100+ datasets found
  1. T

    China Coronavirus COVID-19 Cases

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Mar 4, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2020). China Coronavirus COVID-19 Cases [Dataset]. https://tradingeconomics.com/china/coronavirus-cases
    Explore at:
    excel, csv, xml, jsonAvailable download formats
    Dataset updated
    Mar 4, 2020
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 4, 2020 - May 17, 2023
    Area covered
    China
    Description

    China recorded 99256991 Coronavirus Cases since the epidemic began, according to the World Health Organization (WHO). In addition, China reported 5226 Coronavirus Deaths. This dataset includes a chart with historical data for China Coronavirus Cases.

  2. COVID-19 confirmed and death case development in China 2020-2022

    • statista.com
    Updated May 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). COVID-19 confirmed and death case development in China 2020-2022 [Dataset]. https://www.statista.com/statistics/1092918/china-wuhan-coronavirus-2019ncov-confirmed-and-deceased-number/
    Explore at:
    Dataset updated
    May 22, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 20, 2020 - Jun 6, 2022
    Area covered
    China
    Description

    As of June 6, 2022, the novel coronavirus SARS-CoV-2 that originated in Wuhan, the capital of Hubei province in China, had infected over 2.1 million people and killed 14,612 in the country. Hong Kong is currently the region with the highest active cases in China.

    From Wuhan to the rest of China

    In late December 2019, health authorities in Wuhan detected several pneumonia cases of unknown cause. Most of these patients had links to the Huanan Seafood Market. With Chinese New Year approaching, millions of Chinese migrant workers travelled back to their hometowns for the celebration. Before the start of the travel ban on January 23, around five million people had left Wuhan. By the end of January, the number of infections had surged to over ten thousand. The death toll from the virus exceeded that of the SARS outbreak a few days later. On February 12, thousands more cases were confirmed in Wuhan after an improvement to the diagnosis method, resulting in another sudden surge of confirmed cases. On March 31, 2020, the National Health Commission (NHC) in China announced that it would begin reporting the infection number of symptom-free individuals who tested positive for coronavirus. On April 17, 2020, health authorities in Wuhan revised its death toll, adding 50 percent more fatalities. After quarantine measures were implemented, the country reported no new local coronavirus COVID-19 transmissions for the first time on March 18, 2020.

    The overloaded healthcare system

    In Wuhan, 28 hospitals were designated to treat coronavirus patients, but the outbreak continued to test China’s disease control system and most of the hospitals were soon fully occupied. To combat the virus, the government announced plans to build a new hospital swiftly. On February 3, 2020, Huoshenshan Hospital was opened to provide an additional 1,300 beds. Due to an extreme shortage of health-care professionals in Wuhan, thousands of medical staff from all over China came voluntarily to the epicenter to offer their support. After no new deaths reported for first time, China lifted ten-week lockdown on Wuhan on April 8, 2020. Daily life was returning slowly back to normal in the country.

  3. China CN: COVID-19: Confirmed Case: New Increase

    • ceicdata.com
    Updated Feb 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). China CN: COVID-19: Confirmed Case: New Increase [Dataset]. https://www.ceicdata.com/en/china/covid19-no-of-patient/cn-covid19-confirmed-case-new-increase
    Explore at:
    Dataset updated
    Feb 15, 2025
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Apr 29, 2020 - May 10, 2020
    Area covered
    China
    Description

    China COVID-19: Confirmed Case: New Increase data was reported at 17.000 Person in 10 May 2020. This records an increase from the previous number of 14.000 Person for 09 May 2020. China COVID-19: Confirmed Case: New Increase data is updated daily, averaging 51.000 Person from Jan 2020 (Median) to 10 May 2020, with 112 observations. The data reached an all-time high of 15,152.000 Person in 12 Feb 2020 and a record low of 1.000 Person in 08 May 2020. China COVID-19: Confirmed Case: New Increase data remains active status in CEIC and is reported by National Health Commission. The data is categorized under China Premium Database’s Socio-Demographic – Table CN.GZ: COVID-19: No of Patient.

