakeholders regarding this process. Our Open Data Team is available to answer any enquiries or receive feedback on the assessments. You can contact them via our Open Data mailbox at opendata@spenergynetworks.co.uk.The first phase of our comprehensive data quality assessment measures the quality of our datasets across three dimensions. Please refer to the data table schema for the definitions of these dimensions. We are now in the process of expanding our quality assessments to include additional dimensions to provide a more comprehensive evaluation and will update the data tables with the results when available.DisclaimerThe data quality assessment may not represent the quality of the current dataset that is published on the Open Data Portal. Please check the date of the latest quality assessment and compare to the 'Modified' date of the corresponding dataset. The data quality assessments will be updated on either a quarterly or annual basis, dependent on the update frequency of the dataset. This information can be found in the dataset metadata, within the Information tab. If you require a more up to date quality assessment, please contact the Open Data Team at opendata@spenergynetworks.co.uk and a member of the team will be in contact.
Facebook
TwitterNine data types with the lowest percentages were removed from table. The top data type for each research use is bolded, and percentage values above 10% are highlighted yellow (10–29%), orange (30–49%), and red (>50%).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Blockchain data query: Data Quality Checks: Markets Data market_pair uniqueness test
Facebook
Twitterhttps://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
Test Data Management Market Size 2025-2029
The test data management market size is forecast to increase by USD 727.3 million, at a CAGR of 10.5% between 2024 and 2029.
The market is experiencing significant growth, driven by the increasing adoption of automation by enterprises to streamline their testing processes. The automation trend is fueled by the growing consumer spending on technological solutions, as businesses seek to improve efficiency and reduce costs. However, the market faces challenges, including the lack of awareness and standardization in test data management practices. This obstacle hinders the effective implementation of test data management solutions, requiring companies to invest in education and training to ensure successful integration. To capitalize on market opportunities and navigate challenges effectively, businesses must stay informed about emerging trends and best practices in test data management. By doing so, they can optimize their testing processes, reduce risks, and enhance overall quality.
What will be the Size of the Test Data Management Market during the forecast period?
Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
Request Free SampleThe market continues to evolve, driven by the ever-increasing volume and complexity of data. Data exploration and analysis are at the forefront of this dynamic landscape, with data ethics and governance frameworks ensuring data transparency and integrity. Data masking, cleansing, and validation are crucial components of data management, enabling data warehousing, orchestration, and pipeline development. Data security and privacy remain paramount, with encryption, access control, and anonymization key strategies. Data governance, lineage, and cataloging facilitate data management software automation and reporting. Hybrid data management solutions, including artificial intelligence and machine learning, are transforming data insights and analytics.
Data regulations and compliance are shaping the market, driving the need for data accountability and stewardship. Data visualization, mining, and reporting provide valuable insights, while data quality management, archiving, and backup ensure data availability and recovery. Data modeling, data integrity, and data transformation are essential for data warehousing and data lake implementations. Data management platforms are seamlessly integrated into these evolving patterns, enabling organizations to effectively manage their data assets and gain valuable insights. Data management services, cloud and on-premise, are essential for organizations to adapt to the continuous changes in the market and effectively leverage their data resources.
How is this Test Data Management Industry segmented?
The test data management industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments. ApplicationOn-premisesCloud-basedComponentSolutionsServicesEnd-userInformation technologyTelecomBFSIHealthcare and life sciencesOthersSectorLarge enterpriseSMEsGeographyNorth AmericaUSCanadaEuropeFranceGermanyItalyUKAPACAustraliaChinaIndiaJapanRest of World (ROW).
