100+ datasets found
  1. d

    Web Traffic Data | Cookieless First Party Opt-In Platform | Capture/Resolve...

    • datarade.ai
    .csv
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    VisitIQ™, Web Traffic Data | Cookieless First Party Opt-In Platform | Capture/Resolve Website Visitors | Pixel | B2B2C 300 Million records | US [Dataset]. https://datarade.ai/data-products/visitiq-web-traffic-data-cookieless-first-party-opt-in-p-visitiq
    Explore at:
    .csvAvailable download formats
    Dataset authored and provided by
    VisitIQ™
    Area covered
    United States of America
    Description

    Be ready for a cookieless internet while capturing anonymous website traffic data!

    By installing the resolve pixel onto your website, business owners can start to put a name to the activity seen in analytics sources (i.e. GA4). With capture/resolve, you can identify up to 40% or more of your website traffic. Reach customers BEFORE they are ready to reveal themselves to you and customize messaging toward the right product or service.

    This product will include Anonymous IP Data and Web Traffic Data for B2B2C.

    Get a 360 view of the web traffic consumer with their business data such as business email, title, company, revenue, and location.

    Super easy to implement and extraordinarily fast at processing, business owners are thrilled with the enhanced identity resolution capabilities powered by VisitIQ's First Party Opt-In Identity Platform. Capture/resolve and identify your Ideal Customer Profiles to customize marketing. Identify WHO is looking, WHAT they are looking at, WHERE they are located and HOW the web traffic came to your site.

    Create segments based on specific demographic or behavioral attributes and export the data as a .csv or through S3 integration.

    Check our product that has the most accurate Web Traffic Data for the B2B2C market.

  2. W

    Website Visitor Tracking Software Report

    • archivemarketresearch.com
    doc, pdf, ppt
    Updated Apr 25, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Website Visitor Tracking Software Report [Dataset]. https://www.archivemarketresearch.com/reports/website-visitor-tracking-software-561091
    Explore at:
    ppt, doc, pdfAvailable download formats
    Dataset updated
    Apr 25, 2025
    Dataset authored and provided by
    Archive Market Research
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Website Visitor Tracking Software market is experiencing robust growth, driven by the increasing need for businesses to understand online customer behavior and optimize their digital strategies. This market, currently valued at approximately $5 billion in 2025, is projected to grow at a Compound Annual Growth Rate (CAGR) of 15% from 2025 to 2033. This expansion is fueled by several key factors. The rising adoption of cloud-based solutions offers scalability and cost-effectiveness, attracting both SMEs and large enterprises. Furthermore, the increasing sophistication of analytics features within these platforms allows for deeper insights into website traffic, user engagement, and conversion rates. This empowers businesses to personalize user experiences, refine marketing campaigns, and ultimately drive revenue growth. The market segmentation reveals a significant share held by cloud-based solutions due to their accessibility and flexibility, while the large enterprise segment is a primary revenue driver due to its higher spending capacity. Competition is intense, with established players like Google Analytics and Adobe Analytics alongside a burgeoning number of specialized providers offering unique features and functionalities. The competitive landscape is dynamic, with established players facing challenges from nimble startups innovating in areas like AI-powered behavioral analytics and personalized recommendations. While data privacy concerns and the increasing complexity of tracking regulations represent potential restraints, the overall market outlook remains positive. The continued growth of e-commerce, digital marketing, and the broader digital economy will fuel further demand for sophisticated visitor tracking solutions. Geographic expansion, particularly in rapidly developing economies within Asia-Pacific and Latin America, will contribute significantly to market expansion over the forecast period. The integration of website visitor tracking with other marketing automation and CRM tools is another key trend, further solidifying its importance within a comprehensive digital strategy. The market's future hinges on the continuous innovation in data analytics capabilities, the development of user-friendly interfaces, and the ability to adapt to evolving privacy regulations.

  3. a

    Traffic Site

    • hub.arcgis.com
    • data-waikatolass.opendata.arcgis.com
    Updated Sep 9, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hamilton City Council (2021). Traffic Site [Dataset]. https://hub.arcgis.com/maps/hcc::traffic-site
    Explore at:
    Dataset updated
    Sep 9, 2021
    Dataset authored and provided by
    Hamilton City Council
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Attributes of sites in Hamilton City which collect anonymised data from a sample of vehicles. Note: A Link is the section of the road between two sites

    Column_InfoSite_Id, int : Unique identiferNumber, int : Asset number. Note: If the site is at a signalised intersection, Number will match 'Site_Number' in the table 'Traffic Signal Site Location'Is_Enabled, varchar : Site is currently enabledDisabled_Date, datetime : If currently disabled, the date at which the site was disabledSite_Name, varchar : Description of the site locationLatitude, numeric : North-south geographic coordinatesLongitude, numeric : East-west geographic coordinates

    Relationship
    
    
    
    
    
    
    
    
    
    Disclaimer
    
    Hamilton City Council does not make any representation or give any warranty as to the accuracy or exhaustiveness of the data released for public download. Levels, locations and dimensions of works depicted in the data may not be accurate due to circumstances not notified to Council. A physical check should be made on all levels, locations and dimensions before starting design or works.
    
