Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Gross Domestic Product per capita in China was last recorded at 13121.68 US dollars in 2024. The GDP per Capita in China is equivalent to 104 percent of the world's average. This dataset provides - China GDP per capita - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Gross Domestic Product (GDP) in China expanded 4.80 percent in the third quarter of 2025 over the same quarter of the previous year. This dataset provides - China GDP Annual Growth Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset offers a detailed comparison of key global players like USA, Russia, China, India, Canada, Australia, and others across various economic, social, and environmental metrics. By comparing countries on indicators such as GDP, population, healthcare access, education levels, internet penetration, military spending, and much more, this dataset provides valuable insights for researchers, policymakers, and analysts.
🔍 Key Comparisons:
Economic Indicators: GDP, inflation rates, unemployment rates, etc. Social Indicators: Literacy rates, healthcare quality, life expectancy, etc. Environmental Indicators: CO2 emissions, renewable energy usage, protected areas, etc. Technological Advancements: Internet users, mobile subscriptions, tech exports, etc. Military Spending: Defense budgets, military personnel numbers, etc. This dataset is perfect for those who want to compare countries in terms of development, growth, and global standing. It can be used for data analysis, policy planning, research, and even education.
✨ Key Features:
Comprehensive Coverage: Includes multiple countries with key metrics. Multiple Domains: Economic, social, environmental, technological, and military data. Up-to-date Information: Covers data from the last decade to provide recent insights. Research Ready: Suitable for academic research, visualizations, and analysis.
Facebook
Twitterhttps://www.worldbank.org/en/about/legal/terms-of-use-for-datasetshttps://www.worldbank.org/en/about/legal/terms-of-use-for-datasets
This dataset contains data on key indicators of world's top 6 Economies (by GDP) which includes USA, China, Japan, Germany, United Kingdom, India between the time interval of 30 years from 1990 to 2020. Data scraped from World Bank Data website and processed using Python Pandas library. This dataset could be used to do Time Series Analysis and Forecasting.
The World Bank : https://data.worldbank.org/country
Facebook
TwitterTThe ERS International Macroeconomic Data Set provides historical and projected data for 181 countries that account for more than 99 percent of the world economy. These data and projections are assembled explicitly to serve as underlying assumptions for the annual USDA agricultural supply and demand projections, which provide a 10-year outlook on U.S. and global agriculture. The macroeconomic projections describe the long-term, 10-year scenario that is used as a benchmark for analyzing the impacts of alternative scenarios and macroeconomic shocks.
Explore the International Macroeconomic Data Set 2015 for annual growth rates, consumer price indices, real GDP per capita, exchange rates, and more. Get detailed projections and forecasts for countries worldwide.
Annual growth rates, Consumer price indices (CPI), Real GDP per capita, Real exchange rates, Population, GDP deflator, Real gross domestic product (GDP), Real GDP shares, GDP, projections, Forecast, Real Estate, Per capita, Deflator, share, Exchange Rates, CPI
Afghanistan, Albania, Algeria, Angola, Antigua and Barbuda, Argentina, Armenia, Australia, Austria, Azerbaijan, Bahamas, Bahrain, Bangladesh, Barbados, Belarus, Belgium, Belize, Benin, Bhutan, Bolivia, Bosnia and Herzegovina, Botswana, Brazil, Brunei, Bulgaria, Burkina Faso, Burundi, Côte d'Ivoire, Cabo Verde, Cambodia, Cameroon, Canada, Central African Republic, Chad, Chile, China, Colombia, Congo, Costa Rica, Croatia, Cuba, Cyprus, Denmark, Djibouti, Dominica, Dominican Republic, Ecuador, Egypt, El Salvador, Equatorial Guinea, Eritrea, Estonia, Eswatini, Ethiopia, Fiji, Finland, France, Gabon, Gambia, Georgia, Germany, Ghana, Greece, Grenada, Guatemala, Guinea, Guinea-Bissau, Guyana, Haiti, Honduras, Hungary, Iceland, India, Indonesia, Iran, Iraq, Ireland, Israel, Italy, Jamaica, Japan, Jordan, Kazakhstan, Kenya, Kuwait, Kyrgyzstan, Laos, Latvia, Lebanon, Lesotho, Liberia, Libya, Lithuania, Luxembourg, Madagascar, Malawi, Malaysia, Maldives, Mali, Malta, Mauritania, Mauritius, Mexico, Moldova, Mongolia, Morocco, Mozambique, Myanmar, Namibia, Nepal, Netherlands, New Zealand, Nicaragua, Niger, Nigeria, Norway, Oman, Pakistan, Panama, Papua New Guinea, Paraguay, Peru, Philippines, Poland, Portugal, Qatar, Romania, Russia, Rwanda, Samoa, Saudi Arabia, Senegal, Serbia, Seychelles, Sierra Leone, Singapore, Slovakia, Slovenia, Solomon Islands, South Africa, Spain, Sri Lanka, Sudan, Suriname, Sweden, Switzerland, Syria, Tajikistan, Tanzania, Thailand, Togo, Tonga, Trinidad and Tobago, Tunisia, Turkey, Turkmenistan, Uganda, Ukraine, United Arab Emirates, United Kingdom, Uruguay, Uzbekistan, Vanuatu, Venezuela, Vietnam, Yemen, Zambia, Zimbabwe, WORLD Follow data.kapsarc.org for timely data to advance energy economics research. Notes:
