Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
https://raw.githubusercontent.com/Masterx-AI/Project_Housing_Price_Prediction_/main/hs.jpg" alt="">
A simple yet challenging project, to predict the housing price based on certain factors like house area, bedrooms, furnished, nearness to mainroad, etc. The dataset is small yet, it's complexity arises due to the fact that it has strong multicollinearity. Can you overcome these obstacles & build a decent predictive model?
Harrison, D. and Rubinfeld, D.L. (1978) Hedonic prices and the demand for clean air. J. Environ. Economics and Management 5, 81–102. Belsley D.A., Kuh, E. and Welsch, R.E. (1980) Regression Diagnostics. Identifying Influential Data and Sources of Collinearity. New York: Wiley.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Median Sales Price of Houses Sold for the United States (MSPUS) from Q1 1963 to Q2 2025 about sales, median, housing, and USA.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
PLEASE UPVOTE IF YOU LIKE THIS CONTENT! 😍
Same dataset as "House Sales in King County, USA", but with treated content and with a split version (train-test) allowing direct use in machine learning models.
We have 14 columns in the dataset, as it follows:
Facebook
TwitterOur Price Paid Data includes information on all property sales in England and Wales that are sold for value and are lodged with us for registration.
Get up to date with the permitted use of our Price Paid Data:
check what to consider when using or publishing our Price Paid Data
If you use or publish our Price Paid Data, you must add the following attribution statement:
Contains HM Land Registry data © Crown copyright and database right 2021. This data is licensed under the Open Government Licence v3.0.
Price Paid Data is released under the http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/">Open Government Licence (OGL). You need to make sure you understand the terms of the OGL before using the data.
Under the OGL, HM Land Registry permits you to use the Price Paid Data for commercial or non-commercial purposes. However, OGL does not cover the use of third party rights, which we are not authorised to license.
Price Paid Data contains address data processed against Ordnance Survey’s AddressBase Premium product, which incorporates Royal Mail’s PAF® database (Address Data). Royal Mail and Ordnance Survey permit your use of Address Data in the Price Paid Data:
If you want to use the Address Data in any other way, you must contact Royal Mail. Email address.management@royalmail.com.
The following fields comprise the address data included in Price Paid Data:
The October 2025 release includes:
As we will be adding to the October data in future releases, we would not recommend using it in isolation as an indication of market or HM Land Registry activity. When the full dataset is viewed alongside the data we’ve previously published, it adds to the overall picture of market activity.
Your use of Price Paid Data is governed by conditions and by downloading the data you are agreeing to those conditions.
Google Chrome (Chrome 88 onwards) is blocking downloads of our Price Paid Data. Please use another internet browser while we resolve this issue. We apologise for any inconvenience caused.
We update the data on the 20th working day of each month. You can download the:
These include standard and additional price paid data transactions received at HM Land Registry from 1 January 1995 to the most current monthly data.
Your use of Price Paid Data is governed by conditions and by downloading the data you are agreeing to those conditions.
The data is updated monthly and the average size of this file is 3.7 GB, you can download:
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Average Sales Price of Houses Sold for the United States (ASPUS) from Q1 1963 to Q2 2025 about sales, housing, and USA.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This dataset contains data on all Real Property parcels that have sold since 2013 in Allegheny County, PA.
Before doing any market analysis on property sales, check the sales validation codes. Many property "sales" are not considered a valid representation of the true market value of the property. For example, when multiple lots are together on one deed with one price they are generally coded as invalid ("H") because the sale price for each parcel ID number indicates the total price paid for a group of parcels, not just for one parcel. See the Sales Validation Codes Dictionary for a complete explanation of valid and invalid sale codes.
Sales Transactions Disclaimer: Sales information is provided from the Allegheny County Department of Administrative Services, Real Estate Division. Content and validation codes are subject to change. Please review the Data Dictionary for details on included fields before each use. Property owners are not required by law to record a deed at the time of sale. Consequently the assessment system may not contain a complete sales history for every property and every sale. You may do a deed search at http://www.alleghenycounty.us/re/index.aspx directly for the most updated information. Note: Ordinance 3478-07 prohibits public access to search assessment records by owner name. It was signed by the Chief Executive in 2007.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains property sales data, including information such as PropertyID, property type (e.g., Commercial or Residential), tax keys, property addresses, architectural styles, exterior wall materials, number of stories, year built, room counts, finished square footage, units (e.g., apartments), bedroom and bathroom counts, lot sizes, sale dates, and sale prices. Explore this dataset to gain insights into real estate trends and property characteristics.
