Facebook
TwitterOur Price Paid Data includes information on all property sales in England and Wales that are sold for value and are lodged with us for registration.
Get up to date with the permitted use of our Price Paid Data:
check what to consider when using or publishing our Price Paid Data
If you use or publish our Price Paid Data, you must add the following attribution statement:
Contains HM Land Registry data © Crown copyright and database right 2021. This data is licensed under the Open Government Licence v3.0.
Price Paid Data is released under the http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/">Open Government Licence (OGL). You need to make sure you understand the terms of the OGL before using the data.
Under the OGL, HM Land Registry permits you to use the Price Paid Data for commercial or non-commercial purposes. However, OGL does not cover the use of third party rights, which we are not authorised to license.
Price Paid Data contains address data processed against Ordnance Survey’s AddressBase Premium product, which incorporates Royal Mail’s PAF® database (Address Data). Royal Mail and Ordnance Survey permit your use of Address Data in the Price Paid Data:
If you want to use the Address Data in any other way, you must contact Royal Mail. Email address.management@royalmail.com.
The following fields comprise the address data included in Price Paid Data:
The October 2025 release includes:
As we will be adding to the October data in future releases, we would not recommend using it in isolation as an indication of market or HM Land Registry activity. When the full dataset is viewed alongside the data we’ve previously published, it adds to the overall picture of market activity.
Your use of Price Paid Data is governed by conditions and by downloading the data you are agreeing to those conditions.
Google Chrome (Chrome 88 onwards) is blocking downloads of our Price Paid Data. Please use another internet browser while we resolve this issue. We apologise for any inconvenience caused.
We update the data on the 20th working day of each month. You can download the:
These include standard and additional price paid data transactions received at HM Land Registry from 1 January 1995 to the most current monthly data.
Your use of Price Paid Data is governed by conditions and by downloading the data you are agreeing to those conditions.
The data is updated monthly and the average size of this file is 3.7 GB, you can download:
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
https://raw.githubusercontent.com/Masterx-AI/Project_Housing_Price_Prediction_/main/hs.jpg" alt="">
A simple yet challenging project, to predict the housing price based on certain factors like house area, bedrooms, furnished, nearness to mainroad, etc. The dataset is small yet, it's complexity arises due to the fact that it has strong multicollinearity. Can you overcome these obstacles & build a decent predictive model?
Harrison, D. and Rubinfeld, D.L. (1978) Hedonic prices and the demand for clean air. J. Environ. Economics and Management 5, 81–102. Belsley D.A., Kuh, E. and Welsch, R.E. (1980) Regression Diagnostics. Identifying Influential Data and Sources of Collinearity. New York: Wiley.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
PLEASE UPVOTE IF YOU LIKE THIS CONTENT! 😍
Same dataset as "House Sales in King County, USA", but with treated content and with a split version (train-test) allowing direct use in machine learning models.
We have 14 columns in the dataset, as it follows:
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This dataset contains data on all Real Property parcels that have sold since 2013 in Allegheny County, PA.
Before doing any market analysis on property sales, check the sales validation codes. Many property "sales" are not considered a valid representation of the true market value of the property. For example, when multiple lots are together on one deed with one price they are generally coded as invalid ("H") because the sale price for each parcel ID number indicates the total price paid for a group of parcels, not just for one parcel. See the Sales Validation Codes Dictionary for a complete explanation of valid and invalid sale codes.
Sales Transactions Disclaimer: Sales information is provided from the Allegheny County Department of Administrative Services, Real Estate Division. Content and validation codes are subject to change. Please review the Data Dictionary for details on included fields before each use. Property owners are not required by law to record a deed at the time of sale. Consequently the assessment system may not contain a complete sales history for every property and every sale. You may do a deed search at http://www.alleghenycounty.us/re/index.aspx directly for the most updated information. Note: Ordinance 3478-07 prohibits public access to search assessment records by owner name. It was signed by the Chief Executive in 2007.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains property sales data, including information such as PropertyID, property type (e.g., Commercial or Residential), tax keys, property addresses, architectural styles, exterior wall materials, number of stories, year built, room counts, finished square footage, units (e.g., apartments), bedroom and bathroom counts, lot sizes, sale dates, and sale prices. Explore this dataset to gain insights into real estate trends and property characteristics.