By Application Insights
The on-premises segment is estimated to witness significant growth during the forecast period.In the realm of data management, on-premises testing represents a popular approach for businesses seeking control over their infrastructure and testing process. This approach involves establishing testing facilities within an office or data center, necessitating a dedicated team with the necessary skills. The benefits of on-premises testing extend beyond control, as it enables organizations to upgrade and configure hardware and software at their discretion, providing opportunities for exploration testing. Furthermore, data security is a significant concern for many businesses, and on-premises testing alleviates the risk of compromising sensitive information to third-party companies. Data exploration, a crucial aspect of data analysis, can be carried out more effectively with on-premises testing, ensuring data integrity and security. Data masking, cleansing, and validation are essential data preparation techniques that can be executed efficiently in an on-premises environment. Data warehousing, data pipelines, and data orchestration are integral components of data management, and on-premises testing allows for seamless integration and management of these elements. Data governance frameworks, lineage, catalogs, and metadata are essential for maintaining data transparency and compliance. Data security, encryption, and access control are paramount, and on-premises testing offers greater control over these aspects. Data reporting, visualization, and insigh
Facebook
TwitterThis dataset provides the detailed data quality assessment scores for the Voltage dataset. The quality assessment was carried out on the 31st March. At SPEN, we are dedicated to sharing high-quality data with our stakeholders and being transparent about its' quality. This is why we openly share the results of our data quality assessments. We collaborate closely with Data Owners to address any identified issues and enhance our overall data quality. To demonstrate our progress we conduct, at a minimum, bi-annual assessments of our data quality - for datasets that are refreshed more frequently than this, please not that the quality assessment may be based on an earlier version of the dataset. To access our full suite of aggregated quality assessments and learn more about our approach to how we assess data quality, visit Data Quality - SP Energy NetworksWe welcome feedback and questions from our stakeholders regarding our approach to data quality. Our Open Data team is available to answer any enquiries or receive feedback on the assessments. You can contact them via our Open Data mailbox at opendata@spenergynetworks.co.uk.The first phase of our comprehensive data quality assessment measures the quality of our datasets across three dimensions. Please refer to the dataset schema for the definitions of these dimensions. We are now in the process of expanding our quality assessments to include additional dimensions to provide a more comprehensive evaluation and will update the datasets with the results when available.DisclaimerThe data quality assessment may not represent the quality of the current dataset that is published on the Open Data Portal. Please check the date of the latest quality assessment and compare to the 'Modified' date of the corresponding dataset. The data quality assessments will be updated on either a quarterly or annual basis, dependent on the update frequency of the dataset. This information can be found in the dataset metadata, within the Information tab. If you require a more up to date quality assessment, please contact the Open Data Team at opendata@spenergynetworks.co.uk and a member of the team will be in contact.
Facebook
Twitterhttps://data.nat.gov.tw/licensehttps://data.nat.gov.tw/license
Data Quality Education Training Test Data Set Description
Facebook
Twitterhttps://lindat.mff.cuni.cz/repository/xmlui/page/licence-TAUS_QT21https://lindat.mff.cuni.cz/repository/xmlui/page/licence-TAUS_QT21
Test data for the WMT17 QE task. Train data can be downloaded from http://hdl.handle.net/11372/LRT-1974
This shared task will build on its previous five editions to further examine automatic methods for estimating the quality of machine translation output at run-time, without relying on reference translations. We include word-level, phrase-level and sentence-level estimation. All tasks will make use of a large dataset produced from post-editions by professional translators. The data will be domain-specific (IT and Pharmaceutical domains) and substantially larger than in previous years. In addition to advancing the state of the art at all prediction levels, our goals include:
- To test the effectiveness of larger (domain-specific and professionally annotated) datasets. We will do so by increasing the size of one of last year's training sets.
- To study the effect of language direction and domain. We will do so by providing two datasets created in similar ways, but for different domains and language directions.
- To investigate the utility of detailed information logged during post-editing. We will do so by providing post-editing time, keystrokes, and actual edits.