Developed countries/1 Australia, New Zealand, Japan, Other Western Europe, European Union 27, North America
Developed countries less USA/2 Australia, New Zealand, Japan, Other Western Europe, European Union 27, Canada
Developing countries/3 Africa, Middle East, Other Oceania, Asia less Japan, Latin America;
Low-income developing countries/4 Haiti, Afghanistan, Nepal, Benin, Burkina Faso, Burundi, Central African Republic, Chad, Democratic Republic of Congo, Eritrea, Ethiopia, Gambia, Guinea, Guinea-Bissau, Liberia, Madagascar, Malawi, Mali, Mozambique, Niger, Rwanda, Senegal, Sierra Leone, Somalia, Tanzania, Togo, Uganda, Zimbabwe;
Emerging markets/5 Mexico, Brazil, Chile, Czech Republic, Hungary, Poland, Slovakia, Russia, China, India, Korea, Taiwan, Indonesia, Malaysia, Philippines, Thailand, Vietnam, Singapore
BRIICs/5 Brazil, Russia, India, Indonesia, China; Former Centrally Planned Economies
Former centrally planned economies/7 Cyprus, Malta, Recently acceded countries, Other Central Europe, Former Soviet Union
USMCA/8 Canada, Mexico, United States
Europe and Central Asia/9 Europe, Former Soviet Union
Middle East and North Africa/10 Middle East and North Africa
Other Southeast Asia outlook/11 Malaysia, Philippines, Thailand, Vietnam
Other South America outlook/12 Chile, Colombia, Peru, Bolivia, Paraguay, Uruguay
Indicator Source
Real gross domestic product (GDP) World Bank World Development Indicators, IHS Global Insight, Oxford Economics Forecasting, as well as estimated and projected values developed by the Economic Research Service all converted to a 2015 base year.
Real GDP per capita U.S. Department of Agriculture, Economic Research Service, Macroeconomic Data Set, GDP table and Population table.
GDP deflator World Bank World Development Indicators, IHS Global Insight, Oxford Economics Forecasting, as well as estimated and projected values developed by the Economic Research Service, all converted to a 2015 base year.
Real GDP shares U.S. Department of Agriculture, Economic Research Service, Macroeconomic Data Set, GDP table.
Real exchange rates U.S. Department of Agriculture, Economic Research Service, Macroeconomic Data Set, CPI table, and Nominal XR and Trade Weights tables developed by the Economic Research Service.
Consumer price indices (CPI) International Financial Statistics International Monetary Fund, IHS Global Insight, Oxford Economics Forecasting, as well as estimated and projected values developed by the Economic Research Service, all converted to a 2015 base year.
Population Department of Commerce, Bureau of the Census, U.S. Department of Agriculture, Economic Research Service, International Data Base.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Introduction
There are several works based on Natural Language Processing on newspaper reports. Mining opinions from headlines [ 1 ] using Standford NLP and SVM by Rameshbhaiet. Al.compared several algorithms on a small and large dataset. Rubinet. al., in their paper [ 2 ], created a mechanism to differentiate fake news from real ones by building a set of characteristics of news according to their types. The purpose was to contribute to the low resource data available for training machine learning algorithms. Doumitet. al.in [ 3 ] have implemented LDA, a topic modeling approach to study bias present in online news media.
However, there are not many NLP research invested in studying COVID-19. Most applications include classification of chest X-rays and CT-scans to detect presence of pneumonia in lungs [ 4 ], a consequence of the virus. Other research areas include studying the genome sequence of the virus[ 5 ][ 6 ][ 7 ] and replicating its structure to fight and find a vaccine. This research is crucial in battling the pandemic. The few NLP based research publications are sentiment classification of online tweets by Samuel et el [ 8 ] to understand fear persisting in people due to the virus. Similar work has been done using the LSTM network to classify sentiments from online discussion forums by Jelodaret. al.[ 9 ]. NKK dataset is the first study on a comparatively larger dataset of a newspaper report on COVID-19, which contributed to the virus’s awareness to the best of our knowledge.