| Field Name | Description | Type |
|---|---|---|
| PropertyID | A unique identifier for each property. | text |
| PropType | The type of property (e.g., Commercial or Residential). | text |
| taxkey | The tax key associated with the property. | text |
| Address | The address of the property. | text |
| CondoProject | Information about whether the property is part of a condominium | text |
| project (NaN indicates missing data). | ||
| District | The district number for the property. | text |
| nbhd | The neighborhood number for the property. | text |
| Style | The architectural style of the property. | text |
| Extwall | The type of exterior wall material used. | text |
| Stories | The number of stories in the building. | text |
| Year_Built | The year the property was built. | text |
| Rooms | The number of rooms in the property. | text |
| FinishedSqft | The total square footage of finished space in the property. | text |
| Units | The number of units in the property | text |
| (e.g., apartments in a multifamily building). | ||
| Bdrms | The number of bedrooms in the property. | text |
| Fbath | The number of full bathrooms in the property. | text |
| Hbath | The number of half bathrooms in the property. | text |
| Lotsize | The size of the lot associated with the property. | text |
| Sale_date | The date when the property was sold. | text |
| Sale_price | The sale price of the property. | text |
Data.milwaukee.gov, (2023). Property Sales Data. [online] Available at: https://data.milwaukee.gov [Accessed 9th October 2023].
Open Definition. (n.d.). Creative Commons Attribution 4.0 International Public License (CC BY 4.0). [online] Available at: http://www.opendefinition.org/licenses/cc-by [Accessed 9th October 2023].
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Quarterly house price data based on a sub-sample of the Regulated Mortgage Survey.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset provides comprehensive information about rental house prices across various locations in India. It includes details such as house type, size, location, city, latitude, longitude, price, currency, number of bathrooms, number of balconies, negotiability of price, price per square foot, verification date, description of the property, security deposit, and status of furnishing (furnished, unfurnished, semi-furnished).
Note: This is Recently scraped data of April 2024.
This dataset aims to provide valuable insights into the rental housing market in India, enabling analysis of rental trends, comparison of prices across different locations and property types, and understanding the impact of various factors on rental prices. Researchers, analysts, and policymakers can utilize this dataset for a wide range of applications, including real estate market analysis, urban planning, and economic research.
This Dataset is created from https://www.makaan.com/. If you want to learn more, you can visit the Website.
Cover Photo by: Playground.ai
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset was created by Nagwa Ahmed
Released under Apache 2.0
Facebook
TwitterThis dataset was created by NancyMee
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Quarterly median house prices for metropolitan Adelaide by suburb
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset includes the listing prices for the sale of properties (mostly houses) in Ontario. They are obtained for a short period of time in July 2016 and include the following fields: - Price in dollars - Address of the property - Latitude and Longitude of the address obtained by using Google Geocoding service - Area Name of the property obtained by using Google Geocoding service
This dataset will provide a good starting point for analyzing the inflated housing market in Canada although it does not include time related information. Initially, it is intended to draw an enhanced interactive heatmap of the house prices for different neighborhoods (areas)
However, if there is enough interest, there will be more information added as newer versions to this dataset. Some of those information will include more details on the property as well as time related information on the price (changes).
This is a somehow related articles about the real estate prices in Ontario: http://www.canadianbusiness.com/blogs-and-comment/check-out-this-heat-map-of-toronto-real-estate-prices/
I am also inspired by this dataset which was provided for King County https://www.kaggle.com/harlfoxem/housesalesprediction
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
House price prediction dataset
This dataset comprises housing data for various metropolitan cities of India. It includes: - Collection of prices of new and resale houses - The amenities provided for each house
This housing dataset is useful for a range of stakeholders, including real estate agents, property developers, buyers, renters, and researchers interested in analyzing housing markets and trends in metropolitan cities across India. It can be used for market analysis, price prediction, property recommendations, and various other real estate-related tasks.
Shape of dataset : (6207, 40)
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F11965067%2F75861c40e86a4d2d10c044be79542436%2FCapture.JPG?generation=1704918894425981&alt=media" alt="">
Github Link : https://github.com/TusharPaul01/House-Price-Prediction
For more such dataset & code check : https://www.kaggle.com/tusharpaul2001
Facebook
TwitterCode and data for "House Prices and Rents" House prices are from Case-Shiller and are not uploaded.
Facebook
Twitterhttps://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de700729https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de700729
Abstract (en): How have house prices evolved over the long run? This paper presents annual house prices for 14 advanced economies since 1870. We show that real house prices stayed constant from the nineteenth to the mid-twentieth century, but rose strongly and with substantial cross-country variation in the second half of the twentieth century. Land prices, not replacement costs, are the key to understanding the trajectory of house prices. Rising land prices explain about 80 percent of the global house price boom that has taken place since World War II. Our findings have implications for the evolution of wealth-to-income ratios, the growth effects of agglomeration, and the price elasticity of housing supply.
Facebook
TwitterAttribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
This dataset contains detailed information on current real estate listings in Houston, Texas, sourced from Zillow, and provides a comprehensive snapshot of the Houston housing market as of 5th June 2024.
The data was extracted from Zillow using a combination of two scraping tools from Apify: Zillow ZIP Code Scraper 🔗 https://apify.com/maxcopell/zillow-zip-search and Zillow Details Scraper 🔗 https://apify.com/maxcopell/zillow-detail-scraper.