    Hamilton City Council shall not be liable for any loss, damage, cost or expense (whether direct or indirect) arising from reliance upon or use of any data provided, or Council's failure to provide this data.
    
    While you are free to crop, export and re-purpose the data, we ask that you attribute the Hamilton City Council and clearly state that your work is a derivative and not the authoritative data source. Please include the following statement when distributing any work derived from this data:
    
    ‘This work is derived entirely or in part from Hamilton City Council data; the provided information may be updated at any time, and may at times be out of date, inaccurate, and/or incomplete.'
    
  4. Z

    Network Traffic Analysis: Data and Code

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jun 12, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Homan, Sophia (2024). Network Traffic Analysis: Data and Code [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_11479410
    Explore at:
    Dataset updated
    Jun 12, 2024
    Dataset provided by
    Honig, Joshua
    Ferrell, Nathan
    Chan-Tin, Eric
    Homan, Sophia
    Moran, Madeline
    Soni, Shreena
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Code:

    Packet_Features_Generator.py & Features.py

    To run this code:

    pkt_features.py [-h] -i TXTFILE [-x X] [-y Y] [-z Z] [-ml] [-s S] -j

    -h, --help show this help message and exit -i TXTFILE input text file -x X Add first X number of total packets as features. -y Y Add first Y number of negative packets as features. -z Z Add first Z number of positive packets as features. -ml Output to text file all websites in the format of websiteNumber1,feature1,feature2,... -s S Generate samples using size s. -j

    Purpose:

    Turns a text file containing lists of incomeing and outgoing network packet sizes into separate website objects with associative features.

    Uses Features.py to calcualte the features.

    startMachineLearning.sh & machineLearning.py

    To run this code:

    bash startMachineLearning.sh

    This code then runs machineLearning.py in a tmux session with the nessisary file paths and flags

    Options (to be edited within this file):

    --evaluate-only to test 5 fold cross validation accuracy

    --test-scaling-normalization to test 6 different combinations of scalers and normalizers

    Note: once the best combination is determined, it should be added to the data_preprocessing function in machineLearning.py for future use

    --grid-search to test the best grid search hyperparameters - note: the possible hyperparameters must be added to train_model under 'if not evaluateOnly:' - once best hyperparameters are determined, add them to train_model under 'if evaluateOnly:'

    Purpose:

    Using the .ml file generated by Packet_Features_Generator.py & Features.py, this program trains a RandomForest Classifier on the provided data and provides results using cross validation. These results include the best scaling and normailzation options for each data set as well as the best grid search hyperparameters based on the provided ranges.

    Data

    Encrypted network traffic was collected on an isolated computer visiting different Wikipedia and New York Times articles, different Google search queres (collected in the form of their autocomplete results and their results page), and different actions taken on a Virtual Reality head set.

    Data for this experiment was stored and analyzed in the form of a txt file for each experiment which contains:

    First number is a classification number to denote what website, query, or vr action is taking place.

    The remaining numbers in each line denote:

    The size of a packet,

    and the direction it is traveling.

    negative numbers denote incoming packets

    positive numbers denote outgoing packets

    Figure 4 Data

    This data uses specific lines from the Virtual Reality.txt file.

    The action 'LongText Search' refers to a user searching for "Saint Basils Cathedral" with text in the Wander app.

    The action 'ShortText Search' refers to a user searching for "Mexico" with text in the Wander app.

    The .xlsx and .csv file are identical

    Each file includes (from right to left):

    The origional packet data,

    each line of data organized from smallest to largest packet size in order to calculate the mean and standard deviation of each packet capture,

    and the final Cumulative Distrubution Function (CDF) caluclation that generated the Figure 4 Graph.

  5. d

    Click Global Data | Web Traffic Data + Transaction Data | Consumer and B2B...

    • datarade.ai
    .csv
    Updated Mar 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Consumer Edge (2025). Click Global Data | Web Traffic Data + Transaction Data | Consumer and B2B Shopper Insights | 59 Countries, 3-Day Lag, Daily Delivery [Dataset]. https://datarade.ai/data-products/click-global-data-web-traffic-data-transaction-data-con-consumer-edge
    Explore at:
    .csvAvailable download formats
    Dataset updated
    Mar 13, 2025
    Dataset authored and provided by
    Consumer Edge
    Area covered
    Bermuda, Marshall Islands, Bosnia and Herzegovina, Congo, Nauru, Sri Lanka, Finland, South Africa, El Salvador, Montserrat
    Description

    Click Web Traffic Combined with Transaction Data: A New Dimension of Shopper Insights

    Consumer Edge is a leader in alternative consumer data for public and private investors and corporate clients. Click enhances the unparalleled accuracy of CE Transact by allowing investors to delve deeper and browse further into global online web traffic for CE Transact companies and more. Leverage the unique fusion of web traffic and transaction datasets to understand the addressable market and understand spending behavior on consumer and B2B websites. See the impact of changes in marketing spend, search engine algorithms, and social media awareness on visits to a merchant’s website, and discover the extent to which product mix and pricing drive or hinder visits and dwell time. Plus, Click uncovers a more global view of traffic trends in geographies not covered by Transact. Doubleclick into better forecasting, with Click.

