Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
China COVID-19: Confirmed Case: New Increase data was reported at 17.000 Person in 10 May 2020. This records an increase from the previous number of 14.000 Person for 09 May 2020. China COVID-19: Confirmed Case: New Increase data is updated daily, averaging 51.000 Person from Jan 2020 (Median) to 10 May 2020, with 112 observations. The data reached an all-time high of 15,152.000 Person in 12 Feb 2020 and a record low of 1.000 Person in 08 May 2020. China COVID-19: Confirmed Case: New Increase data remains active status in CEIC and is reported by National Health Commission. The data is categorized under China Premium Database’s Socio-Demographic – Table CN.GZ: COVID-19: No of Patient.
Facebook
TwitterThe new SARS-like coronavirus has spread around China since its outbreak in Wuhan - the capital of central China’s Hubei province. As of June 7, 2022, there were 2,785,848 active cases with symptoms in Greater China. The pandemic has caused a significant impact in the country's economy.
Fast-moving epidemic
In Wuhan, over 3.8 thousand deaths were registered in the heart of the outbreak. The total infection number surged on February 12, 2020 in Hubei province. After a change in official methodology for diagnosing and counting cases, thousands of new cases were added to the total figure. There is little knowledge about how the virus that originated from animals transferred to humans. While human-to-human transmission has been confirmed, other transmission routes through aerosol and fecal-oral are also possible. The deaths from the current virus COVID-19 (formally known as 2019-nCoV) has surpassed the toll from the SARS epidemic of 2002 and 2003.
Key moments in the Chinese coronavirus timeline
The doctor in Wuhan, Dr. Li Wenliang, who first warned about the new strain of coronavirus was silenced by the police. It was announced on February 7, 2020 that he died from the effects of the coronavirus infection. His death triggered a national backlash over freedom of speech on Chinese social media. On March 18, 2020, the Chinese government reported no new domestically transmissions for the first time after a series of quarantine and social distancing measures had been implemented. On March 31, 2020, the National Health Commission (NHC) in China started reporting the infection number of symptom-free individuals who tested positive for coronavirus. Before that, asymptomatic cases had not been included in the Chinese official count. China lifted ten-week lockdown on Wuhan on April 8, 2020. Daily life was returning slowly back to normal in the country. On April 17, 2020, health authorities in Wuhan revised its death toll, adding some 1,290 fatalities in its total count.
Facebook
TwitterAs of June 6, 2022, the novel coronavirus SARS-CoV-2 that originated in Wuhan, the capital of Hubei province in China, had infected over 2.1 million people and killed 14,612 in the country. Hong Kong is currently the region with the highest active cases in China.
From Wuhan to the rest of China
In late December 2019, health authorities in Wuhan detected several pneumonia cases of unknown cause. Most of these patients had links to the Huanan Seafood Market. With Chinese New Year approaching, millions of Chinese migrant workers travelled back to their hometowns for the celebration. Before the start of the travel ban on January 23, around five million people had left Wuhan. By the end of January, the number of infections had surged to over ten thousand. The death toll from the virus exceeded that of the SARS outbreak a few days later. On February 12, thousands more cases were confirmed in Wuhan after an improvement to the diagnosis method, resulting in another sudden surge of confirmed cases. On March 31, 2020, the National Health Commission (NHC) in China announced that it would begin reporting the infection number of symptom-free individuals who tested positive for coronavirus. On April 17, 2020, health authorities in Wuhan revised its death toll, adding 50 percent more fatalities. After quarantine measures were implemented, the country reported no new local coronavirus COVID-19 transmissions for the first time on March 18, 2020.