The data includes key details for each listing for sale, such as:
With 25,900 current listings, this dataset is ideal for in-depth analysis of the Houston housing market and the Houston real estate market. Potential use cases include:
Whether you're a real estate professional, market researcher, data scientist, or just curious about the Houston housing market, this dataset provides a wealth of information to explore. You can start investigating Houston real estate today.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
500,000+ Sample For Sale Homes Data in the US. Available fields include: "property_url","property_id","address","street_name","apartment","city","state","latitude","longitude","postcode","price","bedroom_number", "bathroom_number","price_per_unit","living_space","land_space","land_space_unit","broker_id","property_type","property_status","year_build",. "total_num_units","listing_age","RunDate","agency_name","agent_name","agent_phone","is_owned_by_zillow"
Can be modeled to analyze home sale price, geo-distribution of homes (every home has lat/lng).
Some properties are owned by zillow. Check out field is_owned_by_zillow, is_owned_by_zillow= 1 means this property is zillow owned. This dataset is for learning and educational purpose. If you are interested in building a similar dataset or for a larger scope and coverage, please contact info@barkingdata.com We specialize in web mining and web data harvesting from the world wide web (including mobile apps), we have built 5000+ datasets for researchers, analysts, scholars , retailers, ... Learn more from https://www.barkingdata.com
Facebook
TwitterCheck out Paradise Properties Vacation Rentals & Sales reviews by guests and hosts. Compare its performance to the Miramar Beach Airbnb market average. Decide if it’s the right choice for you.
Facebook
TwitterProperty Listings from the Maryland Department of Transportation's Office of Real Estate and Economic Development office. These properties are state-owned properties that are currently for sale, will be for sale, have a sale pending, or have recently sold.This map is updated when properties change categories or new properties become available. Use the interactive pop-up menus within the map for each property to view more information about the selected properties and to view the property in different maps and contexts. The state of Maryland is able to sell state-owned land periodically. This can involve public auctions as well. Please visit the Maryland Department of Transportation's Real Estate and Economic Development website for additional information: https://mdotrealestate.maryland.gov/Pages/default.aspx and check with their current tabular list of properties for the inventory.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Results of the lag order test of the quantity of residential supply on the residential price model.
Facebook
Twitterhttps://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de733512https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de733512
Abstract (en): I develop and estimate a monetary business cycle model with nominal loans and collateral constraints tied to housing values. Demand shocks move housing and nominal prices in the same direction, and are amplified and propagated over time. The financial accelerator is not uniform: nominal debt dampens supply shocks, stabilizing the economy under interest rate control. Structural estimation supports two key model features: collateral effects dramatically improve the response of aggregate demand to housing price shocks; and nominal debt improves the sluggish response of output to inflation surprises. Finally, policy evaluation considers the role of house prices and debt indexation in affecting monetary policy trade-offs.
Facebook
TwitterOur Price Paid Data includes information on all property sales in England and Wales that are sold for value and are lodged with us for registration.
Get up to date with the permitted use of our Price Paid Data:
check what to consider when using or publishing our Price Paid Data
If you use or publish our Price Paid Data, you must add the following attribution statement:
Contains HM Land Registry data © Crown copyright and database right 2021. This data is licensed under the Open Government Licence v3.0.
Price Paid Data is released under the http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/">Open Government Licence (OGL). You need to make sure you understand the terms of the OGL before using the data.
Under the OGL, HM Land Registry permits you to use the Price Paid Data for commercial or non-commercial purposes. However, OGL does not cover the use of third party rights, which we are not authorised to license.
Price Paid Data contains address data processed against Ordnance Survey’s AddressBase Premium product, which incorporates Royal Mail’s PAF® database (Address Data). Royal Mail and Ordnance Survey permit your use of Address Data in the Price Paid Data:
If you want to use the Address Data in any other way, you must contact Royal Mail. Email address.management@royalmail.com.
The following fields comprise the address data included in Price Paid Data:
The October 2025 release includes:
As we will be adding to the October data in future releases, we would not recommend using it in isolation as an indication of market or HM Land Registry activity. When the full dataset is viewed alongside the data we’ve previously published, it adds to the overall picture of market activity.
Your use of Price Paid Data is governed by conditions and by downloading the data you are agreeing to those conditions.
Google Chrome (Chrome 88 onwards) is blocking downloads of our Price Paid Data. Please use another internet browser while we resolve this issue. We apologise for any inconvenience caused.
We update the data on the 20th working day of each month. You can download the:
These include standard and additional price paid data transactions received at HM Land Registry from 1 January 1995 to the most current monthly data.
Your use of Price Paid Data is governed by conditions and by downloading the data you are agreeing to those conditions.
The data is updated monthly and the average size of this file is 3.7 GB, you can download: