68 datasets found
  1. T

    China Coronavirus COVID-19 Cases

    • tradingeconomics.com
    csv, excel, json, xml
    Updated May 29, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2022). China Coronavirus COVID-19 Cases [Dataset]. https://tradingeconomics.com/china/coronavirus-cases
    Explore at:
    excel, csv, xml, jsonAvailable download formats
    Dataset updated
    May 29, 2022
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 4, 2020 - May 17, 2023
    Area covered
    China
    Description

    China recorded 99256991 Coronavirus Cases since the epidemic began, according to the World Health Organization (WHO). In addition, China reported 5226 Coronavirus Deaths. This dataset includes a chart with historical data for China Coronavirus Cases.

  2. COVID-19 case death rate trend in China 2020-2023

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, COVID-19 case death rate trend in China 2020-2023 [Dataset]. https://www.statista.com/statistics/1108866/china-novel-coronavirus-covid19-case-fatality-rate-development/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 19, 2020 - Jan 1, 2023
    Area covered
    China
    Description

    As of January 1, 2023, the case fatality rate (CFR) of coronavirus COVID-19 ranged at 0.27 percent in China, lower than the global level of 1.01 percent. Health authorities in Wuhan, the Chinese epicenter, revised its death toll on April 17, adding some 1,290 fatalities to its total count. The 50 percent increase of death cases in the city raised the overall CFR in China from 4.06 percent to 5.6 percent. The Chinese Center for Disease Control and Prevention reported that mortality increased with age among infected patients.

  3. T

    China Coronavirus COVID-19 Recovered

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Mar 11, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2020). China Coronavirus COVID-19 Recovered [Dataset]. https://tradingeconomics.com/china/coronavirus-recovered
    Explore at:
    xml, json, csv, excelAvailable download formats
    Dataset updated
    Mar 11, 2020
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 2019 - Dec 15, 2021
    Area covered
    China
    Description

    China recorded 86689 Coronavirus Recovered since the epidemic began, according to the World Health Organization (WHO). In addition, China reported 4636 Coronavirus Deaths. This dataset includes a chart with historical data for China Coronavirus Recovered.

  4. C

    China New Covid deaths per million people, March, 2023 - data, chart |...

    • theglobaleconomy.com
    csv, excel, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Globalen LLC, China New Covid deaths per million people, March, 2023 - data, chart | TheGlobalEconomy.com [Dataset]. www.theglobaleconomy.com/China/covid_new_deaths_per_million/
    Explore at:
    xml, csv, excelAvailable download formats
    Dataset authored and provided by
    Globalen LLC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Feb 29, 2020 - Mar 31, 2023
    Area covered
    China
    Description

    New Covid deaths per million people in China, March, 2023 The most recent value is 1 new Covid deaths per million people as of March 2023, a decline compared to the previous value of 4 new Covid deaths per million people. Historically, the average for China from February 2020 to March 2023 is 2 new Covid deaths per million people. The minimum of 0 new Covid deaths per million people was recorded in March 2020, while the maximum of 46 new Covid deaths per million people was reached in January 2023. | TheGlobalEconomy.com

  5. COVID-19 cases and deaths per million in 210 countries as of July 13, 2022

    • statista.com
    • ai-chatbox.pro
    Updated Nov 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). COVID-19 cases and deaths per million in 210 countries as of July 13, 2022 [Dataset]. https://www.statista.com/statistics/1104709/coronavirus-deaths-worldwide-per-million-inhabitants/
    Explore at:
    Dataset updated
    Nov 25, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    Based on a comparison of coronavirus deaths in 210 countries relative to their population, Peru had the most losses to COVID-19 up until July 13, 2022. As of the same date, the virus had infected over 557.8 million people worldwide, and the number of deaths had totaled more than 6.3 million. Note, however, that COVID-19 test rates can vary per country. Additionally, big differences show up between countries when combining the number of deaths against confirmed COVID-19 cases. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.