    Consumer Edge’s Click is available in machine-readable file delivery and enables: • Comprehensive Global Coverage: Insights across 620+ brands and 59 countries, including key markets in the US, Europe, Asia, and Latin America. • Integrated Data Ecosystem: Click seamlessly maps web traffic data to CE entities and stock tickers, enabling a unified view across various business intelligence tools. • Near Real-Time Insights: Daily data delivery with a 5-day lag ensures timely, actionable insights for agile decision-making. • Enhanced Forecasting Capabilities: Combining web traffic indicators with transaction data helps identify patterns and predict revenue performance.

    Use Case: Analyze Year Over Year Growth Rate by Region

    Problem A public investor wants to understand how a company’s year-over-year growth differs by region.

    Solution The firm leveraged Consumer Edge Click data to: • Gain visibility into key metrics like views, bounce rate, visits, and addressable spend • Analyze year-over-year growth rates for a time period • Breakout data by geographic region to see growth trends

    Metrics Include: • Spend • Items • Volume • Transactions • Price Per Volume

    Inquire about a Click subscription to perform more complex, near real-time analyses on public tickers and private brands as well as for industries beyond CPG like: • Monitor web traffic as a leading indicator of stock performance and consumer demand • Analyze customer interest and sentiment at the brand and sub-brand levels

    Consumer Edge offers a variety of datasets covering the US, Europe (UK, Austria, France, Germany, Italy, Spain), and across the globe, with subscription options serving a wide range of business needs.

    Consumer Edge is the Leader in Data-Driven Insights Focused on the Global Consumer

  6. Impact of AI on website traffic anticipated by digital marketers worldwide...

    • statista.com
    Updated Jul 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Impact of AI on website traffic anticipated by digital marketers worldwide 2023 [Dataset]. https://www.statista.com/statistics/1410386/impact-ai-website-traffic-worldwide/
    Explore at:
    Dataset updated
    Jul 3, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    Worldwide
    Description

    According to the results of a survey conducted worldwide in 2023, nearly **** of responding digital marketers believed artificial intelligence (AI) would have a positive impact on website search traffic in the next five years. Some ** percent stated AI would have a neutral effect, while ** percent agreed that the technology would negatively impact search traffic.

  7. R

    Traffic Dataset

    • universe.roboflow.com
    zip
    Updated Oct 4, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Traffic (2021). Traffic Dataset [Dataset]. https://universe.roboflow.com/traffic/traffic-dataset-z21ak
    Explore at:
    zipAvailable download formats
    Dataset updated
    Oct 4, 2021
    Dataset authored and provided by
    Traffic
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Vehicle Bounding Boxes
    Description

    Here are a few use cases for this project:

    1. Traffic Flow Analysis: The dataset can be used in machine learning models to analyze traffic flow in cities. It can identify the type of vehicles on the city roads at different times of the day, helping in planning and traffic management.

    2. Vehicle Class Based Toll Collection: Toll booths can use this model to automatically classify and charge vehicles based on their type, enabling a more efficient and automated system.

    3. Parking Management System: Parking lot owners can use this model to easily classify vehicles as they enter for better space management. Knowing the vehicle type can help assign it to the most suitable parking spot.

    4. Traffic Rule Enforcement: The dataset can be used to create a computer vision model to automatically detect any traffic violations like wrong lane driving by different vehicle types, and notify law enforcement agencies.

    5. Smart Ambulance Tracking: The system can help in identifying and tracking ambulances and other emergency vehicles, enabling traffic management systems to provide priority routing during emergencies.

  8. Share of global mobile website traffic 2015-2024

    • statista.com
    • usproadvisor.net
    • +1more
    Updated Jan 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Share of global mobile website traffic 2015-2024 [Dataset]. https://www.statista.com/statistics/277125/share-of-website-traffic-coming-from-mobile-devices/
    Explore at:
    Dataset updated
    Jan 28, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    Mobile accounts for approximately half of web traffic worldwide. In the last quarter of 2024, mobile devices (excluding tablets) generated 62.54 percent of global website traffic. Mobiles and smartphones consistently hoovered around the 50 percent mark since the beginning of 2017, before surpassing it in 2020. Mobile traffic Due to low infrastructure and financial restraints, many emerging digital markets skipped the desktop internet phase entirely and moved straight onto mobile internet via smartphone and tablet devices. India is a prime example of a market with a significant mobile-first online population. Other countries with a significant share of mobile internet traffic include Nigeria, Ghana and Kenya. In most African markets, mobile accounts for more than half of the web traffic. By contrast, mobile only makes up around 45.49 percent of online traffic in the United States. Mobile usage The most popular mobile internet activities worldwide include watching movies or videos online, e-mail usage and accessing social media. Apps are a very popular way to watch video on the go and the most-downloaded entertainment apps in the Apple App Store are Netflix, Tencent Video and Amazon Prime Video.