  4. Confirmed, death and recovery cases of COVID-19 in Greater China 2022, by...

    • statista.com
    Updated Sep 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Confirmed, death and recovery cases of COVID-19 in Greater China 2022, by region [Dataset]. https://www.statista.com/statistics/1090007/china-confirmed-and-suspected-wuhan-coronavirus-cases-region/
    Explore at:
    Dataset updated
    Sep 2, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    China
    Description

    The new SARS-like coronavirus has spread around China since its outbreak in Wuhan - the capital of central China’s Hubei province. As of June 7, 2022, there were 2,785,848 active cases with symptoms in Greater China. The pandemic has caused a significant impact in the country's economy.

    Fast-moving epidemic

    In Wuhan, over 3.8 thousand deaths were registered in the heart of the outbreak. The total infection number surged on February 12, 2020 in Hubei province. After a change in official methodology for diagnosing and counting cases, thousands of new cases were added to the total figure. There is little knowledge about how the virus that originated from animals transferred to humans. While human-to-human transmission has been confirmed, other transmission routes through aerosol and fecal-oral are also possible. The deaths from the current virus COVID-19 (formally known as 2019-nCoV) has surpassed the toll from the SARS epidemic of 2002 and 2003.

    Key moments in the Chinese coronavirus timeline

    The doctor in Wuhan, Dr. Li Wenliang, who first warned about the new strain of coronavirus was silenced by the police. It was announced on February 7, 2020 that he died from the effects of the coronavirus infection. His death triggered a national backlash over freedom of speech on Chinese social media. On March 18, 2020, the Chinese government reported no new domestically transmissions for the first time after a series of quarantine and social distancing measures had been implemented. On March 31, 2020, the National Health Commission (NHC) in China started reporting the infection number of symptom-free individuals who tested positive for coronavirus. Before that, asymptomatic cases had not been included in the Chinese official count. China lifted ten-week lockdown on Wuhan on April 8, 2020. Daily life was returning slowly back to normal in the country. On April 17, 2020, health authorities in Wuhan revised its death toll, adding some 1,290 fatalities in its total count.

  5. COVID-19 case death rate trend in China 2020-2023

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, COVID-19 case death rate trend in China 2020-2023 [Dataset]. https://www.statista.com/statistics/1108866/china-novel-coronavirus-covid19-case-fatality-rate-development/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 19, 2020 - Jan 1, 2023
    Area covered
    China
    Description

    As of January 1, 2023, the case fatality rate (CFR) of coronavirus COVID-19 ranged at 0.27 percent in China, lower than the global level of 1.01 percent. Health authorities in Wuhan, the Chinese epicenter, revised its death toll on April 17, adding some 1,290 fatalities to its total count. The 50 percent increase of death cases in the city raised the overall CFR in China from 4.06 percent to 5.6 percent. The Chinese Center for Disease Control and Prevention reported that mortality increased with age among infected patients.

  6. China CN: COVID-19: Confirmed Case

    • ceicdata.com
    Updated Feb 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). China CN: COVID-19: Confirmed Case [Dataset]. https://www.ceicdata.com/en/china/covid19-no-of-patient/cn-covid19-confirmed-case
    Explore at:
    Dataset updated
    Feb 15, 2025
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 28, 2022 - Jan 8, 2023
    Area covered
    China
    Description

    China COVID-19: Confirmed Case data was reported at 118,147.000 Person in 08 Jan 2023. This records an increase from the previous number of 104,874.000 Person for 07 Jan 2023. China COVID-19: Confirmed Case data is updated daily, averaging 978.500 Person from Feb 2020 (Median) to 08 Jan 2023, with 1068 observations. The data reached an all-time high of 118,147.000 Person in 08 Jan 2023 and a record low of 55.000 Person in 09 Jun 2020. China COVID-19: Confirmed Case data remains active status in CEIC and is reported by National Health Commission. The data is categorized under High Frequency Database’s Disease Outbreaks – Table CN.GZ: COVID-19: No of Patient.

  7. Coronavirus COVID-19 Global Cases

    • redivis.com
    application/jsonl +7
    Updated Jul 13, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stanford Center for Population Health Sciences (2020). Coronavirus COVID-19 Global Cases [Dataset]. http://doi.org/10.57761/pyf5-4e40
    Explore at:
    sas, csv, application/jsonl, spss, stata, parquet, arrow, avroAvailable download formats
    Dataset updated
    Jul 13, 2020
    Dataset provided by
    Redivis Inc.
    Authors
    Stanford Center for Population Health Sciences
    Time period covered
    Jan 22, 2020 - Jul 12, 2020
    Description

    Abstract

    JHU Coronavirus COVID-19 Global Cases, by country

    Documentation

    PHS is updating the Coronavirus Global Cases dataset weekly, Monday, Wednesday and Friday from Cloud Marketplace.

    This data comes from the data repository for the 2019 Novel Coronavirus Visual Dashboard operated by the Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE). This database was created in response to the Coronavirus public health emergency to track reported cases in real-time. The data include the location and number of confirmed COVID-19 cases, deaths, and recoveries for all affected countries, aggregated at the appropriate province or state. It was developed to enable researchers, public health authorities and the general public to track the outbreak as it unfolds. Additional information is available in the blog post.

    Visual Dashboard (desktop): https://www.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6

    Section 2

    Included Data Sources are:

    %3C!-- --%3E

    Section 3

    **Terms of Use: **

    This GitHub repo and its contents herein, including all data, mapping, and analysis, copyright 2020 Johns Hopkins University, all rights reserved, is provided to the public strictly for educational and academic research purposes. The Website relies upon publicly available data from multiple sources, that do not always agree. The Johns Hopkins University hereby disclaims any and all representations and warranties with respect to the Website, including accuracy, fitness for use, and merchantability. Reliance on the Website for medical guidance or use of the Website in commerce is strictly prohibited.

    Section 4

    **U.S. county-level characteristics relevant to COVID-19 **

    Chin, Kahn, Krieger, Buckee, Balsari and Kiang (forthcoming) show that counties differ significantly in biological, demographic and socioeconomic factors that are associated with COVID-19 vulnerability. A range of publicly available county-specific data identifying these key factors, guided by international experiences and consideration of epidemiological parameters of importance, have been combined by the authors and are available for use:

    https://github.com/mkiang/county_preparedness/

  8. f

    COVID-19 Case Reports in China

    • figshare.com
    txt
    Updated Jan 29, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Xiao Fan Liu; Xiao-Ke Xu; Ye Wu (2022). COVID-19 Case Reports in China [Dataset]. http://doi.org/10.6084/m9.figshare.12656165.v35
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jan 29, 2022
    Dataset provided by
    figshare
    Authors
    Xiao Fan Liu; Xiao-Ke Xu; Ye Wu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    China
    Description

    Chinese prefectural level governments started to report daily confirmed COVID-19 cases online, starting from January 2020. The disclosures may contain the mobility, potential exposure scenario, epidemiological characteristics, and other useful information of individual cases. We organized a group of content coders since early March 2020, kept monitoring the information updates, manually extracted useful information from the public disclosures, and compiled these datasets.We welcome any form of collaborations with us and non-commercial reuse of our dataset. We highly encourage interested parties to examine the data, report errors in our coding, and help us to keep the data updated.The detailed data description can be found on SSRN preprint server https://dx.doi.org/10.2139/ssrn.3705815.

  9. f

    Table_1_Estimation of Local Novel Coronavirus (COVID-19) Cases in Wuhan,...

    • frontiersin.figshare.com
    docx
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zian Zhuang; Peihua Cao; Shi Zhao; Yijun Lou; Shu Yang; Weiming Wang; Lin Yang; Daihai He (2023). Table_1_Estimation of Local Novel Coronavirus (COVID-19) Cases in Wuhan, China from Off-Site Reported Cases and Population Flow Data from Different Sources.docx [Dataset]. http://doi.org/10.3389/fphy.2020.00336.s001
    Explore at:
    docxAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    Frontiers
    Authors
    Zian Zhuang; Peihua Cao; Shi Zhao; Yijun Lou; Shu Yang; Weiming Wang; Lin Yang; Daihai He
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Wuhan, China
    Description

    In December 2019, novel coronavirus disease (COVID-19) hit Wuhan, Hubei Province, China and spread to the rest of China and overseas. The emergence of this virus coincided with the Spring Festival Travel Rush in China. It is possible to estimate the total number of COVID-19 cases in Wuhan, by 23 January 2020, given the cases reported in other cities/regions and population flow data between Wuhan and these cities/regions. We built a model to estimate the total number of COVID-19 cases in Wuhan by 23 January 2020, based on the number of cases detected outside Wuhan city in China, with the assumption that cases exported from Wuhan were less likely underreported in other cities/regions. We employed population flow data from different sources between Wuhan and other cities/regions by 23 January 2020. The number of total cases in Wuhan was determined by the maximum log likelihood estimation and Akaike Information Criterion (AIC) weight. We estimated 8 679 (95% CI: 7 701, 9 732) as total COVID-19 cases in Wuhan by 23 January 2020, based on combined source of data from Tencent and Baidu. Sources of population flow data impact the estimates of the total number of COVID-19 cases in Wuhan before city lockdown. We should make a comprehensive analysis based on different sources of data to overcome the bias from different sources.

  10. C

    China New Covid cases per million people, March, 2023 - data, chart |...

    • theglobaleconomy.com
    csv, excel, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Globalen LLC, China New Covid cases per million people, March, 2023 - data, chart | TheGlobalEconomy.com [Dataset]. www.theglobaleconomy.com/China/covid_new_cases_per_million/
    Explore at:
    xml, csv, excelAvailable download formats
    Dataset authored and provided by
    Globalen LLC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Feb 29, 2020 - Mar 31, 2023
    Area covered
    China
    Description

    New Covid cases per million people in China, March, 2023 The most recent value is 139 new Covid cases per million people as of March 2023, a decline compared to the previous value of 360 new Covid cases per million people. Historically, the average for China from February 2020 to March 2023 is 1831 new Covid cases per million people. The minimum of 0 new Covid cases per million people was recorded in May 2020, while the maximum of 54282 new Covid cases per million people was reached in December 2022. | TheGlobalEconomy.com

  11. China CN: COVID-19: Confirmed Case: Local: To-Date: Beijing

    • ceicdata.com
    Updated Feb 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    China CN: COVID-19: Confirmed Case: Local: To-Date: Beijing [Dataset]. https://www.ceicdata.com/en/china/covid19-no-of-patient-local/cn-covid19-confirmed-case-local-todate-beijing
    Explore at:
    Dataset updated
    Feb 15, 2025
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 27, 2022 - Jan 7, 2023
    Area covered
    China
    Description

    COVID-19: Confirmed Case: Local: To-Date: Beijing data was reported at 38,945.000 Person in 07 Jan 2023. This records an increase from the previous number of 38,642.000 Person for 06 Jan 2023. COVID-19: Confirmed Case: Local: To-Date: Beijing data is updated daily, averaging 1,345.000 Person from Aug 2021 (Median) to 07 Jan 2023, with 509 observations. The data reached an all-time high of 38,945.000 Person in 07 Jan 2023 and a record low of 837.000 Person in 18 Oct 2021. COVID-19: Confirmed Case: Local: To-Date: Beijing data remains active status in CEIC and is reported by National Health Commission. The data is categorized under China Premium Database’s Socio-Demographic – Table CN.GZ: COVID-19: No of Patient: Local.

  12. Latest Coronavirus COVID-19 figures for China

    • covid19-today.pages.dev
    json
    Updated Jun 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Worldometers (2025). Latest Coronavirus COVID-19 figures for China [Dataset]. https://covid19-today.pages.dev/countries/china/
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jun 22, 2025
    Dataset provided by
    Worldometershttps://dadax.com/
    CSSE at JHU
    License

    https://github.com/disease-sh/API/blob/master/LICENSEhttps://github.com/disease-sh/API/blob/master/LICENSE

    Area covered
    China
    Description

    In past 24 hours, China, Asia had N/A new cases, N/A deaths and N/A recoveries.

  13. M

    Coronavirus (COVID-19) Statistics in China: Number of infection and...

    • catalog.midasnetwork.us
    csv
    Updated Jul 6, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MIDAS Coordination Center (2023). Coronavirus (COVID-19) Statistics in China: Number of infection and recovered cases for COVID-19 in China at the provincial and administrative division level [Dataset]. https://catalog.midasnetwork.us/collection/25
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jul 6, 2023
    Dataset authored and provided by
    MIDAS Coordination Center
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Time period covered
    Jan 20, 2020 - Feb 29, 2020
    Area covered
    China
    Variables measured
    disease, COVID-19, pathogen, case counts, Homo sapiens, host organism, mortality data, infectious disease, Severe acute respiratory syndrome coronavirus 2
    Dataset funded by
    National Institute of General Medical Sciences
    Description

    A data set on COVID-19 pandemic in China, which covers daily statistics of confirmed cases (new and cumulative), recoveries (new and cumulative) and deaths (new and cumulative) at city/province level. All data are extracted from Chinese government reports and are available in a CSV format.

  14. H

    World COVID-19 Daily Cases with Basemap

    • dataverse.harvard.edu
    • dataone.org
    Updated Feb 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Spatial Data Lab (2024). World COVID-19 Daily Cases with Basemap [Dataset]. http://doi.org/10.7910/DVN/L20LOT
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 20, 2024
    Dataset provided by
    Harvard Dataverse
    Authors
    Spatial Data Lab
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    World
    Dataset funded by
    NSF
    Description

    Updated to May 13, 2021. World COVID-19 daily cases with basemap, starting from January 22, 2020.

  15. C

    China Total Covid cases, end of month, March, 2023 - data, chart |...

    • theglobaleconomy.com
    csv, excel, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Globalen LLC, China Total Covid cases, end of month, March, 2023 - data, chart | TheGlobalEconomy.com [Dataset]. www.theglobaleconomy.com/China/covid_total_cases/
    Explore at:
    csv, xml, excelAvailable download formats
    Dataset authored and provided by
    Globalen LLC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Feb 29, 2020 - Mar 31, 2023
    Area covered
    China
    Description

    Total Covid cases, end of month in China, March, 2023 The most recent value is 99200000 total Covid cases as of March 2023, an increase compared to the previous value of 99000000 total Covid cases. Historically, the average for China from February 2020 to March 2023 is 11436634 total Covid cases. The minimum of 79389 total Covid cases was recorded in February 2020, while the maximum of 99200000 total Covid cases was reached in March 2023. | TheGlobalEconomy.com

  16. Age comparison of COVID-19 fatality rate in China 2020

    • statista.com
    • ai-chatbox.pro
    Updated Aug 28, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Age comparison of COVID-19 fatality rate in China 2020 [Dataset]. https://www.statista.com/statistics/1099662/china-wuhan-coronavirus-covid-19-fatality-rate-by-age-group/
    Explore at:
    Dataset updated
    Aug 28, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    China
    Description

    According to a medical analysis of 44,672 confirmed COVID-19 cases in China, the overall fatality rate of the novel coronavirus was 2.3 percent. As of February 11, 2020, the fatality rate of patients aged 80 years and older was 14.8 percent.

  17. a

    COVID-19 Trends in Each Country-Copy

    • hub.arcgis.com
    • open-data-pittsylvania.hub.arcgis.com
    Updated Jun 4, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United Nations Population Fund (2020). COVID-19 Trends in Each Country-Copy [Dataset]. https://hub.arcgis.com/maps/1c4a4134d2de4e8cb3b4e4814ba6cb81
    Explore at:
    Dataset updated
    Jun 4, 2020
    Dataset authored and provided by
    United Nations Population Fund
    Area covered
    Description