| Field Name | Description | Type |
|---|---|---|
| PropertyID | A unique identifier for each property. | text |
| PropType | The type of property (e.g., Commercial or Residential). | text |
| taxkey | The tax key associated with the property. | text |
| Address | The address of the property. | text |
| CondoProject | Information about whether the property is part of a condominium | text |
| project (NaN indicates missing data). | ||
| District | The district number for the property. | text |
| nbhd | The neighborhood number for the property. | text |
| Style | The architectural style of the property. | text |
| Extwall | The type of exterior wall material used. | text |
| Stories | The number of stories in the building. | text |
| Year_Built | The year the property was built. | text |
| Rooms | The number of rooms in the property. | text |
| FinishedSqft | The total square footage of finished space in the property. | text |
| Units | The number of units in the property | text |
| (e.g., apartments in a multifamily building). | ||
| Bdrms | The number of bedrooms in the property. | text |
| Fbath | The number of full bathrooms in the property. | text |
| Hbath | The number of half bathrooms in the property. | text |
| Lotsize | The size of the lot associated with the property. | text |
| Sale_date | The date when the property was sold. | text |
| Sale_price | The sale price of the property. | text |
Data.milwaukee.gov, (2023). Property Sales Data. [online] Available at: https://data.milwaukee.gov [Accessed 9th October 2023].
Open Definition. (n.d.). Creative Commons Attribution 4.0 International Public License (CC BY 4.0). [online] Available at: http://www.opendefinition.org/licenses/cc-by [Accessed 9th October 2023].
Facebook
TwitterThis dataset contains prices of New York houses, providing valuable insights into the real estate market in the region. It includes information such as broker titles, house types, prices, number of bedrooms and bathrooms, property square footage, addresses, state, administrative and local areas, street names, and geographical coordinates.
- BROKERTITLE: Title of the broker
- TYPE: Type of the house
- PRICE: Price of the house
- BEDS: Number of bedrooms
- BATH: Number of bathrooms
- PROPERTYSQFT: Square footage of the property
- ADDRESS: Full address of the house
- STATE: State of the house
- MAIN_ADDRESS: Main address information
- ADMINISTRATIVE_AREA_LEVEL_2: Administrative area level 2 information
- LOCALITY: Locality information
- SUBLOCALITY: Sublocality information
- STREET_NAME: Street name
- LONG_NAME: Long name
- FORMATTED_ADDRESS: Formatted address
- LATITUDE: Latitude coordinate of the house
- LONGITUDE: Longitude coordinate of the house
- Price analysis: Analyze the distribution of house prices to understand market trends and identify potential investment opportunities.
- Property size analysis: Explore the relationship between property square footage and prices to assess the value of different-sized houses.
- Location-based analysis: Investigate geographical patterns to identify areas with higher or lower property prices.
- Bedroom and bathroom trends: Analyze the impact of the number of bedrooms and bathrooms on house prices.
- Broker performance analysis: Evaluate the influence of different brokers on the pricing of houses.
If you find this dataset useful, your support through an upvote would be greatly appreciated ❤️🙂 Thank you
Facebook
TwitterHouse prices grew year-on-year in most states in the U.S. in the first quarter of 2025. Hawaii was the only exception, with a decline of **** percent. The annual appreciation for single-family housing in the U.S. was **** percent, while in Rhode Island—the state where homes appreciated the most—the increase was ******percent. How have home prices developed in recent years? House price growth in the U.S. has been going strong for years. In 2025, the median sales price of a single-family home exceeded ******* U.S. dollars, up from ******* U.S. dollars five years ago. One of the factors driving house prices was the cost of credit. The record-low federal funds effective rate allowed mortgage lenders to set mortgage interest rates as low as *** percent. With interest rates on the rise, home buying has also slowed, causing fluctuations in house prices. Why are house prices growing? Many markets in the U.S. are overheated because supply has not been able to keep up with demand. How many homes enter the housing market depends on the construction output, whereas the availability of existing homes for purchase depends on many other factors, such as the willingness of owners to sell. Furthermore, growing investor appetite in the housing sector means that prospective homebuyers have some extra competition to worry about. In certain metros, for example, the share of homes bought by investors exceeded ** percent in 2025.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for All-Transactions House Price Index for the United States (USSTHPI) from Q1 1975 to Q3 2025 about appraisers, HPI, housing, price index, indexes, price, and USA.