  9. Z

    Kaggle Wikipedia Web Traffic Daily Dataset (without Missing Values)

    • data.niaid.nih.gov
    • explore.openaire.eu
    • +1more
    Updated Apr 1, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bergmeir, Christoph (2021). Kaggle Wikipedia Web Traffic Daily Dataset (without Missing Values) [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_3892918
    Explore at:
    Dataset updated
    Apr 1, 2021
    Dataset provided by
    Webb, Geoff
    Bergmeir, Christoph
    Montero-Manso, Pablo
    Godahewa, Rakshitha
    Hyndman, Rob
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset was used in the Kaggle Wikipedia Web Traffic forecasting competition. It contains 145063 daily time series representing the number of hits or web traffic for a set of Wikipedia pages from 2015-07-01 to 2017-09-10.

    The original dataset contains missing values. They have been simply replaced by zeros.

  10. d

    Swash Web Browsing Clickstream Data - 1.5M Worldwide Users - GDPR Compliant

    • datarade.ai
    .csv, .xls
    Updated Jun 27, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Swash (2023). Swash Web Browsing Clickstream Data - 1.5M Worldwide Users - GDPR Compliant [Dataset]. https://datarade.ai/data-products/swash-blockchain-bitcoin-and-web3-enthusiasts-swash
    Explore at:
    .csv, .xlsAvailable download formats
    Dataset updated
    Jun 27, 2023
    Dataset authored and provided by
    Swash
    Area covered
    India, Belarus, Jamaica, Jordan, Latvia, Liechtenstein, Russian Federation, Uzbekistan, Monaco, Saint Vincent and the Grenadines
    Description

    Unlock the Power of Behavioural Data with GDPR-Compliant Clickstream Insights.

    Swash clickstream data offers a comprehensive and GDPR-compliant dataset sourced from users worldwide, encompassing both desktop and mobile browsing behaviour. Here's an in-depth look at what sets us apart and how our data can benefit your organisation.

    User-Centric Approach: Unlike traditional data collection methods, we take a user-centric approach by rewarding users for the data they willingly provide. This unique methodology ensures transparent data collection practices, encourages user participation, and establishes trust between data providers and consumers.

    Wide Coverage and Varied Categories: Our clickstream data covers diverse categories, including search, shopping, and URL visits. Whether you are interested in understanding user preferences in e-commerce, analysing search behaviour across different industries, or tracking website visits, our data provides a rich and multi-dimensional view of user activities.

    GDPR Compliance and Privacy: We prioritise data privacy and strictly adhere to GDPR guidelines. Our data collection methods are fully compliant, ensuring the protection of user identities and personal information. You can confidently leverage our clickstream data without compromising privacy or facing regulatory challenges.

    Market Intelligence and Consumer Behaviuor: Gain deep insights into market intelligence and consumer behaviour using our clickstream data. Understand trends, preferences, and user behaviour patterns by analysing the comprehensive user-level, time-stamped raw or processed data feed. Uncover valuable information about user journeys, search funnels, and paths to purchase to enhance your marketing strategies and drive business growth.

    High-Frequency Updates and Consistency: We provide high-frequency updates and consistent user participation, offering both historical data and ongoing daily delivery. This ensures you have access to up-to-date insights and a continuous data feed for comprehensive analysis. Our reliable and consistent data empowers you to make accurate and timely decisions.

    Custom Reporting and Analysis: We understand that every organisation has unique requirements. That's why we offer customisable reporting options, allowing you to tailor the analysis and reporting of clickstream data to your specific needs. Whether you need detailed metrics, visualisations, or in-depth analytics, we provide the flexibility to meet your reporting requirements.

    Data Quality and Credibility: We take data quality seriously. Our data sourcing practices are designed to ensure responsible and reliable data collection. We implement rigorous data cleaning, validation, and verification processes, guaranteeing the accuracy and reliability of our clickstream data. You can confidently rely on our data to drive your decision-making processes.

  11. G

    Website traffic strategies by industry and size of enterprise

    • open.canada.ca
    • datasets.ai
    • +3more
    csv, html, xml
    Updated Jan 17, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Canada (2023). Website traffic strategies by industry and size of enterprise [Dataset]. https://open.canada.ca/data/en/dataset/a7882acc-a647-4fa6-a58b-6dae889de472
    Explore at:
    csv, xml, htmlAvailable download formats
    Dataset updated
    Jan 17, 2023
    Dataset provided by
    Statistics Canada
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    Digital technology and Internet use, website traffic strategies, by North American Industry Classification System (NAICS) and size of enterprise for Canada from 2012 to 2013.