    COVID-19 Trends MethodologyOur goal is to analyze and present daily updates in the form of recent trends within countries, states, or counties during the COVID-19 global pandemic. The data we are analyzing is taken directly from the Johns Hopkins University Coronavirus COVID-19 Global Cases Dashboard, though we expect to be one day behind the dashboard’s live feeds to allow for quality assurance of the data.Revisions added on 4/23/2020 are highlighted.Revisions added on 4/30/2020 are highlighted.Discussion of our assertion of an abundance of caution in assigning trends in rural counties added 5/7/2020. Correction on 6/1/2020Methodology update on 6/2/2020: This sets the length of the tail of new cases to 6 to a maximum of 14 days, rather than 21 days as determined by the last 1/3 of cases. This was done to align trends and criteria for them with U.S. CDC guidance. The impact is areas transition into Controlled trend sooner for not bearing the burden of new case 15-21 days earlier.Reasons for undertaking this work:The popular online maps and dashboards show counts of confirmed cases, deaths, and recoveries by country or administrative sub-region. Comparing the counts of one country to another can only provide a basis for comparison during the initial stages of the outbreak when counts were low and the number of local outbreaks in each country was low. By late March 2020, countries with small populations were being left out of the mainstream news because it was not easy to recognize they had high per capita rates of cases (Switzerland, Luxembourg, Iceland, etc.). Additionally, comparing countries that have had confirmed COVID-19 cases for high numbers of days to countries where the outbreak occurred recently is also a poor basis for comparison.The graphs of confirmed cases and daily increases in cases were fit into a standard size rectangle, though the Y-axis for one country had a maximum value of 50, and for another country 100,000, which potentially misled people interpreting the slope of the curve. Such misleading circumstances affected comparing large population countries to small population counties or countries with low numbers of cases to China which had a large count of cases in the early part of the outbreak. These challenges for interpreting and comparing these graphs represent work each reader must do based on their experience and ability. Thus, we felt it would be a service to attempt to automate the thought process experts would use when visually analyzing these graphs, particularly the most recent tail of the graph, and provide readers with an a resulting synthesis to characterize the state of the pandemic in that country, state, or county.The lack of reliable data for confirmed recoveries and therefore active cases. Merely subtracting deaths from total cases to arrive at this figure progressively loses accuracy after two weeks. The reason is 81% of cases recover after experiencing mild symptoms in 10 to 14 days. Severe cases are 14% and last 15-30 days (based on average days with symptoms of 11 when admitted to hospital plus 12 days median stay, and plus of one week to include a full range of severely affected people who recover). Critical cases are 5% and last 31-56 days. Sources:U.S. CDC. April 3, 2020 Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). Accessed online. Initial older guidance was also obtained online. Additionally, many people who recover may not be tested, and many who are, may not be tracked due to privacy laws. Thus, the formula used to compute an estimate of active cases is: Active Cases = 100% of new cases in past 14 days + 19% from past 15-30 days + 5% from past 31-56 days - total deaths.We’ve never been inside a pandemic with the ability to learn of new cases as they are confirmed anywhere in the world. After reviewing epidemiological and pandemic scientific literature, three needs arose. We need to specify which portions of the pandemic lifecycle this map cover. The World Health Organization (WHO) specifies six phases. The source data for this map begins just after the beginning of Phase 5: human to human spread and encompasses Phase 6: pandemic phase. Phase six is only characterized in terms of pre- and post-peak. However, these two phases are after-the-fact analyses and cannot ascertained during the event. Instead, we describe (below) a series of five trends for Phase 6 of the COVID-19 pandemic.Choosing terms to describe the five trends was informed by the scientific literature, particularly the use of epidemic, which signifies uncontrolled spread. The five trends are: Emergent, Spreading, Epidemic, Controlled, and End Stage. Not every locale will experience all five, but all will experience at least three: emergent, controlled, and end stage.This layer presents the current trends for the COVID-19 pandemic by country (or appropriate level). There are