Facebook
Twitterhttp://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
The dataset consists of Price of Houses in King County , Washington from sales between May 2014 and May 2015. Along with house price it consists of information on 18 house features, date of sale and ID of sale.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
House Price Index YoY in the United States decreased to 1.70 percent in September from 2.40 percent in August of 2025. This dataset includes a chart with historical data for the United States FHFA House Price Index YoY.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for All-Transactions House Price Index for Los Angeles County, CA (ATNHPIUS06037A) from 1975 to 2024 about Los Angeles County, CA; Los Angeles; CA; HPI; housing; price index; indexes; price; and USA.
Facebook
Twitterhttps://www.ibisworld.com/about/termsofuse/https://www.ibisworld.com/about/termsofuse/
The online residential home sale listings industry is experiencing significant changes in its dynamics because of the increased number of homes for sale. The growth in listings is because of various factors, including a climb in the number of homeowners choosing to sell, the easing of the mortgage rate lock-in effect, and economic concerns driving the sale of investment properties. These conditions and the shift from a seller's market towards a more balanced, or even a buyer's market, translate into increased traffic and engagement on home sale platforms. This presents an opportunity for these online platforms to enhance their user experience, refine search tools and offer data analytics to help buyers navigate the increased options. By the end of 2025, industry revenue has climbed at a CAGR of 3.0% and is expected to total $2.2 billion in 2025. In 2025, revenue is expected to strengthen by an estimated 4.2%. Despite enjoying growth, the industry faces challenges with the elevated mortgage rates reducing demand for home purchases, leading to a market freeze. Despite the gain in home listings, actual transaction volumes have remained subdued, creating a challenging environment for the online residential home sale listing platforms. To stay competitive, these platforms are pivoting to offer enhanced tools for price comparisons, real-time mortgage calculators and in-depth educational content to help buyers understand the increased cost of borrowing and also navigate the high inventory but low turnover market. Industry profit has climbed as revenue has outpaced wage growth through the end of 2025. Through the end of 2030, online platforms must position themselves for demographic shifts and changing consumer preferences. Gen Z and younger millennials, who are entering homebuying age, are demanding a more tech-driven, seamless and mobile-first experience. The industry will also continue to see online platforms transform into comprehensive, one-stop digital destinations offering integrated services for every stage of the housing journey. Embracing changes such as artificial intelligence and data analytics to enhance user experience, streamlining listings uploads and offering real-time communication between buyers, sellers, and agents will be crucial for future success. Platforms that offer user-friendly, one-stop experiences and are equipped to provide advanced, feature-rich mobile experiences are set to capture greater market share. Overall, industry revenue will gain at a CAGR of 3.3% through 2030 to total $2.6 billion.
Facebook
TwitterThe U.S. housing market has slowed, after ** consecutive years of rising home prices. In 2021, house prices surged by an unprecedented ** percent, marking the highest increase on record. However, the market has since cooled, with the Freddie Mac House Price Index showing more modest growth between 2022 and 2024. In 2024, home prices increased by *** percent. That was lower than the long-term average of *** percent since 1990. Impact of mortgage rates on homebuying The recent cooling in the housing market can be partly attributed to rising mortgage rates. After reaching a record low of **** percent in 2021, the average annual rate on a 30-year fixed-rate mortgage more than doubled in 2023. This significant increase has made homeownership less affordable for many potential buyers, contributing to a substantial decline in home sales. Despite these challenges, forecasts suggest a potential recovery in the coming years. How much does it cost to buy a house in the U.S.? In 2023, the median sales price of an existing single-family home reached a record high of over ******* U.S. dollars. Newly built homes were even pricier, despite a slight decline in the median sales price in 2023. Naturally, home prices continue to vary significantly across the country, with West Virginia being the most affordable state for homebuyers.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The figures of existing own homes are related to the stock of existing own homes. Besides the price indices, figures are also published about the numbers sold, the average purchase price, and the total sum of the purchase prices of the sold dwellings. The House Price Index of existing own homes is based on a complete registration of sales of dwellings by the Dutch Land Registry Office (Kadaster) and the (WOZ) value of all dwellings in the Netherlands. Indices may fluctuate, for example if a small number of dwellings are sold in a certain region. In such cases we recommended using the long-term figures. The average purchase price of existing own homes may differ from the price index of existing own homes. The change in the average purchase price, however, is not an indicator for price developments of existing own homes.