2 Data-set Introduction
2.1 Data Collection
We accumulated 1000 online newspaper report from United States of America (USA) on COVID-19. The newspaper includes The Washington Post (USA) and StarTribune (USA). We have named it as “Covid-News-USA-NNK”. We also accumulated 50 online newspaper report from Bangladesh on the issue and named it “Covid-News-BD-NNK”. The newspaper includes The Daily Star (BD) and Prothom Alo (BD). All these newspapers are from the top provider and top read in the respective countries. The collection was done manually by 10 human data-collectors of age group 23- with university degrees. This approach was suitable compared to automation to ensure the news were highly relevant to the subject. The newspaper online sites had dynamic content with advertisements in no particular order. Therefore there were high chances of online scrappers to collect inaccurate news reports. One of the challenges while collecting the data is the requirement of subscription. Each newspaper required $1 per subscriptions. Some criteria in collecting the news reports provided as guideline to the human data-collectors were as follows:
The headline must have one or more words directly or indirectly related to COVID-19.
The content of each news must have 5 or more keywords directly or indirectly related to COVID-19.
The genre of the news can be anything as long as it is relevant to the topic. Political, social, economical genres are to be more prioritized.
Avoid taking duplicate reports.
Maintain a time frame for the above mentioned newspapers.
To collect these data we used a google form for USA and BD. We have two human editor to go through each entry to check any spam or troll entry.
2.2 Data Pre-processing and Statistics
Some pre-processing steps performed on the newspaper report dataset are as follows:
Remove hyperlinks.
Remove non-English alphanumeric characters.
Remove stop words.
Lemmatize text.
While more pre-processing could have been applied, we tried to keep the data as much unchanged as possible since changing sentence structures could result us in valuable information loss. While this was done with help of a script, we also assigned same human collectors to cross check for any presence of the above mentioned criteria.
The primary data statistics of the two dataset are shown in Table 1 and 2.
Table 1: Covid-News-USA-NNK data statistics
No of words per headline
7 to 20
No of words per body content
150 to 2100
Table 2: Covid-News-BD-NNK data statistics No of words per headline
10 to 20
No of words per body content
100 to 1500
2.3 Dataset Repository
We used GitHub as our primary data repository in account name NKK^1. Here, we created two repositories USA-NKK^2 and BD-NNK^3. The dataset is available in both CSV and JSON format. We are regularly updating the CSV files and regenerating JSON using a py script. We provided a python script file for essential operation. We welcome all outside collaboration to enrich the dataset.
3 Literature Review
Natural Language Processing (NLP) deals with text (also known as categorical) data in computer science, utilizing numerous diverse methods like one-hot encoding, word embedding, etc., that transform text to machine language, which can be fed to multiple machine learning and deep learning algorithms.
Some well-known applications of NLP includes fraud detection on online media sites[ 10 ], using authorship attribution in fallback authentication systems[ 11 ], intelligent conversational agents or chatbots[ 12 ] and machine translations used by Google Translate[ 13 ]. While these are all downstream tasks, several exciting developments have been made in the algorithm solely for Natural Language Processing tasks. The two most trending ones are BERT[ 14 ], which uses bidirectional encoder-decoder architecture to create the transformer model, that can do near-perfect classification tasks and next-word predictions for next generations, and GPT-3 models released by OpenAI[ 15 ] that can generate texts almost human-like. However, these are all pre-trained models since they carry huge computation cost. Information Extraction is a generalized concept of retrieving information from a dataset. Information extraction from an image could be retrieving vital feature spaces or targeted portions of an image; information extraction from speech could be retrieving information about names, places, etc[ 16 ]. Information extraction in texts could be identifying named entities and locations or essential data. Topic modeling is a sub-task of NLP and also a process of information extraction. It clusters words and phrases of the same context together into groups. Topic modeling is an unsupervised learning method that gives us a brief idea about a set of text. One commonly used topic modeling is Latent Dirichlet Allocation or LDA[17].
Keyword extraction is a process of information extraction and sub-task of NLP to extract essential words and phrases from a text. TextRank [ 18 ] is an efficient keyword extraction technique that uses graphs to calculate the weight of each word and pick the words with more weight to it.
Word clouds are a great visualization technique to understand the overall ’talk of the topic’. The clustered words give us a quick understanding of the content.