five trends:Emergent: Early stages of outbreak. Spreading: Early stages and depending on an administrative area’s capacity, this may represent a manageable rate of spread. Epidemic: Uncontrolled spread. Controlled: Very low levels of new casesEnd Stage: No New cases These trends can be applied at several levels of administration: Local: Ex., City, District or County – a.k.a. Admin level 2State: Ex., State or Province – a.k.a. Admin level 1National: Country – a.k.a. Admin level 0Recommend that at least 100,000 persons be represented by a unit; granted this may not be possible, and then the case rate per 100,000 will become more important.Key Concepts and Basis for Methodology: 10 Total Cases minimum threshold: Empirically, there must be enough cases to constitute an outbreak. Ideally, this would be 5.0 per 100,000, but not every area has a population of 100,000 or more. Ten, or fewer, cases are also relatively less difficult to track and trace to sources. 21 Days of Cases minimum threshold: Empirically based on COVID-19 and would need to be adjusted for any other event. 21 days is also the minimum threshold for analyzing the “tail” of the new cases curve, providing seven cases as the basis for a likely trend (note that 21 days in the tail is preferred). This is the minimum needed to encompass the onset and duration of a normal case (5-7 days plus 10-14 days). Specifically, a median of 5.1 days incubation time, and 11.2 days for 97.5% of cases to incubate. This is also driven by pressure to understand trends and could easily be adjusted to 28 days. Source used as basis:Stephen A. Lauer, MS, PhD *; Kyra H. Grantz, BA *; Qifang Bi, MHS; Forrest K. Jones, MPH; Qulu Zheng, MHS; Hannah R. Meredith, PhD; Andrew S. Azman, PhD; Nicholas G. Reich, PhD; Justin Lessler, PhD. 2020. The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Annals of Internal Medicine DOI: 10.7326/M20-0504.New Cases per Day (NCD) = Measures the daily spread of COVID-19. This is the basis for all rates. Back-casting revisions: In the Johns Hopkins’ data, the structure is to provide the cumulative number of cases per day, which presumes an ever-increasing sequence of numbers, e.g., 0,0,1,1,2,5,7,7,7, etc. However, revisions do occur and would look like, 0,0,1,1,2,5,7,7,6. To accommodate this, we revised the lists to eliminate decreases, which make this list look like, 0,0,1,1,2,5,6,6,6.Reporting Interval: In the early weeks, Johns Hopkins' data provided reporting every day regardless of change. In late April, this changed allowing for days to be skipped if no new data was available. The day was still included, but the value of total cases was set to Null. The processing therefore was updated to include tracking of the spacing between intervals with valid values.100 News Cases in a day as a spike threshold: Empirically, this is based on COVID-19’s rate of spread, or r0 of ~2.5, which indicates each case will infect between two and three other people. There is a point at which each administrative area’s capacity will not have the resources to trace and account for all contacts of each patient. Thus, this is an indicator of uncontrolled or epidemic trend. Spiking activity in combination with the rate of new cases is the basis for determining whether an area has a spreading or epidemic trend (see below). Source used as basis:World Health Organization (WHO). 16-24 Feb 2020. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). Obtained online.Mean of Recent Tail of NCD = Empirical, and a COVID-19-specific basis for establishing a recent trend. The recent mean of NCD is taken from the most recent fourteen days. A minimum of 21 days of cases is required for analysis but cannot be considered reliable. Thus, a preference of 42 days of cases ensures much higher reliability. This analysis is not explanatory and thus, merely represents a likely trend. The tail is analyzed for the following:Most recent 2 days: In terms of likelihood, this does not mean much, but can indicate a reason for hope and a basis to share positive change that is not yet a trend. There are two worthwhile indicators:Last 2 days count of new cases is less than any in either the past five or 14 days. Past 2 days has only one or fewer new cases – this is an extremely positive outcome if the rate of testing has continued at the same rate as the previous 5 days or 14 days. Most recent 5 days: In terms of likelihood, this is more meaningful, as it does represent at short-term trend. There are five worthwhile indicators:Past five days is greater than past 2 days and past 14 days indicates the potential of the past 2 days being an aberration. Past five days is greater than past 14 days and less than past 2 days indicates slight positive trend, but likely still within peak trend time frame.Past five days is less than the past 14 days. This means a downward trend. This would be an