Data available from: 1st quarter 1995 to 4th quarter 2023
Status of the figures: The figures in this table are immediately definitive. The calculation of these figures is based on the number of notary transactions that are registered every month by the Dutch Land Registry Office (Kadaster). A revision of the figures is exceptional and occurs specifically if an error significantly exceeds the acceptable statistical margins. The numbers of existing owner-occupied sold homes can be recalculated by Kadaster at a later date. These figures are usually the same as the publication on Statline, but in some periods they differ. Kadaster calculates the average purchasing prices based on the most recent data. These may have changed since the first publication. Statistics Netherlands uses figures from the first publication in accordance with the revision policy described above.
Changes as of 6 June 2024: This table has been discontinued. This table is followed by Existing own homes; purchase prices, price index 2020=100, region. See paragraph 3.
From reporting period 2024 quarter 1, the base year of the House Price Index for Existing Dwellings (PBK) will be adjusted from 2015 to 2020. In April 2024, the first figures of this new series will be released. These figures will be available in a new StatLine table. The old series (base year = 2015) can still be consulted via StatLine, but will no longer be updated.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Housing Index in Germany increased to 220.43 points in October from 219.91 points in September of 2025. This dataset provides the latest reported value for - Germany House Price Index - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Facebook
TwitterThe number of home sales in the United States peaked in 2021 at almost ************* after steadily rising since 2018. Nevertheless, the market contracted in the following year, with transaction volumes falling to ***********. Home sales remained muted in 2024, with a mild increase expected in 2025 and 2026. A major factor driving this trend is the unprecedented increase in mortgage interest rates due to high inflation. How have U.S. home prices developed over time? The average sales price of new homes has also been rising since 2011. Buyer confidence seems to have recovered after the property crash, which has increased demand for homes and also the prices sellers are demanding for homes. At the same time, the affordability of U.S. homes has decreased. Both the number of existing and newly built homes sold has declined since the housing market boom during the coronavirus pandemic. Challenges in housing supply The number of housing units in the U.S. rose steadily between 1975 and 2005 but has remained fairly stable since then. Construction increased notably in the 1990s and early 2000s, with the number of construction starts steadily rising, before plummeting amid the infamous housing market crash. Housing starts slowly started to pick up in 2011, mirroring the economic recovery. In 2022, the supply of newly built homes plummeted again, as supply chain challenges following the COVID-19 pandemic and tariffs on essential construction materials such as steel and lumber led to prices soaring.
Facebook
TwitterIn 2022, house price growth in the UK slowed, after a period of decade-long increase. Nevertheless, in June 2025, prices reached a new peak, with the average home costing ******* British pounds. This figure refers to all property types, including detached, semi-detached, terraced houses, and flats and maisonettes. Compared to other European countries, the UK had some of the highest house prices. How have UK house prices increased over the last 10 years? Property prices have risen dramatically over the past decade. According to the UK house price index, the average house price has grown by over ** percent since 2015. This price development has led to the gap between the cost of buying and renting a property to close. In 2023, buying a three-bedroom house in the UK was no longer more affordable than renting one. Consequently, Brits have become more likely to rent longer and push off making a house purchase until they have saved up enough for a down payment and achieved the financial stability required to make the step. What caused the recent fluctuations in house prices? House prices are affected by multiple factors, such as mortgage rates, supply, and demand on the market. For nearly a decade, the UK experienced uninterrupted house price growth as a result of strong demand and a chronic undersupply. Homebuyers who purchased a property at the peak of the housing boom in July 2022 paid ** percent more compared to what they would have paid a year before. Additionally, 2022 saw the most dramatic increase in mortgage rates in recent history. Between December 2021 and December 2022, the **-year fixed mortgage rate doubled, adding further strain to prospective homebuyers. As a result, the market cooled, leading to a correction in pricing.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for All-Transactions House Price Index for New York (NYSTHPI) from Q1 1975 to Q3 2025 about appraisers, NY, HPI, housing, price index, indexes, price, and USA.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
https://raw.githubusercontent.com/Masterx-AI/Project_Housing_Price_Prediction_/main/hs.jpg" alt="">
A simple yet challenging project, to predict the housing price based on certain factors like house area, bedrooms, furnished, nearness to mainroad, etc. The dataset is small yet, it's complexity arises due to the fact that it has strong multicollinearity. Can you overcome these obstacles & build a decent predictive model?
Harrison, D. and Rubinfeld, D.L. (1978) Hedonic prices and the demand for clean air. J. Environ. Economics and Management 5, 81–102. Belsley D.A., Kuh, E. and Welsch, R.E. (1980) Regression Diagnostics. Identifying Influential Data and Sources of Collinearity. New York: Wiley.