    The difficulties of death figures

    This table aims to provide a complete picture on the topic, but it very much relies on data that has become more difficult to compare. As the coronavirus pandemic developed across the world, countries already used different methods to count fatalities, and they sometimes changed them during the course of the pandemic. On April 16, for example, the Chinese city of Wuhan added a 50 percent increase in their death figures to account for community deaths. These deaths occurred outside of hospitals and went unaccounted for so far. The state of New York did something similar two days before, revising their figures with 3,700 new deaths as they started to include “assumed” coronavirus victims. The United Kingdom started counting deaths in care homes and private households on April 29, adjusting their number with about 5,000 new deaths (which were corrected lowered again by the same amount on August 18). This makes an already difficult comparison even more difficult. Belgium, for example, counts suspected coronavirus deaths in their figures, whereas other countries have not done that (yet). This means two things. First, it could have a big impact on both current as well as future figures. On April 16 already, UK health experts stated that if their numbers were corrected for community deaths like in Wuhan, the UK number would change from 205 to “above 300”. This is exactly what happened two weeks later. Second, it is difficult to pinpoint exactly which countries already have “revised” numbers (like Belgium, Wuhan or New York) and which ones do not. One work-around could be to look at (freely accessible) timelines that track the reported daily increase of deaths in certain countries. Several of these are available on our platform, such as for Belgium, Italy and Sweden. A sudden large increase might be an indicator that the domestic sources changed their methodology.

    Where are these numbers coming from?

    The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.

  6. C

    China Total Covid cases, end of month, March, 2023 - data, chart |...

    • theglobaleconomy.com
    csv, excel, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Globalen LLC, China Total Covid cases, end of month, March, 2023 - data, chart | TheGlobalEconomy.com [Dataset]. www.theglobaleconomy.com/China/covid_total_cases/
    Explore at:
    csv, xml, excelAvailable download formats
    Dataset authored and provided by
    Globalen LLC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Feb 29, 2020 - Mar 31, 2023
    Area covered
    China
    Description

    Total Covid cases, end of month in China, March, 2023 The most recent value is 99200000 total Covid cases as of March 2023, an increase compared to the previous value of 99000000 total Covid cases. Historically, the average for China from February 2020 to March 2023 is 11436634 total Covid cases. The minimum of 79389 total Covid cases was recorded in February 2020, while the maximum of 99200000 total Covid cases was reached in March 2023. | TheGlobalEconomy.com

  7. COVID-19 Trends in Each Country-Copy

    • unfpa-stories-unfpapdp.hub.arcgis.com
    • open-data-pittsylvania.hub.arcgis.com
    Updated Jun 4, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United Nations Population Fund (2020). COVID-19 Trends in Each Country-Copy [Dataset]. https://unfpa-stories-unfpapdp.hub.arcgis.com/maps/1c4a4134d2de4e8cb3b4e4814ba6cb81
    Explore at:
    Dataset updated
    Jun 4, 2020
    Dataset authored and provided by
    United Nations Population Fundhttp://www.unfpa.org/
    Area covered
    Description