  18. f

    Data_Sheet_1_Extended SIR Prediction of the Epidemics Trend of COVID-19 in...

    • frontiersin.figshare.com
    docx
    Updated Jun 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jia Wangping; Han Ke; Song Yang; Cao Wenzhe; Wang Shengshu; Yang Shanshan; Wang Jianwei; Kou Fuyin; Tai Penggang; Li Jing; Liu Miao; He Yao (2023). Data_Sheet_1_Extended SIR Prediction of the Epidemics Trend of COVID-19 in Italy and Compared With Hunan, China.docx [Dataset]. http://doi.org/10.3389/fmed.2020.00169.s001
    Explore at:
    docxAvailable download formats
    Dataset updated
    Jun 4, 2023
    Dataset provided by
    Frontiers
    Authors
    Jia Wangping; Han Ke; Song Yang; Cao Wenzhe; Wang Shengshu; Yang Shanshan; Wang Jianwei; Kou Fuyin; Tai Penggang; Li Jing; Liu Miao; He Yao
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    China, Hunan, Italy
    Description

    Background: Coronavirus Disease 2019 (COVID-19) is currently a global public health threat. Outside of China, Italy is one of the countries suffering the most with the COVID-19 epidemic. It is important to predict the epidemic trend of the COVID-19 epidemic in Italy to help develop public health strategies.Methods: We used time-series data of COVID-19 from Jan 22 2020 to Apr 02 2020. An infectious disease dynamic extended susceptible-infected-removed (eSIR) model, which covers the effects of different intervention measures in dissimilar periods, was applied to estimate the epidemic trend in Italy. The basic reproductive number was estimated using Markov Chain Monte Carlo methods and presented using the resulting posterior mean and 95% credible interval (CI). Hunan, with a similar total population number to Italy, was used as a comparative item.Results: In the eSIR model, we estimated that the mean of basic reproductive number for COVID-19 was 4.34 (95% CI, 3.04–6.00) in Italy and 3.16 (95% CI, 1.73–5.25) in Hunan. There would be a total of 182 051 infected cases (95%CI:116 114–274 378) under the current country blockade and the endpoint would be Aug 05 in Italy.Conclusion: Italy's current strict measures can efficaciously prevent the further spread of COVID-19 and should be maintained. Necessary strict public health measures should be implemented as soon as possible in other European countries with a high number of COVID-19 cases. The most effective strategy needs to be confirmed in further studies.

  19. China CN: COVID-19: Confirmed Case: Local: Hospitalized: Critical Case:...

    • ceicdata.com
    Updated Feb 15, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). China CN: COVID-19: Confirmed Case: Local: Hospitalized: Critical Case: Shanghai [Dataset]. https://www.ceicdata.com/en/china/covid19-no-of-patient-local/cn-covid19-confirmed-case-local-hospitalized-critical-case-shanghai
    Explore at:
    Dataset updated
    Feb 15, 2025
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Nov 26, 2022 - Dec 7, 2022
    Area covered
    China
    Description

    COVID-19: Confirmed Case: Local: Hospitalized: Critical Case: Shanghai data was reported at 0.000 Person in 07 Dec 2022. This stayed constant from the previous number of 0.000 Person for 06 Dec 2022. COVID-19: Confirmed Case: Local: Hospitalized: Critical Case: Shanghai data is updated daily, averaging 0.000 Person from Apr 2022 (Median) to 07 Dec 2022, with 232 observations. The data reached an all-time high of 99.000 Person in 04 May 2022 and a record low of 0.000 Person in 07 Dec 2022. COVID-19: Confirmed Case: Local: Hospitalized: Critical Case: Shanghai data remains active status in CEIC and is reported by Shanghai Municipal Health Commission. The data is categorized under China Premium Database’s Socio-Demographic – Table CN.GZ: COVID-19: No of Patient: Local.

  20. Data and Code for Prediction of the COVID-19 Epidemic Trends Based on SEIR...

    • figshare.com
    xlsx
    Updated Jun 28, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shuo Feng; Zebang Feng; Chen Ling; Chen Chang; Zhongke Feng (2020). Data and Code for Prediction of the COVID-19 Epidemic Trends Based on SEIR and AI Models [Dataset]. http://doi.org/10.6084/m9.figshare.12227990.v2
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jun 28, 2020
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Shuo Feng; Zebang Feng; Chen Ling; Chen Chang; Zhongke Feng
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Data and Code for Prediction of the COVID-19 Epidemic Trends Based on SEIR and AI Models.Data include the number of confirmed cases of COVID-19, local population density, capital GDP, distance to Wuhan, average annual temperature, average annual rainfall of Chinese provinces (Except for Hong Kong, Macao and Taiwan) and migration population in Wuhan. Code include SEIR, DNN, RNN for prediction.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
TRADING ECONOMICS (2020). China Coronavirus COVID-19 Cases [Dataset]. https://tradingeconomics.com/china/coronavirus-cases

China Coronavirus COVID-19 Cases

China Coronavirus COVID-19 Cases - Historical Dataset (2020-01-04/2023-05-17)

Explore at:
excel, csv, xml, jsonAvailable download formats
Dataset updated
Mar 4, 2020
Dataset authored and provided by
TRADING ECONOMICS
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Time period covered
Jan 4, 2020 - May 17, 2023
Area covered
China
Description

China recorded 99256991 Coronavirus Cases since the epidemic began, according to the World Health Organization (WHO). In addition, China reported 5226 Coronavirus Deaths. This dataset includes a chart with historical data for China Coronavirus Cases.

Search
Clear search
Close search
Google apps
Main menu