This year's shared task provides new training and test datasets for all tasks, and allows participants to explore any additional data and resources deemed relevant. A in-house MT system was used to produce translations for all tasks. MT system-dependent information can be made available under request. The data is publicly available but since it has been provided by our industry partners it is subject to specific terms and conditions. However, these have no practical implications on the use of this data for research purposes.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
PurposeThe aim of this study was to compare the functional characteristics of two computer-based systems for quality control of cancer registry data through analysis of their output differences.MethodsThe study used cancer incidence data from 22 of the 49 registries of the Italian Network of Cancer Registries registered between 1986 and 2017. Two different data checking systems developed by the WHO International Agency for Research on Cancer (IARC) and the Joint Research Center (JRC) with the European Network of Cancer Registries (ENCR) and routinely used by registrars were used to check the quality of the data. The outputs generated by the two systems on the same dataset of each registry were analyzed and compared.ResultsThe study included a total of 1,305,689 cancer cases. The overall quality of the dataset was high, with 86% (81.7-94.1) microscopically verified cases and only 1.3% (0.03-3.06) cases with a diagnosis by death certificate only. The two check systems identified a low percentage of errors (JRC-ENCR 0.17% and IARC 0.003%) and about the same proportion of warnings (JRC-ENCR 2.79% and IARC 2.42%) in the dataset. Forty-two cases (2% of errors) and 7067 cases (11.5% of warnings) were identified by both systems in equivalent categories. 11.7% of warnings related to TNM staging were identified by the JRC-ENCR system only. The IARC system identified mainly incorrect combination of tumor grade and morphology (72.5% of warnings).ConclusionBoth systems apply checks on a common set of variables, but some variables are checked by only one of the systems (for example, checks on patient follow-up and tumor stage at diagnosis are included by the JRC-ENCR system only). Most errors and warnings were categorized differently by the two systems, but usually described the same issues, with warnings related to “morphology” (JRC-ENCR) and “histology” (IARC) being the most frequent. It is important to find the right balance between the need to maintain high standards of data quality and the workability of such systems in the daily routine of the cancer registry.
Facebook
Twitterhttps://data.nat.gov.tw/licensehttps://data.nat.gov.tw/license
20211206 data quality education training test data set description content.
Facebook
Twitterhttps://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The Test Data Generation Tools market is poised for significant expansion, projected to reach an estimated USD 1.5 billion in 2025 and exhibit a robust Compound Annual Growth Rate (CAGR) of approximately 15% through 2033. This growth is primarily fueled by the escalating complexity of software applications, the increasing demand for agile development methodologies, and the critical need for comprehensive and realistic test data to ensure application quality and performance. Enterprises across all sizes, from large corporations to Small and Medium-sized Enterprises (SMEs), are recognizing the indispensable role of effective test data management in mitigating risks, accelerating time-to-market, and enhancing user experience. The drive for cost optimization and regulatory compliance further propels the adoption of advanced test data generation solutions, as manual data creation is often time-consuming, error-prone, and unsustainable in today's fast-paced development cycles. The market is witnessing a paradigm shift towards intelligent and automated data generation, moving beyond basic random or pathwise techniques to more sophisticated goal-oriented and AI-driven approaches that can generate highly relevant and production-like data. The market landscape is characterized by a dynamic interplay of established technology giants and specialized players, all vying for market share by offering innovative features and tailored solutions. Prominent companies like IBM, Informatica, Microsoft, and Broadcom are leveraging their extensive portfolios and cloud infrastructure to provide integrated data management and testing solutions. Simultaneously, specialized vendors such as DATPROF, Delphix Corporation, and Solix Technologies are carving out niches by focusing on advanced synthetic data generation, data masking, and data subsetting capabilities. The evolution of cloud-native architectures and microservices has created a new set of challenges and opportunities, with a growing emphasis on generating diverse and high-volume test data for distributed systems. Asia Pacific, particularly China and India, is emerging as a significant growth region due to the burgeoning IT sector and increasing investments in digital transformation initiatives. North America and Europe continue to be mature markets, driven by strong R&D investments and a high level of digital adoption. The market's trajectory indicates a sustained upward trend, driven by the continuous pursuit of software excellence and the critical need for robust testing strategies. This report provides an in-depth analysis of the global Test Data Generation Tools market, examining its evolution, current landscape, and future trajectory from 2019 to 2033. The Base Year for analysis is 2025, with the Estimated Year also being 2025, and the Forecast Period extending from 2025 to 2033. The Historical Period covered is 2019-2024. We delve into the critical aspects of this rapidly growing industry, offering insights into market dynamics, key players, emerging trends, and growth opportunities. The market is projected to witness substantial growth, with an estimated value reaching several million by the end of the forecast period.