The overloaded healthcare system
In Wuhan, 28 hospitals were designated to treat coronavirus patients, but the outbreak continued to test China’s disease control system and most of the hospitals were soon fully occupied. To combat the virus, the government announced plans to build a new hospital swiftly. On February 3, 2020, Huoshenshan Hospital was opened to provide an additional 1,300 beds. Due to an extreme shortage of health-care professionals in Wuhan, thousands of medical staff from all over China came voluntarily to the epicenter to offer their support. After no new deaths reported for first time, China lifted ten-week lockdown on Wuhan on April 8, 2020. Daily life was returning slowly back to normal in the country.
Facebook
TwitterCOVID-19 Trends MethodologyOur goal is to analyze and present daily updates in the form of recent trends within countries, states, or counties during the COVID-19 global pandemic. The data we are analyzing is taken directly from the Johns Hopkins University Coronavirus COVID-19 Global Cases Dashboard, though we expect to be one day behind the dashboard’s live feeds to allow for quality assurance of the data.Revisions added on 4/23/2020 are highlighted.Revisions added on 4/30/2020 are highlighted.Discussion of our assertion of an abundance of caution in assigning trends in rural counties added 5/7/2020. Correction on 6/1/2020Methodology update on 6/2/2020: This sets the length of the tail of new cases to 6 to a maximum of 14 days, rather than 21 days as determined by the last 1/3 of cases. This was done to align trends and criteria for them with U.S. CDC guidance. The impact is areas transition into Controlled trend sooner for not bearing the burden of new case 15-21 days earlier.Reasons for undertaking this work:The popular online maps and dashboards show counts of confirmed cases, deaths, and recoveries by country or administrative sub-region. Comparing the counts of one country to another can only provide a basis for comparison during the initial stages of the outbreak when counts were low and the number of local outbreaks in each country was low. By late March 2020, countries with small populations were being left out of the mainstream news because it was not easy to recognize they had high per capita rates of cases (Switzerland, Luxembourg, Iceland, etc.). Additionally, comparing countries that have had confirmed COVID-19 cases for high numbers of days to countries where the outbreak occurred recently is also a poor basis for comparison.The graphs of confirmed cases and daily increases in cases were fit into a standard size rectangle, though the Y-axis for one country had a maximum value of 50, and for another country 100,000, which potentially misled people interpreting the slope of the curve. Such misleading circumstances affected comparing large population countries to small population counties or countries with low numbers of cases to China which had a large count of cases in the early part of the outbreak. These challenges for interpreting and comparing these graphs represent work each reader must do based on their experience and ability. Thus, we felt it would be a service to attempt to automate the thought process experts would use when visually analyzing these graphs, particularly the most recent tail of the graph, and provide readers with an a resulting synthesis to characterize the state of the pandemic in that country, state, or county.The lack of reliable data for confirmed recoveries and therefore active cases. Merely subtracting deaths from total cases to arrive at this figure progressively loses accuracy after two weeks. The reason is 81% of cases recover after experiencing mild symptoms in 10 to 14 days. Severe cases are 14% and last 15-30 days (based on average days with symptoms of 11 when admitted to hospital plus 12 days median stay, and plus of one week to include a full range of severely affected people who recover). Critical cases are 5% and last 31-56 days. Sources:U.S. CDC. April 3, 2020 Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). Accessed online. Initial older guidance was also obtained online. Additionally, many people who recover may not be tested, and many who are, may not be tracked due to privacy laws. Thus, the formula used to compute an estimate of active cases is: Active Cases = 100% of new cases in past 14 days + 19% from past 15-30 days + 5% from past 31-56 days - total deaths.We’ve never been inside a pandemic with the ability to learn of new cases as they are confirmed anywhere in the world. After reviewing epidemiological and pandemic scientific literature, three needs arose. We need to specify which portions of the pandemic lifecycle this map cover. The World Health Organization (WHO) specifies six phases. The source data for this map begins just after the beginning of Phase 5: human to human spread and encompasses Phase 6: pandemic phase. Phase six is only characterized in terms of pre- and post-peak. However, these two phases are after-the-fact analyses and cannot ascertained during the event. Instead, we describe (below) a series of five trends for Phase 6 of the COVID-19 pandemic.Choosing terms to describe the five trends was informed by the scientific literature, particularly the use of epidemic, which signifies uncontrolled spread. The five trends are: Emergent, Spreading, Epidemic, Controlled, and End Stage. Not every locale will experience all five, but all will experience at least three: emergent, controlled, and end stage.This layer presents the current trends for the COVID-19 pandemic by country (or appropriate level). There are five trends:Emergent: Early stages of outbreak. Spreading: Early stages and depending on an administrative area’s capacity, this may represent a manageable rate of spread. Epidemic: Uncontrolled spread. Controlled: Very low levels of new casesEnd Stage: No New cases These trends can be applied at several levels of administration: Local: Ex., City, District or County – a.k.a. Admin level 2State: Ex., State or Province – a.k.a. Admin level 1National: Country – a.k.a. Admin level 0Recommend that at least 100,000 persons be represented by a unit; granted this may not be possible, and then the case rate per 100,000 will become more important.Key Concepts and Basis for Methodology: 10 Total Cases minimum threshold: Empirically, there must be enough cases to constitute an outbreak. Ideally, this would be 5.0 per 100,000, but not every area has a population of 100,000 or more. Ten, or fewer, cases are also relatively less difficult to track and trace to sources. 21 Days of Cases minimum threshold: Empirically based on COVID-19 and would need to be adjusted for any other event. 21 days is also the minimum threshold for analyzing the “tail” of the new cases curve, providing seven cases as the basis for a likely trend (note that 21 days in the tail is preferred). This is the minimum needed to encompass the onset and duration of a normal case (5-7 days plus 10-14 days). Specifically, a median of 5.1 days incubation time, and 11.2 days for 97.5% of cases to incubate. This is also driven by pressure to understand trends and could easily be adjusted to 28 days. Source used as basis:Stephen A. Lauer, MS, PhD *; Kyra H. Grantz, BA *; Qifang Bi, MHS; Forrest K. Jones, MPH; Qulu Zheng, MHS; Hannah R. Meredith, PhD; Andrew S. Azman, PhD; Nicholas G. Reich, PhD; Justin Lessler, PhD. 2020. The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Annals of Internal Medicine DOI: 10.7326/M20-0504.New Cases per Day (NCD) = Measures the daily spread of COVID-19. This is the basis for all rates. Back-casting revisions: In the Johns Hopkins’ data, the structure is to provide the cumulative number of cases per day, which presumes an ever-increasing sequence of numbers, e.g., 0,0,1,1,2,5,7,7,7, etc. However, revisions do occur and would look like, 0,0,1,1,2,5,7,7,6. To accommodate this, we revised the lists to eliminate decreases, which make this list look like, 0,0,1,1,2,5,6,6,6.Reporting Interval: In the early weeks, Johns Hopkins' data provided reporting every day regardless of change. In late April, this changed allowing for days to be skipped if no new data was available. The day was still included, but the value of total cases was set to Null. The processing therefore was updated to include tracking of the spacing between intervals with valid values.100 News Cases in a day as a spike threshold: Empirically, this is based on COVID-19’s rate of spread, or r0 of ~2.5, which indicates each case will infect between two and three other people. There is a point at which each administrative area’s capacity will not have the resources to trace and account for all contacts of each patient. Thus, this is an indicator of uncontrolled or epidemic trend. Spiking activity in combination with the rate of new cases is the basis for determining whether an area has a spreading or epidemic trend (see below). Source used as basis:World Health Organization (WHO). 16-24 Feb 2020. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). Obtained online.Mean of Recent Tail of NCD = Empirical, and a COVID-19-specific basis for establishing a recent trend. The recent mean of NCD is taken from the most recent fourteen days. A minimum of 21 days of cases is required for analysis but cannot be considered reliable. Thus, a preference of 42 days of cases ensures much higher reliability. This analysis is not explanatory and thus, merely represents a likely trend. The tail is analyzed for the following:Most recent 2 days: In terms of likelihood, this does not mean much, but can indicate a reason for hope and a basis to share positive change that is not yet a trend. There are two worthwhile indicators:Last 2 days count of new cases is less than any in either the past five or 14 days. Past 2 days has only one or fewer new cases – this is an extremely positive outcome if the rate of testing has continued at the same rate as the previous 5 days or 14 days. Most recent 5 days: In terms of likelihood, this is more meaningful, as it does represent at short-term trend. There are five worthwhile indicators:Past five days is greater than past 2 days and past 14 days indicates the potential of the past 2 days being an aberration. Past five days is greater than past 14 days and less than past 2 days indicates slight positive trend, but likely still within peak trend time frame.Past five days is less than the past 14 days. This means a downward trend. This would be an
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
From World Health Organization - On 31 December 2019, WHO was alerted to several cases of pneumonia in Wuhan City, Hubei Province of China. The virus did not match any other known virus. This raised concern because when a virus is new, we do not know how it affects people.
So daily level information on the affected people can give some interesting insights when it is made available to the broader data science community.
Johns Hopkins University has made an excellent dashboard using the affected cases data. Data is extracted from the google sheets associated and made available here.
Now data is available as csv files in the Johns Hopkins Github repository. Please refer to the github repository for the Terms of Use details. Uploading it here for using it in Kaggle kernels and getting insights from the broader DS community.
2019 Novel Coronavirus (2019-nCoV) is a virus (more specifically, a coronavirus) identified as the cause of an outbreak of respiratory illness first detected in Wuhan, China. Early on, many of the patients in the outbreak in Wuhan, China reportedly had some link to a large seafood and animal market, suggesting animal-to-person spread. However, a growing number of patients reportedly have not had exposure to animal markets, indicating person-to-person spread is occurring. At this time, it’s unclear how easily or sustainably this virus is spreading between people - CDC
This dataset has daily level information on the number of affected cases, deaths and recovery from 2019 novel coronavirus. Please note that this is a time series data and so the number of cases on any given day is the cumulative number.
The data is available from 22 Jan, 2020.
Here’s a polished version suitable for a professional Kaggle dataset description:
This dataset contains time-series and case-level records of the COVID-19 pandemic. The primary file is covid_19_data.csv, with supporting files for earlier records and individual-level line list data.
This is the primary dataset and contains aggregated COVID-19 statistics by location and date.
This file contains earlier COVID-19 records. It is no longer updated and is provided only for historical reference. For current analysis, please use covid_19_data.csv.
This file provides individual-level case information, obtained from an open data source. It includes patient demographics, travel history, and case outcomes.
Another individual-level case dataset, also obtained from public sources, with detailed patient-level information useful for micro-level epidemiological analysis.
✅ Use covid_19_data.csv for up-to-date aggregated global trends.
✅ Use the line list datasets for detailed, individual-level case analysis.
If you are interested in knowing country level data, please refer to the following Kaggle datasets:
India - https://www.kaggle.com/sudalairajkumar/covid19-in-india
South Korea - https://www.kaggle.com/kimjihoo/coronavirusdataset
Italy - https://www.kaggle.com/sudalairajkumar/covid19-in-italy
Brazil - https://www.kaggle.com/unanimad/corona-virus-brazil
USA - https://www.kaggle.com/sudalairajkumar/covid19-in-usa
Switzerland - https://www.kaggle.com/daenuprobst/covid19-cases-switzerland
Indonesia - https://www.kaggle.com/ardisragen/indonesia-coronavirus-cases
Johns Hopkins University for making the data available for educational and academic research purposes
MoBS lab - https://www.mobs-lab.org/2019ncov.html
World Health Organization (WHO): https://www.who.int/
DXY.cn. Pneumonia. 2020. http://3g.dxy.cn/newh5/view/pneumonia.
BNO News: https://bnonews.com/index.php/2020/02/the-latest-coronavirus-cases/
National Health Commission of the People’s Republic of China (NHC): http://www.nhc.gov.cn/xcs/yqtb/list_gzbd.shtml
China CDC (CCDC): http://weekly.chinacdc.cn/news/TrackingtheEpidemic.htm
Hong Kong Department of Health: https://www.chp.gov.hk/en/features/102465.html
Macau Government: https://www.ssm.gov.mo/portal/
Taiwan CDC: https://sites.google....
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
China COVID-19: Confirmed Case: Local: New Increase: at-risk People Unclosed: Jinan data was reported at 0.000 Person in 13 Dec 2022. This stayed constant from the previous number of 0.000 Person for 12 Dec 2022. China COVID-19: Confirmed Case: Local: New Increase: at-risk People Unclosed: Jinan data is updated daily, averaging 0.000 Person from Nov 2022 (Median) to 13 Dec 2022, with 43 observations. The data reached an all-time high of 0.000 Person in 13 Dec 2022 and a record low of 0.000 Person in 13 Dec 2022. China COVID-19: Confirmed Case: Local: New Increase: at-risk People Unclosed: Jinan data remains active status in CEIC and is reported by Jinan Municipality Health Commission. The data is categorized under China Premium Database’s Socio-Demographic – Table CN.GZ: COVID-19: Key City Local Daily New Increase.
Facebook
TwitterOn March 10, 2023, the Johns Hopkins Coronavirus Resource Center ceased collecting and reporting of global COVID-19 data. For updated cases, deaths, and vaccine data please visit the following sources:Global: World Health Organization (WHO)U.S.: U.S. Centers for Disease Control and Prevention (CDC)For more information, visit the Johns Hopkins Coronavirus Resource Center.This feature layer contains the most up-to-date COVID-19 cases and latest trend plot. It covers China, Canada, Australia (at province/state level), and the rest of the world (at country level, represented by either the country centroids or their capitals)and the US at county-level. Data sources: WHO, CDC, ECDC, NHC, DXY, 1point3acres, Worldometers.info, BNO, state and national government health departments, and local media reports. . The China data is automatically updating at least once per hour, and non-China data is updating hourly. This layer is created and maintained by the Center for Systems Science and Engineering (CSSE) at the Johns Hopkins University. This feature layer is supported by Esri Living Atlas team and JHU Data Services. This layer is opened to the public and free to share. Contact us.
Facebook
Twitterhttps://github.com/disease-sh/API/blob/master/LICENSEhttps://github.com/disease-sh/API/blob/master/LICENSE
In past 24 hours, China, Asia had N/A new cases, N/A deaths and N/A recoveries.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
China recorded 99256991 Coronavirus Cases since the epidemic began, according to the World Health Organization (WHO). In addition, China reported 5226 Coronavirus Deaths. This dataset includes a chart with historical data for China Coronavirus Cases.
Facebook
TwitterThe first two cases of the new coronavirus (COVID-19) in Italy were recorded between the end of January and the beginning of February 2020. Since then, the number of cases in Italy increased steadily, reaching over 26.9 million as of January 8, 2025. The region mostly hit by the virus in the country was Lombardy, counting almost 4.4 million cases. On January 11, 2022, 220,532 new cases were registered, which represented the biggest daily increase in cases in Italy since the start of the pandemic. The virus originated in Wuhan, a Chinese city populated by millions and located in the province of Hubei. More statistics and facts about the virus in Italy are available here.For a global overview, visit Statista's webpage exclusively dedicated to coronavirus, its development, and its impact.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Updated to May 13, 2021. World COVID-19 daily cases with basemap, starting from January 22, 2020.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
COVID-19: Confirmed Case: Local: New Increase: Hunan data was reported at 216.000 Person in 07 Jan 2023. This records a decrease from the previous number of 383.000 Person for 06 Jan 2023. COVID-19: Confirmed Case: Local: New Increase: Hunan data is updated daily, averaging 0.000 Person from Aug 2021 (Median) to 07 Jan 2023, with 506 observations. The data reached an all-time high of 437.000 Person in 04 Jan 2023 and a record low of 0.000 Person in 15 Dec 2022. COVID-19: Confirmed Case: Local: New Increase: Hunan data remains active status in CEIC and is reported by National Health Commission. The data is categorized under China Premium Database’s Socio-Demographic – Table CN.GZ: COVID-19: No of Patient: Local.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
A data set on COVID-19 pandemic in China, which covers daily statistics of confirmed cases (new and cumulative), recoveries (new and cumulative) and deaths (new and cumulative) at city/province level. All data are extracted from Chinese government reports and are available in a CSV format.
Facebook
Twitterhttp://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
Amidst the COVID-19 outbreak, the world is facing great crisis in every way. The value and things we built as a human race are going through tremendous challenges. It is a very small effort to bring curated data set on Novel Corona Virus to accelerate the forecasting and analytical experiments to cope up with this critical situation. It will help to visualize the country level out break and to keep track on regularly added new incidents.
This Dataset contains country wise public domain time series information on COVID-19 outbreak. The Data is sorted alphabetically on Country name and Date of Observation.
The data set contains the following columns:
ObservationDate: The date on which the incidents are observed
country: Country of the Outbreak
Confirmed: Number of confirmed cases till observation date
Deaths: Number of death cases till observation date
Recovered: Number of recovered cases till observation date
New Confirmed: Number of new confirmed cases on observation date
New Deaths: Number of New death cases on observation date
New Recovered: Number of New recovered cases on observation date
latitude: Latitude of the affected country
longitude: Longitude of the affected country
This data set is a cleaner version of the https://www.kaggle.com/sudalairajkumar/novel-corona-virus-2019-dataset data set with added geo location information and regularly added incident counts. I would like to thank this great effort by SRK.
Johns Hopkins University MoBS lab - https://www.mobs-lab.org/2019ncov.html World Health Organization (WHO): https://www.who.int/ DXY.cn. Pneumonia. 2020. http://3g.dxy.cn/newh5/view/pneumonia. BNO News: https://bnonews.com/index.php/2020/02/the-latest-coronavirus-cases/ National Health Commission of the People’s Republic of China (NHC): http://www.nhc.gov.cn/xcs/yqtb/list_gzbd.shtml China CDC (CCDC): http://weekly.chinacdc.cn/news/TrackingtheEpidemic.htm Hong Kong Department of Health: https://www.chp.gov.hk/en/features/102465.html Macau Government: https://www.ssm.gov.mo/portal/ Taiwan CDC: https://sites.google.com/cdc.gov.tw/2019ncov/taiwan?authuser=0 US CDC: https://www.cdc.gov/coronavirus/2019-ncov/index.html Government of Canada: https://www.canada.ca/en/public-health/services/diseases/coronavirus.html Australia Government Department of Health: https://www.health.gov.au/news/coronavirus-update-at-a-glance European Centre for Disease Prevention and Control (ECDC): https://www.ecdc.europa.eu/en/geographical-distribution-2019-ncov-cases Ministry of Health Singapore (MOH): https://www.moh.gov.sg/covid-19 Italy Ministry of Health: http://www.salute.gov.it/nuovocoronavirus
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
COVID-19: Confirmed Case: New Increase: Fujian data was reported at 736.000 Person in 08 Jan 2023. This records an increase from the previous number of 599.000 Person for 07 Jan 2023. COVID-19: Confirmed Case: New Increase: Fujian data is updated daily, averaging 7.000 Person from Aug 2021 (Median) to 08 Jan 2023, with 507 observations. The data reached an all-time high of 1,234.000 Person in 06 Jan 2023 and a record low of 0.000 Person in 06 Mar 2022. COVID-19: Confirmed Case: New Increase: Fujian data remains active status in CEIC and is reported by National Health Commission. The data is categorized under China Premium Database’s Socio-Demographic – Table CN.GZ: COVID-19: No of Patient.
Facebook
TwitterThe outbreak of the novel coronavirus in Wuhan, China, saw infection cases spread throughout the Asia-Pacific region. By April 13, 2024, India had faced over 45 million coronavirus cases. South Korea followed behind India as having had the second highest number of coronavirus cases in the Asia-Pacific region, with about 34.6 million cases. At the same time, Japan had almost 34 million cases. At the beginning of the outbreak, people in South Korea had been optimistic and predicted that the number of cases would start to stabilize. What is SARS CoV 2?Novel coronavirus, officially known as SARS CoV 2, is a disease which causes respiratory problems which can lead to difficulty breathing and pneumonia. The illness is similar to that of SARS which spread throughout China in 2003. After the outbreak of the coronavirus, various businesses and shops closed to prevent further spread of the disease. Impacts from flight cancellations and travel plans were felt across the Asia-Pacific region. Many people expressed feelings of anxiety as to how the virus would progress. Impact throughout Asia-PacificThe Coronavirus and its variants have affected the Asia-Pacific region in various ways. Out of all Asia-Pacific countries, India was highly affected by the pandemic and experienced more than 50 thousand deaths. However, the country also saw the highest number of recoveries within the APAC region, followed by South Korea and Japan.
Facebook
TwitterThe novel coronavirus that originated in the Chinese city Wuhan - the capital of Hubei province - had killed 17,826 people in Greater China. As of June 7, 2022, there were 2,785,848 active cases with symptoms in the region.
How did it spread?
In late December 2019, the health authorities in Wuhan detected several pneumonia cases of unknown cause. Most of these patients had links to the Huanan seafood market. The virus then spread spread rapidly to other provinces when millions of Chinese migrant workers headed home for Chinese New Year celebrations. About five billion people left Wuhan before the start of the travel ban on January 23. Right before Chinese New Year, the central government decided to put Wuhan and other cities in Hubei province on lockdown. With further travel restrictions and cancellations of public celebration events, the number of infections surpassed 80 thousand by the end of February. On March 18, 2020, China reported no new local coronavirus COVID-19 transmissions for the first time after quarantine measures had been implemented. On March 31, 2020, the National Health Commission (NHC) in China announced that it would begin reporting the infection number of symptom-free individuals who tested positive for coronavirus. After no new deaths reported for first time, the Chinese government lifted ten-week lockdown on Wuhan on April 8, 2020. Daily life was returning slowly back to normal in the country.
What is COVID-19?
Coronaviruses originate in animals like camels, civets and bats and are usually not transmissible to humans. But when a coronavirus mutates, it can be passed from animals to humans. The new strain of coronavirus COVID-19 is one of the seven known coronaviruses that can infect humans causing fever and respiratory infections. China's National Health Commission has confirmed the virus can be transmitted between humans through direct contact, airborne droplets. Faecal-oral transmission could also be possible. Although the death toll of COVID-19 has surpassed that of SARS, its fatality rate is relatively low compared to other deadly coronavirus, such as SARS and MERS.
Facebook
TwitterFrom World Health Organization - On 31 December 2019, WHO was alerted to several cases of pneumonia in Wuhan City, Hubei Province of China. The virus did not match any other known virus. This raised concern because when a virus is new, we do not know how it affects people.
So daily level information on the affected people can give some interesting insights when it is made available to the broader data science community.
Johns Hopkins University has made an excellent dashboard using the affected cases data. Data is extracted from the google sheets associated and made available here.
Edited: Now data is available as csv files in the Johns Hopkins Github repository. Please refer to the github repository for the Terms of Use details. Uploading it here for using it in Kaggle kernels and getting insights from the broader DS community.
2019 Novel Coronavirus (2019-nCoV) is a virus (more specifically, a coronavirus) identified as the cause of an outbreak of respiratory illness first detected in Wuhan, China. Early on, many of the patients in the outbreak in Wuhan, China reportedly had some link to a large seafood and animal market, suggesting animal-to-person spread. However, a growing number of patients reportedly have not had exposure to animal markets, indicating person-to-person spread is occurring. At this time, it’s unclear how easily or sustainably this virus is spreading between people - CDC
This dataset has daily level information on the number of affected cases, deaths and recovery from 2019 novel coronavirus. Please note that this is a time series data and so the number of cases on any given day is the cumulative number.
The data is available from 22 Jan, 2020.
Main file in this dataset is covid_19_data.csv and the detailed descriptions are below.
covid_19_data.csv
Apart from that these two files have individual level information
COVID_open_line_list_data.csv This file is originally obtained from this link
COVID19_line_list_data.csv This files is originally obtained from this link
Country level datasets
If you are interested in knowing country level data, please refer to the following Kaggle datasets:
South Korea - https://www.kaggle.com/kimjihoo/coronavirusdataset
Italy -
https://www.kaggle.com/sudalairajkumar/covid19-in-italy
Some useful insi...
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Background: The Coronavirus Disease 2019 (COVID-19) epidemic broke out in Wuhan, China, and it spread rapidly. Since January 23, 2020, China has launched a series of unusual and strict measures, including the lockdown of Wuhan city to contain this highly contagious disease. We collected the epidemiological data to analyze the trend of this epidemic in China.Methods: We closely tracked the Chinese and global official websites to collect the epidemiological information about COVID-19. The number of total and daily new confirmed cases of COVID-19 in China was presented to illustrate the trend of this epidemic.Results: On January 23, 2020, 835 confirmed COVID-19 cases were reported in China. On February 6, 2020, there were 31,211 cases. By February 20, 2020, the number reached as high as 75,993. Most cases were distributed in and around Wuhan, Hubei province. Since January 23, 2020, the number of daily new cases in China except Hubei province reached a peak of 890 on the eleventh day and then it declined to a low level of 34 within two full-length incubation periods (28 days), and the number of daily new cases in Hubei also started to decrease on the twelfth day, from 3,156 on February 4, 2020 to 955 on February 15, 2020.Conclusion: The COVID-19 epidemic has been primarily contained in China. The battle against this epidemic in China has provided valuable experiences for the rest of the world. Strict measures need to be taken as earlier as possible to prevent its spread.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Chinese prefectural level governments started to report daily confirmed COVID-19 cases online, starting from January 2020. The disclosures may contain the mobility, potential exposure scenario, epidemiological characteristics, and other useful information of individual cases. We organized a group of content coders since early March 2020, kept monitoring the information updates, manually extracted useful information from the public disclosures, and compiled these datasets.We welcome any form of collaborations with us and non-commercial reuse of our dataset. We highly encourage interested parties to examine the data, report errors in our coding, and help us to keep the data updated.The detailed data description can be found on SSRN preprint server https://dx.doi.org/10.2139/ssrn.3705815.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
China COVID-19: Confirmed Case: New Increase data was reported at 17.000 Person in 10 May 2020. This records an increase from the previous number of 14.000 Person for 09 May 2020. China COVID-19: Confirmed Case: New Increase data is updated daily, averaging 51.000 Person from Jan 2020 (Median) to 10 May 2020, with 112 observations. The data reached an all-time high of 15,152.000 Person in 12 Feb 2020 and a record low of 1.000 Person in 08 May 2020. China COVID-19: Confirmed Case: New Increase data remains active status in CEIC and is reported by National Health Commission. The data is categorized under China Premium Database’s Socio-Demographic – Table CN.GZ: COVID-19: No of Patient.