4 Our experiments and Result analysis
We used the wordcloud library^4 to create the word clouds. Figure 1 and 3 presents the word cloud of Covid-News-USA- NNK dataset by month from February to May. From the figures 1,2,3, we can point few information:
In February, both the news paper have talked about China and source of the outbreak.
StarTribune emphasized on Minnesota as the most concerned state. In April, it seemed to have been concerned more.
Both the newspaper talked about the virus impacting the economy, i.e, bank, elections, administrations, markets.
Washington Post discussed global issues more than StarTribune.
StarTribune in February mentioned the first precautionary measurement: wearing masks, and the uncontrollable spread of the virus throughout the nation.
While both the newspaper mentioned the outbreak in China in February, the weight of the spread in the United States are more highlighted through out March till May, displaying the critical impact caused by the virus.
We used a script to extract all numbers related to certain keywords like ’Deaths’, ’Infected’, ’Died’ , ’Infections’, ’Quarantined’, Lock-down’, ’Diagnosed’ etc from the news reports and created a number of cases for both the newspaper. Figure 4 shows the statistics of this series. From this extraction technique, we can observe that April was the peak month for the covid cases as it gradually rose from February. Both the newspaper clearly shows us that the rise in covid cases from February to March was slower than the rise from March to April. This is an important indicator of possible recklessness in preparations to battle the virus. However, the steep fall from April to May also shows the positive response against the attack. We used Vader Sentiment Analysis to extract sentiment of the headlines and the body. On average, the sentiments were from -0.5 to -0.9. Vader Sentiment scale ranges from -1(highly negative to 1(highly positive). There were some cases
where the sentiment scores of the headline and body contradicted each other,i.e., the sentiment of the headline was negative but the sentiment of the body was slightly positive. Overall, sentiment analysis can assist us sort the most concerning (most negative) news from the positive ones, from which we can learn more about the indicators related to COVID-19 and the serious impact caused by it. Moreover, sentiment analysis can also provide us information about how a state or country is reacting to the pandemic. We used PageRank algorithm to extract keywords from headlines as well as the body content. PageRank efficiently highlights important relevant keywords in the text. Some frequently occurring important keywords extracted from both the datasets are: ’China’, Government’, ’Masks’, ’Economy’, ’Crisis’, ’Theft’ , ’Stock market’ , ’Jobs’ , ’Election’, ’Missteps’, ’Health’, ’Response’. Keywords extraction acts as a filter allowing quick searches for indicators in case of locating situations of the economy,
Facebook
TwitterAttribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
This dataset presents country-level tariff rates charged to the United States during the Trump administration, alongside discounted reciprocal tariffs the U.S. might have charged in return. It highlights the trade imbalances and protectionist policies in place at the time. Useful for trade policy analysis, political science research, and data visualization. The values were originally expressed in decimal format (e.g., 0.10 = 10%) but have been converted to percentage format for clarity. 📊 Column Descriptions ..Country The name of the country or economic union (e.g., China, European Union).
..Tariffs charged to the USA (%) The average tariff percentage imposed by each country on goods imported from the United States.
..U.S.A. Discounted Reciprocal Tariffs (%) Hypothetical reciprocal tariff rates the U.S. would charge if it applied the same discount factor used by the other country toward the U.S.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset is sourced from FAOSTAT, the comprehensive statistical database maintained by the Food and Agriculture Organization (FAO) of the United Nations. It provides detailed and reliable data on global agriculture, food security, nutrition, and related topics. The dataset covers the period from 1971 to 2022, offering a 50-year perspective on trends and changes in agricultural production, trade, resource use, and environmental impacts.
Visit the FAOSTAT website: https://www.fao.org/faostat/.
Each column (except Year) represents a country and contains numerical values, possibly indicating growth rates, percentage changes, or other metrics over time.
Possible Sources International Organizations: FAOSTAT (Food and Agriculture Organization): Provides data on agriculture, food security, and related metrics. World Bank: Offers economic, demographic, and environmental data. United Nations (UN): Publishes data on global development indicators. IMF (International Monetary Fund): Provides financial and economic data. Government Agencies: National statistical offices (e.g., Census Bureau, Ministry of Agriculture). Central banks or economic departments. Research Institutions: Universities or think tanks that collect and analyze data for specific studies
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The provided dataset is extracted from yahoo finance using pandas and yahoo finance library in python. This deals with stock market index of the world best economies. The code generated data from Jan 01, 2003 to Jun 30, 2023 that’s more than 20 years. There are 18 CSV files, dataset is generated for 16 different stock market indices comprising of 7 different countries. Below is the list of countries along with number of indices extracted through yahoo finance library, while two CSV files deals with annualized return and compound annual growth rate (CAGR) has been computed from the extracted data.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F15657145%2F90ce8a986761636e3edbb49464b304d8%2FNumber%20of%20Index.JPG?generation=1688490342207096&alt=media" alt="">
This dataset is useful for research purposes, particularly for conducting comparative analyses involving capital market performance and could be used along with other economic indicators.