Facebook
TwitterResearch Ship Roger Revelle Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System (SAMOS) program. IMPORTANT: ALWAYS USE THE QUALITY FLAG DATA! Each data variable's metadata includes a qcindex attribute which indicates a character number in the flag data. ALWAYS check the flag data for each row of data to see which data is good (flag='Z') and which data isn't. For example, to extract just data where time (qcindex=1), latitude (qcindex=2), longitude (qcindex=3), and airTemperature (qcindex=12) are 'good' data, include this constraint in your ERDDAP query: flag=~"ZZZ........Z." in your query. '=~' indicates this is a regular expression constraint. The 'Z's are literal characters. In this dataset, 'Z' indicates 'good' data. The '.'s say to match any character. The '' says to match the previous character 0 or more times. (Don't include backslashes in your query.) See the tutorial for regular expressions at https://www.vogella.com/tutorials/JavaRegularExpressions/article.html
Facebook
TwitterNOAA Ship Nancy Foster Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System (SAMOS) program. IMPORTANT: ALWAYS USE THE QUALITY FLAG DATA! Each data variable's metadata includes a qcindex attribute which indicates a character number in the flag data. ALWAYS check the flag data for each row of data to see which data is good (flag='Z') and which data isn't. For example, to extract just data where time (qcindex=1), latitude (qcindex=2), longitude (qcindex=3), and airTemperature (qcindex=12) are 'good' data, include this constraint in your ERDDAP query: flag=~"ZZZ........Z." in your query. "=~" indicates this is a regular expression constraint. The 'Z's are literal characters. In this dataset, 'Z' indicates 'good' data. The '.'s say to match any character. The '' says to match the previous character 0 or more times. See the tutorial for regular expressions at https://www.vogella.com/tutorials/JavaRegularExpressions/article.html
Facebook
TwitterThis data table provides the detailed data quality assessment scores for the Network Development Plan dataset. The quality assessment was carried out on 31st March. At SPEN, we are dedicated to sharing high-quality data with our stakeholders and being transparent about its' quality. This is why we openly share the results of our data quality assessments. We collaborate closely with Data Owners to address any identified issues and enhance our overall data quality; to demonstrate our progress we conduct annual assessments of our data quality in line with the dataset refresh rate. To learn more about our approach to how we assess data quality, visit Data Quality - SP Energy Networks.We welcome feedback and questions from our stakeholders regarding this process. Our Open Data Team is available to answer any enquiries or receive feedback on the assessments. You can contact them via our Open Data mailbox at opendata@spenergynetworks.co.uk.The first phase of our comprehensive data quality assessment measures the quality of our datasets across three dimensions. Please refer to the data table schema for the definitions of these dimensions. We are now in the process of expanding our quality assessments to include additional dimensions to provide a more comprehensive evaluation and will update the data tables with the results when available.DisclaimerThe data quality assessment may not represent the quality of the current dataset that is published on the Open Data Portal. Please check the date of the latest quality assessment and compare to the 'Modified' date of the corresponding dataset. The data quality assessments will be updated on either a quarterly or annual basis, dependent on the update frequency of the dataset. This information can be found in the dataset metadata, within the Information tab. If you require a more up to date quality assessment, please contact the Open Data Team at opendata@spenergynetworks.co.uk and a member of the team will be in contact.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Online surveys often include quantitative attention checks, but inattentive participants might also be identified using their qualitative responses. We used the software Turnitin™ to assess the originality of open-ended responses in four mixed-method online surveys that included validated multi-item rating scales. Across surveys, 18-35% of participants were identified as having copied responses from online sources. We assessed indicator reliability and internal consistency reliability and found that both were lower for participants identified as using copied text versus those who wrote more original responses. Those who provided more original responses also provided more consistent responses to the validated scales, suggesting that these participants were more attentive. We conclude that this process can be used to screen qualitative responses from online surveys. We encourage future research to replicate this screening process using similar tools, investigate strategies to reduce copying behaviour, and explore the motivation of participants to search for information online.