    COVID-19 Trends MethodologyOur goal is to analyze and present daily updates in the form of recent trends within countries, states, or counties during the COVID-19 global pandemic. The data we are analyzing is taken directly from the Johns Hopkins University Coronavirus COVID-19 Global Cases Dashboard, though we expect to be one day behind the dashboard’s live feeds to allow for quality assurance of the data.Revisions added on 4/23/2020 are highlighted.Revisions added on 4/30/2020 are highlighted.Discussion of our assertion of an abundance of caution in assigning trends in rural counties added 5/7/2020. Correction on 6/1/2020Methodology update on 6/2/2020: This sets the length of the tail of new cases to 6 to a maximum of 14 days, rather than 21 days as determined by the last 1/3 of cases. This was done to align trends and criteria for them with U.S. CDC guidance. The impact is areas transition into Controlled trend sooner for not bearing the burden of new case 15-21 days earlier.Reasons for undertaking this work:The popular online maps and dashboards show counts of confirmed cases, deaths, and recoveries by country or administrative sub-region. Comparing the counts of one country to another can only provide a basis for comparison during the initial stages of the outbreak when counts were low and the number of local outbreaks in each country was low. By late March 2020, countries with small populations were being left out of the mainstream news because it was not easy to recognize they had high per capita rates of cases (Switzerland, Luxembourg, Iceland, etc.). Additionally, comparing countries that have had confirmed COVID-19 cases for high numbers of days to countries where the outbreak occurred recently is also a poor basis for comparison.The graphs of confirmed cases and daily increases in cases were fit into a standard size rectangle, though the Y-axis for one country had a maximum value of 50, and for another country 100,000, which potentially misled people interpreting the slope of the curve. Such misleading circumstances affected comparing large population countries to small population counties or countries with low numbers of cases to China which had a large count of cases in the early part of the outbreak. These challenges for interpreting and comparing these graphs represent work each reader must do based on their experience and ability. Thus, we felt it would be a service to attempt to automate the thought process experts would use when visually analyzing these graphs, particularly the most recent tail of the graph, and provide readers with an a resulting synthesis to characterize the state of the pandemic in that country, state, or county.The lack of reliable data for confirmed recoveries and therefore active cases. Merely subtracting deaths from total cases to arrive at this figure progressively loses accuracy after two weeks. The reason is 81% of cases recover after experiencing mild symptoms in 10 to 14 days. Severe cases are 14% and last 15-30 days (based on average days with symptoms of 11 when admitted to hospital plus 12 days median stay, and plus of one week to include a full range of severely affected people who recover). Critical cases are 5% and last 31-56 days. Sources:U.S. CDC. April 3, 2020 Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). Accessed online. Initial older guidance was also obtained online. Additionally, many people who recover may not be tested, and many who are, may not be tracked due to privacy laws. Thus, the formula used to compute an estimate of active cases is: Active Cases = 100% of new cases in past 14 days + 19% from past 15-30 days + 5% from past 31-56 days - total deaths.We’ve never been inside a pandemic with the ability to learn of new cases as they are confirmed anywhere in the world. After reviewing epidemiological and pandemic scientific literature, three needs arose. We need to specify which portions of the pandemic lifecycle this map cover. The World Health Organization (WHO) specifies six phases. The source data for this map begins just after the beginning of Phase 5: human to human spread and encompasses Phase 6: pandemic phase. Phase six is only characterized in terms of pre- and post-peak. However, these two phases are after-the-fact analyses and cannot ascertained during the event. Instead, we describe (below) a series of five trends for Phase 6 of the COVID-19 pandemic.Choosing terms to describe the five trends was informed by the scientific literature, particularly the use of epidemic, which signifies uncontrolled spread. The five trends are: Emergent, Spreading, Epidemic, Controlled, and End Stage. Not every locale will experience all five, but all will experience at least three: emergent, controlled, and end stage.This layer presents the current trends for the COVID-19 pandemic by country (or appropriate level). There are five trends:Emergent: Early stages of outbreak. Spreading: Early stages and depending on an administrative area’s capacity, this may represent a manageable rate of spread. Epidemic: Uncontrolled spread. Controlled: Very low levels of new casesEnd Stage: No New cases These trends can be applied at several levels of administration: Local: Ex., City, District or County – a.k.a. Admin level 2State: Ex., State or Province – a.k.a. Admin level 1National: Country – a.k.a. Admin level 0Recommend that at least 100,000 persons be represented by a unit; granted this may not be possible, and then the case rate per 100,000 will become more important.Key Concepts and Basis for Methodology: 10 Total Cases minimum threshold: Empirically, there must be enough cases to constitute an outbreak. Ideally, this would be 5.0 per 100,000, but not every area has a population of 100,000 or more. Ten, or fewer, cases are also relatively less difficult to track and trace to sources. 21 Days of Cases minimum threshold: Empirically based on COVID-19 and would need to be adjusted for any other event. 21 days is also the minimum threshold for analyzing the “tail” of the new cases curve, providing seven cases as the basis for a likely trend (note that 21 days in the tail is preferred). This is the minimum needed to encompass the onset and duration of a normal case (5-7 days plus 10-14 days). Specifically, a median of 5.1 days incubation time, and 11.2 days for 97.5% of cases to incubate. This is also driven by pressure to understand trends and could easily be adjusted to 28 days. Source used as basis:Stephen A. Lauer, MS, PhD *; Kyra H. Grantz, BA *; Qifang Bi, MHS; Forrest K. Jones, MPH; Qulu Zheng, MHS; Hannah R. Meredith, PhD; Andrew S. Azman, PhD; Nicholas G. Reich, PhD; Justin Lessler, PhD. 2020. The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Annals of Internal Medicine DOI: 10.7326/M20-0504.New Cases per Day (NCD) = Measures the daily spread of COVID-19. This is the basis for all rates. Back-casting revisions: In the Johns Hopkins’ data, the structure is to provide the cumulative number of cases per day, which presumes an ever-increasing sequence of numbers, e.g., 0,0,1,1,2,5,7,7,7, etc. However, revisions do occur and would look like, 0,0,1,1,2,5,7,7,6. To accommodate this, we revised the lists to eliminate decreases, which make this list look like, 0,0,1,1,2,5,6,6,6.Reporting Interval: In the early weeks, Johns Hopkins' data provided reporting every day regardless of change. In late April, this changed allowing for days to be skipped if no new data was available. The day was still included, but the value of total cases was set to Null. The processing therefore was updated to include tracking of the spacing between intervals with valid values.100 News Cases in a day as a spike threshold: Empirically, this is based on COVID-19’s rate of spread, or r0 of ~2.5, which indicates each case will infect between two and three other people. There is a point at which each administrative area’s capacity will not have the resources to trace and account for all contacts of each patient. Thus, this is an indicator of uncontrolled or epidemic trend. Spiking activity in combination with the rate of new cases is the basis for determining whether an area has a spreading or epidemic trend (see below). Source used as basis:World Health Organization (WHO). 16-24 Feb 2020. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). Obtained online.Mean of Recent Tail of NCD = Empirical, and a COVID-19-specific basis for establishing a recent trend. The recent mean of NCD is taken from the most recent fourteen days. A minimum of 21 days of cases is required for analysis but cannot be considered reliable. Thus, a preference of 42 days of cases ensures much higher reliability. This analysis is not explanatory and thus, merely represents a likely trend. The tail is analyzed for the following:Most recent 2 days: In terms of likelihood, this does not mean much, but can indicate a reason for hope and a basis to share positive change that is not yet a trend. There are two worthwhile indicators:Last 2 days count of new cases is less than any in either the past five or 14 days. Past 2 days has only one or fewer new cases – this is an extremely positive outcome if the rate of testing has continued at the same rate as the previous 5 days or 14 days. Most recent 5 days: In terms of likelihood, this is more meaningful, as it does represent at short-term trend. There are five worthwhile indicators:Past five days is greater than past 2 days and past 14 days indicates the potential of the past 2 days being an aberration. Past five days is greater than past 14 days and less than past 2 days indicates slight positive trend, but likely still within peak trend time frame.Past five days is less than the past 14 days. This means a downward trend. This would be an

  8. C

    China Total Covid vaccinations per hundred people, February, 2023 - data,...

    • theglobaleconomy.com
    csv, excel, xml
    Updated Feb 15, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Globalen LLC (2023). China Total Covid vaccinations per hundred people, February, 2023 - data, chart | TheGlobalEconomy.com [Dataset]. www.theglobaleconomy.com/China/covid_vaccinations_per_hundred_people/
    Explore at:
    xml, excel, csvAvailable download formats
    Dataset updated
    Feb 15, 2023
    Dataset authored and provided by
    Globalen LLC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 2020 - Feb 28, 2023
    Area covered
    China
    Description

    Total Covid vaccinations per hundred people in China, February, 2023 The most recent value is 244.84 Covid vaccinations per hundred people as of February 2023, an increase compared to the previous value of 244.74 Covid vaccinations per hundred people. Historically, the average for China from December 2020 to February 2023 is 163.87 Covid vaccinations per hundred people. The minimum of 0.32 Covid vaccinations per hundred people was recorded in December 2020, while the maximum of 244.84 Covid vaccinations per hundred people was reached in February 2023. | TheGlobalEconomy.com

  9. Confirmed, death and recovery cases of COVID-19 in Greater China 2022, by...

    • statista.com
    Updated Sep 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Confirmed, death and recovery cases of COVID-19 in Greater China 2022, by region [Dataset]. https://www.statista.com/statistics/1090007/china-confirmed-and-suspected-wuhan-coronavirus-cases-region/
    Explore at:
    Dataset updated
    Sep 2, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    China
    Description

    The new SARS-like coronavirus has spread around China since its outbreak in Wuhan - the capital of central China’s Hubei province. As of June 7, 2022, there were 2,785,848 active cases with symptoms in Greater China. The pandemic has caused a significant impact in the country's economy.

    Fast-moving epidemic

    In Wuhan, over 3.8 thousand deaths were registered in the heart of the outbreak. The total infection number surged on February 12, 2020 in Hubei province. After a change in official methodology for diagnosing and counting cases, thousands of new cases were added to the total figure. There is little knowledge about how the virus that originated from animals transferred to humans. While human-to-human transmission has been confirmed, other transmission routes through aerosol and fecal-oral are also possible. The deaths from the current virus COVID-19 (formally known as 2019-nCoV) has surpassed the toll from the SARS epidemic of 2002 and 2003.

    Key moments in the Chinese coronavirus timeline

    The doctor in Wuhan, Dr. Li Wenliang, who first warned about the new strain of coronavirus was silenced by the police. It was announced on February 7, 2020 that he died from the effects of the coronavirus infection. His death triggered a national backlash over freedom of speech on Chinese social media. On March 18, 2020, the Chinese government reported no new domestically transmissions for the first time after a series of quarantine and social distancing measures had been implemented. On March 31, 2020, the National Health Commission (NHC) in China started reporting the infection number of symptom-free individuals who tested positive for coronavirus. Before that, asymptomatic cases had not been included in the Chinese official count. China lifted ten-week lockdown on Wuhan on April 8, 2020. Daily life was returning slowly back to normal in the country. On April 17, 2020, health authorities in Wuhan revised its death toll, adding some 1,290 fatalities in its total count.

  10. T

    China Coronavirus COVID-19 Vaccination Rate

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Apr 20, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2021). China Coronavirus COVID-19 Vaccination Rate [Dataset]. https://tradingeconomics.com/china/coronavirus-vaccination-rate
    Explore at:
    xml, excel, json, csvAvailable download formats
    Dataset updated
    Apr 20, 2021
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 15, 2020 - Feb 9, 2023
    Area covered
    China
    Description

    The number of COVID-19 vaccination doses administered per 100 people in China rose to 245 as of Oct 27 2023. This dataset includes a chart with historical data for China Coronavirus Vaccination Rate.

  11. a

    Deaths

    • gis-for-secondary-schools-schools-be.hub.arcgis.com
    • prep-response-portal.napsgfoundation.org
    • +2more
    Updated Mar 26, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CSSE_covid19 (2020). Deaths [Dataset]. https://gis-for-secondary-schools-schools-be.hub.arcgis.com/datasets/1cb306b5331945548745a5ccd290188e
    Explore at:
    Dataset updated
    Mar 26, 2020
    Dataset authored and provided by
    CSSE_covid19
    Area covered
    Description

    On March 10, 2023, the Johns Hopkins Coronavirus Resource Center ceased collecting and reporting of global COVID-19 data. For updated cases, deaths, and vaccine data please visit the following sources:Global: World Health Organization (WHO)U.S.: U.S. Centers for Disease Control and Prevention (CDC)For more information, visit the Johns Hopkins Coronavirus Resource Center.This feature layer contains the most up-to-date COVID-19 cases and latest trend plot. It covers China, Canada, Australia (at province/state level), and the rest of the world (at country level, represented by either the country centroids or their capitals)and the US at county-level. Data sources: WHO, CDC, ECDC, NHC, DXY, 1point3acres, Worldometers.info, BNO, state and national government health departments, and local media reports. . The China data is automatically updating at least once per hour, and non-China data is updating hourly. This layer is created and maintained by the Center for Systems Science and Engineering (CSSE) at the Johns Hopkins University. This feature layer is supported by Esri Living Atlas team and JHU Data Services. This layer is opened to the public and free to share. Contact us.

  12. A

    Coronavirus COVID-19 Cases V2

    • data.amerigeoss.org
    • covid19-southfield.hub.arcgis.com
    esri rest, html
    Updated Aug 11, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ESRI (2020). Coronavirus COVID-19 Cases V2 [Dataset]. https://data.amerigeoss.org/sr/dataset/coronavirus-covid-19-cases-v2
    Explore at:
    esri rest, htmlAvailable download formats
    Dataset updated
    Aug 11, 2020
    Dataset provided by
    ESRI
    Description
    This feature layer contains the most up-to-date COVID-19 cases and latest trend plot. It covers China, Canada, Australia (at province/state level), and the rest of the world (at country level, represented by either the country centroids or their capitals)and the US at county-level. Data sources: WHO, CDC, ECDC, NHC, DXY, 1point3acres, Worldometers.info, BNO, state and national government health departments, and local media reports. . The China data is automatically updating at least once per hour, and non-China data is updating hourly. This layer is created and maintained by the Center for Systems Science and Engineering (CSSE) at the Johns Hopkins University. This feature layer is supported by Esri Living Atlas team and JHU Data Services. This layer is opened to the public and free to share. Contact us.
  13. Replication dataset and calculations for PIIE WP 24-7 Lessons from China's...

    • piie.com
    Updated Mar 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tianlei Huang (2024). Replication dataset and calculations for PIIE WP 24-7 Lessons from China's fiscal policy during the COVID-19 pandemic by Tianlei Huang (2024). [Dataset]. https://www.piie.com/publications/working-papers/2024/lessons-chinas-fiscal-policy-during-covid-19-pandemic
    Explore at:
    Dataset updated
    Mar 19, 2024
    Dataset provided by
    Peterson Institute for International Economicshttp://www.piie.com/
    Authors
    Tianlei Huang
    Area covered
    China
    Description

    This data package includes the underlying data to replicate the charts presented in Lessons from China's fiscal policy during the COVID-19 pandemic, PIIE Working Paper 24-7.

    If you use the data, please cite as: Huang, Tianlei. 2024. Lessons from China's fiscal policy during the COVID-19 pandemic. PIIE Working Paper 24-7. Washington: Peterson Institute for International Economics.

  14. COVID-19 confirmed and death case development in China 2020-2022

    • statista.com
    Updated Mar 11, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2020). COVID-19 confirmed and death case development in China 2020-2022 [Dataset]. https://www.statista.com/statistics/1092918/china-wuhan-coronavirus-2019ncov-confirmed-and-deceased-number/
    Explore at:
    Dataset updated
    Mar 11, 2020
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 20, 2020 - Jun 6, 2022
    Area covered
    China
    Description

    As of June 6, 2022, the novel coronavirus SARS-CoV-2 that originated in Wuhan, the capital of Hubei province in China, had infected over 2.1 million people and killed 14,612 in the country. Hong Kong is currently the region with the highest active cases in China.

    From Wuhan to the rest of China

    In late December 2019, health authorities in Wuhan detected several pneumonia cases of unknown cause. Most of these patients had links to the Huanan Seafood Market. With Chinese New Year approaching, millions of Chinese migrant workers travelled back to their hometowns for the celebration. Before the start of the travel ban on January 23, around five million people had left Wuhan. By the end of January, the number of infections had surged to over ten thousand. The death toll from the virus exceeded that of the SARS outbreak a few days later. On February 12, thousands more cases were confirmed in Wuhan after an improvement to the diagnosis method, resulting in another sudden surge of confirmed cases. On March 31, 2020, the National Health Commission (NHC) in China announced that it would begin reporting the infection number of symptom-free individuals who tested positive for coronavirus. On April 17, 2020, health authorities in Wuhan revised its death toll, adding 50 percent more fatalities. After quarantine measures were implemented, the country reported no new local coronavirus COVID-19 transmissions for the first time on March 18, 2020.

    The overloaded healthcare system

    In Wuhan, 28 hospitals were designated to treat coronavirus patients, but the outbreak continued to test China’s disease control system and most of the hospitals were soon fully occupied. To combat the virus, the government announced plans to build a new hospital swiftly. On February 3, 2020, Huoshenshan Hospital was opened to provide an additional 1,300 beds. Due to an extreme shortage of health-care professionals in Wuhan, thousands of medical staff from all over China came voluntarily to the epicenter to offer their support. After no new deaths reported for first time, China lifted ten-week lockdown on Wuhan on April 8, 2020. Daily life was returning slowly back to normal in the country.

  15. C

    China Total fully vaccinated people against Covid, February, 2023 - data,...

    • theglobaleconomy.com
    csv, excel, xml
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Globalen LLC, China Total fully vaccinated people against Covid, February, 2023 - data, chart | TheGlobalEconomy.com [Dataset]. www.theglobaleconomy.com/China/people_fully_vaccinated_covid/
    Explore at:
    xml, csv, excelAvailable download formats
    Dataset authored and provided by
    Globalen LLC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Aug 31, 2021 - Feb 28, 2023
    Area covered
    China
    Description

    Total fully vaccinated people against Covid in China, February, 2023 The most recent value is 1280000000 total fully-vaccinated people as of February 2023, no change compared to the previous value of 1280000000 total fully-vaccinated people. Historically, the average for China from August 2021 to February 2023 is 1208894737 total fully-vaccinated people. The minimum of 889000000 total fully-vaccinated people was recorded in August 2021, while the maximum of 1280000000 total fully-vaccinated people was reached in January 2023. | TheGlobalEconomy.com

  16. f

    Table_3_Difference and Cluster Analysis on the Carbon Dioxide Emissions in...

    • figshare.com
    xlsx
    Updated Jun 6, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jun Hu; Junhua Chen; Peican Zhu; Shuya Hao; Maoze Wang; Huijia Li; Na Liu (2023). Table_3_Difference and Cluster Analysis on the Carbon Dioxide Emissions in China During COVID-19 Lockdown via a Complex Network Model.XLSX [Dataset]. http://doi.org/10.3389/fpsyg.2021.795142.s004
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jun 6, 2023
    Dataset provided by
    Frontiers
    Authors
    Jun Hu; Junhua Chen; Peican Zhu; Shuya Hao; Maoze Wang; Huijia Li; Na Liu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The continuous increase of carbon emissions is a serious challenge all over the world, and many countries are striving to solve this problem. Since 2020, a widespread lockdown in the country to prevent the spread of COVID-19 escalated, severely restricting the movement of people and unnecessary economic activities, which unexpectedly reduced carbon emissions. This paper aims to analyze the carbon emissions data of 30 provinces in the 2020 and provide references for reducing emissions with epidemic lockdown measures. Based on the method of time series visualization, we transform the time series data into complex networks to find out the hidden information in these data. We found that the lockdown would bring about a short-term decrease in carbon emissions, and most provinces have a short time point of impact, which is closely related to the level of economic development and industrial structure. The current results provide some insights into the evolution of carbon emissions under COVID-19 blockade measures and valuable insights into energy conservation and response to the energy crisis in the post-epidemic era.

  17. C

    China New Covid vaccinations per month, January, 2023 - data, chart |...

    • theglobaleconomy.com
    csv, excel, xml
    Updated Jan 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Globalen LLC (2023). China New Covid vaccinations per month, January, 2023 - data, chart | TheGlobalEconomy.com [Dataset]. www.theglobaleconomy.com/China/new_covid_vaccinations/
    Explore at:
    csv, xml, excelAvailable download formats
    Dataset updated
    Jan 15, 2023
    Dataset authored and provided by
    Globalen LLC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 31, 2021 - Jan 31, 2023
    Area covered
    China
    Description

    New Covid vaccinations per month in China, January, 2023 The most recent value is 23800000 new Covid vaccinations as of January 2023, a decline compared to the previous value of 34300000 new Covid vaccinations. Historically, the average for China from March 2021 to January 2023 is 152894783 new Covid vaccinations. The minimum of 2891000 new Covid vaccinations was recorded in October 2022, while the maximum of 583000000 new Covid vaccinations was reached in June 2021. | TheGlobalEconomy.com

  18. Total number of COVID-19 cases APAC April 2024, by country

    • statista.com
    • ai-chatbox.pro
    Updated Sep 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Total number of COVID-19 cases APAC April 2024, by country [Dataset]. https://www.statista.com/statistics/1104263/apac-covid-19-cases-by-country/
    Explore at:
    Dataset updated
    Sep 18, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Asia–Pacific
    Description