  12. Leading K12 and test preparation platforms in India 2022, by website traffic...

    • statista.com
    Updated Jul 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Leading K12 and test preparation platforms in India 2022, by website traffic [Dataset]. https://www.statista.com/statistics/1413860/india-k12-and-test-preparation-platforms-by-website-traffic/
    Explore at:
    Dataset updated
    Jul 7, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jul 2022 - Sep 2022
    Area covered
    India
    Description

    Between July and September 2022, BYJU's emerged as the top Ed Tech platform for K12 and test preparation In India. It recorded approximately *** million website visits. Following closely behind was Toppr.com, with around *** million visits during the same period.

  13. Global website traffic distribution 2019, by source

    • ai-chatbox.pro
    • statista.com
    Updated Nov 30, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2022). Global website traffic distribution 2019, by source [Dataset]. https://www.ai-chatbox.pro/?_=%2Fstatistics%2F1110433%2Fdistribution-worldwide-website-traffic%2F%23XgboD02vawLZsmJjSPEePEUG%2FVFd%2Bik%3D
    Explore at:
    Dataset updated
    Nov 30, 2022
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2019
    Area covered
    World
    Description

    As of 2019, direct traffic accounts for the largest percentage of website traffic worldwide, with a share of 55 percent. Additionally, search traffic accounts for 29 percent of worldwide website traffic.

  14. DataForSEO Labs API for keyword research and search analytics, real-time...

    • datarade.ai
    .json
    Updated Jun 4, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DataForSEO (2021). DataForSEO Labs API for keyword research and search analytics, real-time data for all Google locations and languages [Dataset]. https://datarade.ai/data-products/dataforseo-labs-api-for-keyword-research-and-search-analytics-dataforseo
    Explore at:
    .jsonAvailable download formats
    Dataset updated
    Jun 4, 2021
    Dataset provided by
    Authors
    DataForSEO
    Area covered
    Korea (Democratic People's Republic of), Isle of Man, Morocco, Azerbaijan, Mauritania, Micronesia (Federated States of), Tokelau, Kenya, Cocos (Keeling) Islands, Armenia
    Description

    DataForSEO Labs API offers three powerful keyword research algorithms and historical keyword data:

    • Related Keywords from the “searches related to” element of Google SERP. • Keyword Suggestions that match the specified seed keyword with additional words before, after, or within the seed key phrase. • Keyword Ideas that fall into the same category as specified seed keywords. • Historical Search Volume with current cost-per-click, and competition values.

    Based on in-market categories of Google Ads, you can get keyword ideas from the relevant Categories For Domain and discover relevant Keywords For Categories. You can also obtain Top Google Searches with AdWords and Bing Ads metrics, product categories, and Google SERP data.

    You will find well-rounded ways to scout the competitors:

    • Domain Whois Overview with ranking and traffic info from organic and paid search. • Ranked Keywords that any domain or URL has positions for in SERP. • SERP Competitors and the rankings they hold for the keywords you specify. • Competitors Domain with a full overview of its rankings and traffic from organic and paid search. • Domain Intersection keywords for which both specified domains rank within the same SERPs. • Subdomains for the target domain you specify along with the ranking distribution across organic and paid search. • Relevant Pages of the specified domain with rankings and traffic data. • Domain Rank Overview with ranking and traffic data from organic and paid search. • Historical Rank Overview with historical data on rankings and traffic of the specified domain from organic and paid search. • Page Intersection keywords for which the specified pages rank within the same SERP.

    All DataForSEO Labs API endpoints function in the Live mode. This means you will be provided with the results in response right after sending the necessary parameters with a POST request.

    The limit is 2000 API calls per minute, however, you can contact our support team if your project requires higher rates.

    We offer well-rounded API documentation, GUI for API usage control, comprehensive client libraries for different programming languages, free sandbox API testing, ad hoc integration, and deployment support.

    We have a pay-as-you-go pricing model. You simply add funds to your account and use them to get data. The account balance doesn't expire.

  15. W

    Website Traffic Analysis Tool Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Apr 25, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Website Traffic Analysis Tool Report [Dataset]. https://www.datainsightsmarket.com/reports/website-traffic-analysis-tool-1455386
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    Apr 25, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global website traffic analysis tool market is experiencing robust growth, driven by the increasing reliance on digital marketing and the need for businesses of all sizes to understand their online audience. The market, estimated at $15 billion in 2025, is projected to grow at a Compound Annual Growth Rate (CAGR) of 15% from 2025 to 2033, reaching approximately $45 billion by 2033. This expansion is fueled by several key factors. The rising adoption of cloud-based solutions provides scalability and cost-effectiveness for businesses, particularly SMEs seeking affordable analytics. Moreover, the evolution of sophisticated analytics features, including advanced user behavior tracking and predictive analytics, enhances the value proposition for both SMEs and large enterprises. The market is segmented by application (SMEs and large enterprises) and by type (cloud-based and web-based), with cloud-based solutions dominating due to their accessibility and flexibility. Competitive pressures among numerous vendors, including established players like Google Analytics, Semrush, and Ahrefs, as well as emerging niche players, drive innovation and affordability, benefiting users. Geographic distribution shows strong growth across North America and Europe, with Asia-Pacific emerging as a high-growth region. However, factors such as data privacy concerns and the increasing complexity of website analytics can act as potential restraints. Despite these challenges, the continued expansion of e-commerce and digital marketing strategies across various industries will solidify the demand for robust website traffic analysis tools. The market is expected to witness further consolidation through mergers and acquisitions, with leading players investing heavily in research and development to enhance their offerings. The increasing need for real-time data analysis and integration with other marketing automation platforms will further shape market evolution. The emergence of AI-powered analytics, providing predictive insights and automated reporting, is transforming the industry and will continue to drive market expansion in the coming years. This makes this market an attractive landscape for investors and technology providers looking for strong future growth.