Facebook
Twitterhttps://lindat.mff.cuni.cz/repository/xmlui/page/licence-TAUS_QT21https://lindat.mff.cuni.cz/repository/xmlui/page/licence-TAUS_QT21
Test data for the WMT18 QE task. Train data can be downloaded from http://hdl.handle.net/11372/LRT-2619.
This shared task will build on its previous six editions to further examine automatic methods for estimating the quality of machine translation output at run-time, without relying on reference translations. We include word-level, phrase-level and sentence-level estimation. All tasks make use of datasets produced from post-editions by professional translators. The datasets are domain-specific (IT and life sciences/pharma domains) and extend from those used previous years with more instances and more languages. One important addition is that this year we also include datasets with neural MT outputs. In addition to advancing the state of the art at all prediction levels, our specific goals are:
To study the performance of quality estimation approaches on the output of neural MT systems. We will do so by providing datasets for two language language pairs where the same source segments are translated by both a statistical phrase-based and a neural MT system.
To study the predictability of deleted words, i.e. words that are missing in the MT output. TO do so, for the first time we provide data annotated for such errors at training time.
To study the effectiveness of explicitly assigned labels for phrases. We will do so by providing a dataset where each phrase in the output of a phrase-based statistical MT system was annotated by human translators.
To study the effect of different language pairs. We will do so by providing datasets created in similar ways for four language language pairs.
To investigate the utility of detailed information logged during post-editing. We will do so by providing post-editing time, keystrokes, and actual edits.
Measure progress over years at all prediction levels. We will do so by using last year's test set for comparative experiments.
In-house statistical and neural MT systems were built to produce translations for all tasks. MT system-dependent information can be made available under request. The data is publicly available but since it has been provided by our industry partners it is subject to specific terms and conditions. However, these have no practical implications on the use of this data for research purposes. Participants are allowed to explore any additional data and resources deemed relevant.
Facebook
TwitterThis data table provides the detailed data quality assessment scores for the Single Digital View dataset. The quality assessment was carried out on the 31st of March. At SPEN, we are dedicated to sharing high-quality data with our stakeholders and being transparent about its' quality. This is why we openly share the results of our data quality assessments. We collaborate closely with Data Owners to address any identified issues and enhance our overall data quality. To demonstrate our progress we conduct, at a minimum, bi-annual assessments of our data quality - for datasets that are refreshed more frequently than this, please note that the quality assessment may be based on an earlier version of the dataset. To learn more about our approach to how we assess data quality, visit Data Quality - SP Energy Networks.We welcome feedback and questions from our stakeholders regarding this process. Our Open Data Team is available to answer any enquiries or receive feedback on the assessments. You can contact them via our Open Data mailbox at opendata@spenergynetworks.co.uk.The first phase of our comprehensive data quality assessment measures the quality of our datasets across three dimensions. Please refer to the data table schema for the definitions of these dimensions. We are now in the process of expanding our quality assessments to include additional dimensions to provide a more comprehensive evaluation and will update the data tables with the results when available.DisclaimerThe data quality assessment may not represent the quality of the current dataset that is published on the Open Data Portal. Please check the date of the latest quality assessment and compare to the 'Modified' date of the corresponding dataset. The data quality assessments will be updated on either a quarterly or annual basis, dependent on the update frequency of the dataset. This information can be found in the dataset metadata, within the Information tab. If you require a more up to date quality assessment, please contact the Open Data Team at opendata@spenergynetworks.co.uk and a member of the team will be in contact.