    The outbreak of the novel coronavirus in Wuhan, China, saw infection cases spread throughout the Asia-Pacific region. By April 13, 2024, India had faced over 45 million coronavirus cases. South Korea followed behind India as having had the second highest number of coronavirus cases in the Asia-Pacific region, with about 34.6 million cases. At the same time, Japan had almost 34 million cases. At the beginning of the outbreak, people in South Korea had been optimistic and predicted that the number of cases would start to stabilize. What is SARS CoV 2?Novel coronavirus, officially known as SARS CoV 2, is a disease which causes respiratory problems which can lead to difficulty breathing and pneumonia. The illness is similar to that of SARS which spread throughout China in 2003. After the outbreak of the coronavirus, various businesses and shops closed to prevent further spread of the disease. Impacts from flight cancellations and travel plans were felt across the Asia-Pacific region. Many people expressed feelings of anxiety as to how the virus would progress. Impact throughout Asia-PacificThe Coronavirus and its variants have affected the Asia-Pacific region in various ways. Out of all Asia-Pacific countries, India was highly affected by the pandemic and experienced more than 50 thousand deaths. However, the country also saw the highest number of recoveries within the APAC region, followed by South Korea and Japan.

  19. a

    Dashboard Coronavirus COVID-19 (Mobile)

    • hub.arcgis.com
    Updated Jan 31, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CSSE_covid19 (2020). Dashboard Coronavirus COVID-19 (Mobile) [Dataset]. https://hub.arcgis.com/datasets/85320e2ea5424dfaaa75ae62e5c06e61
    Explore at:
    Dataset updated
    Jan 31, 2020
    Dataset authored and provided by
    CSSE_covid19
    Description

    On March 10, 2023, the Johns Hopkins Coronavirus Resource Center ceased collecting and reporting of global COVID-19 data. For updated cases, deaths, and vaccine data please visit the following sources:Global: World Health Organization (WHO)U.S.: U.S. Centers for Disease Control and Prevention (CDC)For more information, visit the Johns Hopkins Coronavirus Resource Center.This dashboard created by Operations Dashboard contains the most up-to-date coronavirus COVID-19 cases and latest trend plot. It covers China, the US, Canada, Australia (at province/state level), and the rest of the world (at country level, represented by either the country centroids or their capitals). Data sources are WHO, US CDC, China NHC, ECDC, and DXY. The China data is automatically updating at least once per hour, and non China data is updating manually. This layer is created and maintained by the Center for Systems Science and Engineering (CSSE) at the Johns Hopkins University. This service is supported by Esri Living Atlas team and JHU Data Services.

  20. Gender comparison of COVID-19 fatality rate in China 2020

    • statista.com
    Updated Aug 28, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Gender comparison of COVID-19 fatality rate in China 2020 [Dataset]. https://www.statista.com/statistics/1099654/china-wuhan-coronavirus-covid-19-fatality-rate-by-gender/
    Explore at:
    Dataset updated
    Aug 28, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    China
    Description

    COVID-19 has become one of the largest epidemics in the world. As of February 11, 2020, the fatality rate of novel coronavirus COVID-19 among male patients ranged around 2.8 percent in China. The figure was based on a medical analysis of 44,672 confirmed cases.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
TRADING ECONOMICS (2022). China Coronavirus COVID-19 Cases [Dataset]. https://tradingeconomics.com/china/coronavirus-cases

China Coronavirus COVID-19 Cases

China Coronavirus COVID-19 Cases - Historical Dataset (2020-01-04/2023-05-17)

Explore at:
excel, csv, xml, jsonAvailable download formats
Dataset updated
May 29, 2022
Dataset authored and provided by
TRADING ECONOMICS
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Time period covered
Jan 4, 2020 - May 17, 2023
Area covered
China
Description

China recorded 99256991 Coronavirus Cases since the epidemic began, according to the World Health Organization (WHO). In addition, China reported 5226 Coronavirus Deaths. This dataset includes a chart with historical data for China Coronavirus Cases.

Search
Clear search
Close search
Google apps
Main menu