  16. Data from: Analysis of the Quantitative Impact of Social Networks General...

    • figshare.com
    • produccioncientifica.ucm.es
    doc
    Updated Oct 14, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    David Parra; Santiago Martínez Arias; Sergio Mena Muñoz (2022). Analysis of the Quantitative Impact of Social Networks General Data.doc [Dataset]. http://doi.org/10.6084/m9.figshare.21329421.v1
    Explore at:
    docAvailable download formats
    Dataset updated
    Oct 14, 2022
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    David Parra; Santiago Martínez Arias; Sergio Mena Muñoz
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    General data recollected for the studio " Analysis of the Quantitative Impact of Social Networks on Web Traffic of Cybermedia in the 27 Countries of the European Union". Four research questions are posed: what percentage of the total web traffic generated by cybermedia in the European Union comes from social networks? Is said percentage higher or lower than that provided through direct traffic and through the use of search engines via SEO positioning? Which social networks have a greater impact? And is there any degree of relationship between the specific weight of social networks in the web traffic of a cybermedia and circumstances such as the average duration of the user's visit, the number of page views or the bounce rate understood in its formal aspect of not performing any kind of interaction on the visited page beyond reading its content? To answer these questions, we have first proceeded to a selection of the cybermedia with the highest web traffic of the 27 countries that are currently part of the European Union after the United Kingdom left on December 31, 2020. In each nation we have selected five media using a combination of the global web traffic metrics provided by the tools Alexa (https://www.alexa.com/), which ceased to be operational on May 1, 2022, and SimilarWeb (https:// www.similarweb.com/). We have not used local metrics by country since the results obtained with these first two tools were sufficiently significant and our objective is not to establish a ranking of cybermedia by nation but to examine the relevance of social networks in their web traffic. In all cases, cybermedia whose property corresponds to a journalistic company have been selected, ruling out those belonging to telecommunications portals or service providers; in some cases they correspond to classic information companies (both newspapers and televisions) while in others they refer to digital natives, without this circumstance affecting the nature of the research proposed.
    Below we have proceeded to examine the web traffic data of said cybermedia. The period corresponding to the months of October, November and December 2021 and January, February and March 2022 has been selected. We believe that this six-month stretch allows possible one-time variations to be overcome for a month, reinforcing the precision of the data obtained. To secure this data, we have used the SimilarWeb tool, currently the most precise tool that exists when examining the web traffic of a portal, although it is limited to that coming from desktops and laptops, without taking into account those that come from mobile devices, currently impossible to determine with existing measurement tools on the market. It includes:

    Web traffic general data: average visit duration, pages per visit and bounce rate Web traffic origin by country Percentage of traffic generated from social media over total web traffic Distribution of web traffic generated from social networks Comparison of web traffic generated from social netwoks with direct and search procedures

  17. World Traffic Web Map

    • walmart-event-collaboration-portal-walmarttech.hub.arcgis.com
    Updated Jun 18, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Walmart Emergency Management (2021). World Traffic Web Map [Dataset]. https://walmart-event-collaboration-portal-walmarttech.hub.arcgis.com/maps/c2b5a2a5f89942508b2ef1cf02acf610
    Explore at:
    Dataset updated
    Jun 18, 2021
    Dataset provided by
    Walmarthttp://walmart.com/
    Authors
    Walmart Emergency Management
    Area covered
    Description

    This is a dynamic traffic map service with capabilities for visualizing traffic speeds relative to free-flow speeds as well as traffic incidents which can be visualized and identified. The traffic data is updated every five minutes. Traffic speeds are displayed as a percentage of free-flow speeds, which is frequently the speed limit or how fast cars tend to travel when unencumbered by other vehicles. The streets are color coded as follows:Green (fast): 85 - 100% of free flow speedsYellow (moderate): 65 - 85%Orange (slow); 45 - 65%Red (stop and go): 0 - 45%Esri's historical, live, and predictive traffic feeds come directly from HERE (www.HERE.com). HERE collects billions of GPS and cell phone probe records per month and, where available, uses sensor and toll-tag data to augment the probe data collected. An advanced algorithm compiles the data and computes accurate speeds. Historical traffic is based on the average of observed speeds over the past three years. The live and predictive traffic data is updated every five minutes through traffic feeds. The color coded traffic map layer can be used to represent relative traffic speeds; this is a common type of a map for online services and is used to provide context for routing, navigation and field operations. The traffic map layer contains two sublayers: Traffic and Live Traffic. The Traffic sublayer (shown by default) leverages historical, live and predictive traffic data; while the Live Traffic sublayer is calculated from just the live and predictive traffic data only. A color coded traffic map image can be requested for the current time and any time in the future. A map image for a future request might be used for planning purposes. The map layer also includes dynamic traffic incidents showing the location of accidents, construction, closures and other issues that could potentially impact the flow of traffic. Traffic incidents are commonly used to provide context for routing, navigation and field operations. Incidents are not features; they cannot be exported and stored for later use or additional analysis. The service works globally and can be used to visualize traffic speeds and incidents in many countries. Check the service coverage web map to determine availability in your area of interest. In the coverage map, the countries color coded in dark green support visualizing live traffic. The support for traffic incidents can be determined by identifying a country. For detailed information on this service, including a data coverage map, visit the directions and routing documentation and ArcGIS Help.

  18. World Traffic Service

    • address-data-management-abjn23zce6wyhfci.hub.arcgis.com
    • cacgeoportal.com
    • +19more
    Updated Dec 13, 2012
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2012). World Traffic Service [Dataset]. https://address-data-management-abjn23zce6wyhfci.hub.arcgis.com/maps/ff11eb5b930b4fabba15c47feb130de4
    Explore at:
    Dataset updated
    Dec 13, 2012
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This is a dynamic traffic map service with capabilities for visualizing traffic speeds relative to free-flow speeds as well as traffic incidents which can be visualized and identified. The traffic data is updated every five minutes. Traffic speeds are displayed as a percentage of free-flow speeds, which is frequently the speed limit or how fast cars tend to travel when unencumbered by other vehicles. The streets are color coded as follows: Green (fast): 85 - 100% of free flow speeds Yellow (moderate): 65 - 85% Orange (slow); 45 - 65% Red (stop and go): 0 - 45%Esri's historical, live, and predictive traffic feeds come directly from TomTom (www.tomtom.com). Historical traffic is based on the average of observed speeds over the past year. The live and predictive traffic data is updated every five minutes through traffic feeds. The color coded traffic map layer can be used to represent relative traffic speeds; this is a common type of a map for online services and is used to provide context for routing, navigation and field operations. The traffic map layer contains two sublayers: Traffic and Live Traffic. The Traffic sublayer (shown by default) leverages historical, live and predictive traffic data; while the Live Traffic sublayer is calculated from just the live and predictive traffic data only. A color coded traffic map image can be requested for the current time and any time in the future. A map image for a future request might be used for planning purposes. The map layer also includes dynamic traffic incidents showing the location of accidents, construction, closures and other issues that could potentially impact the flow of traffic. Traffic incidents are commonly used to provide context for routing, navigation and field operations. Incidents are not features; they cannot be exported and stored for later use or additional analysis. The service works globally and can be used to visualize traffic speeds and incidents in many countries. Check the service coverage web map to determine availability in your area of interest. In the coverage map, the countries color coded in dark green support visualizing live traffic. The support for traffic incidents can be determined by identifying a country. For detailed information on this service, including a data coverage map, visit the directions and routing documentation and ArcGIS Help.

  19. Web Analytics Market Analysis, Size, and Forecast 2025-2029: North America...

    • technavio.com
    Updated Apr 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). Web Analytics Market Analysis, Size, and Forecast 2025-2029: North America (US and Canada), Europe (France, Germany, Italy, and UK), APAC (China, India, Japan, and South Korea), and Rest of World (ROW) [Dataset]. https://www.technavio.com/report/web-analytics-market-industry-analysis
    Explore at:
    Dataset updated
    Apr 15, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    Global, United States
    Description

    Snapshot img

    Web Analytics Market Size 2025-2029

    The web analytics market size is forecast to increase by USD 3.63 billion, at a CAGR of 15.4% between 2024 and 2029.

    The market is experiencing significant growth, driven by the rising preference for online shopping and the increasing adoption of cloud-based solutions. The shift towards e-commerce is fueling the demand for advanced web analytics tools that enable businesses to gain insights into customer behavior and optimize their digital strategies. Furthermore, cloud deployment models offer flexibility, scalability, and cost savings, making them an attractive option for businesses of all sizes. However, the market also faces challenges associated with compliance to data privacy and regulations. With the increasing amount of data being generated and collected, ensuring data security and privacy is becoming a major concern for businesses.
    Regulatory compliance, such as GDPR and CCPA, adds complexity to the implementation and management of web analytics solutions. Companies must navigate these challenges effectively to maintain customer trust and avoid potential legal issues. To capitalize on market opportunities and address these challenges, businesses should invest in robust web analytics solutions that prioritize data security and privacy while providing actionable insights to inform strategic decision-making and enhance customer experiences.
    

    What will be the Size of the Web Analytics Market during the forecast period?

    Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
    Request Free Sample

    The market continues to evolve, with dynamic market activities unfolding across various sectors. Entities such as reporting dashboards, schema markup, conversion optimization, session duration, organic traffic, attribution modeling, conversion rate optimization, call to action, content calendar, SEO audits, website performance optimization, link building, page load speed, user behavior tracking, and more, play integral roles in this ever-changing landscape. Data visualization tools like Google Analytics and Adobe Analytics provide valuable insights into user engagement metrics, helping businesses optimize their content strategy, website design, and technical SEO. Goal tracking and keyword research enable marketers to measure the return on investment of their efforts and refine their content marketing and social media marketing strategies.

    Mobile optimization, form optimization, and landing page optimization are crucial aspects of website performance optimization, ensuring a seamless user experience across devices and improving customer acquisition cost. Search console and page speed insights offer valuable insights into website traffic analysis and help businesses address technical issues that may impact user behavior. Continuous optimization efforts, such as multivariate testing, data segmentation, and data filtering, allow businesses to fine-tune their customer journey mapping and cohort analysis. Search engine optimization, both on-page and off-page, remains a critical component of digital marketing, with backlink analysis and page authority playing key roles in improving domain authority and organic traffic.

    The ongoing integration of user behavior tracking, click-through rate, and bounce rate into marketing strategies enables businesses to gain a deeper understanding of their audience and optimize their customer experience accordingly. As market dynamics continue to evolve, the integration of these tools and techniques into comprehensive digital marketing strategies will remain essential for businesses looking to stay competitive in the digital landscape.

    How is this Web Analytics Industry segmented?

    The web analytics industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.

    Deployment
    
      Cloud-based
      On-premises
    
    
    Application
    
      Social media management
      Targeting and behavioral analysis
      Display advertising optimization
      Multichannel campaign analysis
      Online marketing
    
    
    Component
    
      Solutions
      Services
    
    
    Geography
    
      North America
    
        US
        Canada
    
    
      Europe
    
        France
        Germany
        Italy
        UK
    
    
      APAC
    
        China
        India
        Japan
        South Korea
    
    
      Rest of World (ROW)
    

    .

    By Deployment Insights

    The cloud-based segment is estimated to witness significant growth during the forecast period.

    In today's digital landscape, web analytics plays a pivotal role in driving business growth and optimizing online performance. Cloud-based deployment of web analytics is a game-changer, enabling on-demand access to computing resources for data analysis. This model streamlines business intelligence processes by collecting,

  20. M

    Google Search: The Most-visited Website in the World

    • scoop.market.us
    Updated May 31, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market.us Scoop (2024). Google Search: The Most-visited Website in the World [Dataset]. https://scoop.market.us/google-search-the-most-visited-website-in-the-world/
    Explore at:
    Dataset updated
    May 31, 2024
    Dataset authored and provided by
    Market.us Scoop
    License

    https://scoop.market.us/privacy-policyhttps://scoop.market.us/privacy-policy

    Time period covered
    2022 - 2032
    Area covered
    World, Global
    Description

    Google Search Statistics 2023

    • Google is the most searched website in the World.
    • Google receives more visitors than any other site. Google is accessed 89.3 trillion times per month.
    • Google is used by billions of people every day to conduct their searches. Google is much more than a simple search engine.
    • Google provides many other services. Google Shopping and Google News also feature. Google Mail, Google's popular email service, is included.
    • Google organic search traffic is 16.3% of the total US searches.
Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
VisitIQ™, Web Traffic Data | Cookieless First Party Opt-In Platform | Capture/Resolve Website Visitors | Pixel | B2B2C 300 Million records | US [Dataset]. https://datarade.ai/data-products/visitiq-web-traffic-data-cookieless-first-party-opt-in-p-visitiq

Web Traffic Data | Cookieless First Party Opt-In Platform | Capture/Resolve Website Visitors | Pixel | B2B2C 300 Million records | US

Explore at:
.csvAvailable download formats
Dataset authored and provided by
VisitIQ™
Area covered
United States of America
Description

Be ready for a cookieless internet while capturing anonymous website traffic data!

By installing the resolve pixel onto your website, business owners can start to put a name to the activity seen in analytics sources (i.e. GA4). With capture/resolve, you can identify up to 40% or more of your website traffic. Reach customers BEFORE they are ready to reveal themselves to you and customize messaging toward the right product or service.

This product will include Anonymous IP Data and Web Traffic Data for B2B2C.

Get a 360 view of the web traffic consumer with their business data such as business email, title, company, revenue, and location.

Super easy to implement and extraordinarily fast at processing, business owners are thrilled with the enhanced identity resolution capabilities powered by VisitIQ's First Party Opt-In Identity Platform. Capture/resolve and identify your Ideal Customer Profiles to customize marketing. Identify WHO is looking, WHAT they are looking at, WHERE they are located and HOW the web traffic came to your site.

Create segments based on specific demographic or behavioral attributes and export the data as a .csv or through S3 integration.

Check our product that has the most accurate Web Traffic Data for the B2B2C market.

Search
Clear search
Close search
Google apps
Main menu