There are 18 distinct CSV files associated with this dataset. First 16 CSV files deals with number of indices and last two CSV file deals with annualized return of each year and CAGR of each index. If data in any column is blank, it portrays that index was launch in later years, for instance: Bse500 (India), this index launch in 2007, so earlier values are blank, similarly China_Top300 index launch in year 2021 so early fields are blank too.
The extraction process involves applying different criteria, like in 16 CSV files all columns are included, Adj Close is used to calculate annualized return. The algorithm extracts data based on index name (code given by the yahoo finance) according start and end date.
Annualized return and CAGR has been calculated and illustrated in below image along with machine readable file (CSV) attached to that.
To extract the data provided in the attachment, various criteria were applied:
Content Filtering: The data was filtered based on several attributes, including the index name, start and end date. This filtering process ensured that only relevant data meeting the specified criteria.
Collaborative Filtering: Another filtering technique used was collaborative filtering using yahoo finance, which relies on index similarity. This approach involves finding indices that are similar to other index or extended dataset scope to other countries or economies. By leveraging this method, the algorithm identifies and extracts data based on similarities between indices.
In the last two CSV files, one belongs to annualized return, that was calculated based on the Adj close column and new DataFrame created to store its outcome. Below is the image of annualized returns of all index (if unreadable, machine-readable or CSV format is attached with the dataset).
As far as annualised rate of return is concerned, most of the time India stock market indices leading, followed by USA, Canada and Japan stock market indices.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F15657145%2F37645bd90623ea79f3708a958013c098%2FAnnualized%20Return.JPG?generation=1688525901452892&alt=media" alt="">
The best performing index based on compound growth is Sensex (India) that comprises of top 30 companies is 15.60%, followed by Nifty500 (India) that is 11.34% and Nasdaq (USA) all is 10.60%.
The worst performing index is China top300, however this is launch in 2021 (post pandemic), so would not possible to examine at that stage (due to less data availability). Furthermore, UK and Russia indices are also top 5 in the worst order.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F15657145%2F58ae33f60a8800749f802b46ec1e07e7%2FCAGR.JPG?generation=1688490409606631&alt=media" alt="">
Geography: Stock Market Index of the World Top Economies
Time period: Jan 01, 2003 – June 30, 2023
Variables: Stock Market Index Title, Open, High, Low, Close, Adj Close, Volume, Year, Month, Day, Yearly_Return and CAGR
File Type: CSV file
This is not a financial advice; due diligence is required in each investment decision.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
China recorded a trade surplus of 90.07 USD Billion in October of 2025. This dataset provides - China Balance of Trade - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Explore the intricate dance between gold prices and key economic events across major global players – Canada, Japan, USA, Russia, European Union, and China. This comprehensive dataset spans from January 2019 to December 2023, offering a nuanced analysis of how economic news from these influential regions impacts the ever-volatile gold market. Delve into the ebb and flow of financial landscapes, uncovering trends, correlations, and invaluable insights for strategic decision-making in the dynamic world of investments.
Historical Gold Price Dataset:
** Economic Calendar Dataset**:
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Imports from United States in China decreased to 11862668.27 USD Thousand in February from 14271016.33 USD Thousand in January of 2024. This dataset includes a chart with historical data for China Imports From Us.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Exports to United States in China decreased to 30786817 USD Thousand in February from 42633059 USD Thousand in January of 2024. This dataset includes a chart with historical data for China Exports To Us.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
China Exports to United States was US$525.65 Billion during 2024, according to the United Nations COMTRADE database on international trade. China Exports to United States - data, historical chart and statistics - was last updated on November of 2025.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Money Supply M2 in China decreased to 335105.40 CNY Billion in October from 335377.10 CNY Billion in September of 2025. This dataset provides - China Money Supply M2 - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Exports in China decreased to 305.35 USD Billion in October from 328.46 USD Billion in September of 2025. This dataset provides - China Exports - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The United States recorded a trade deficit of 59.55 USD Billion in August of 2025. This dataset provides the latest reported value for - United States Balance of Trade - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States Imports from China was US$462.62 Billion during 2024, according to the United Nations COMTRADE database on international trade. United States Imports from China - data, historical chart and statistics - was last updated on December of 2025.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
China Imports from United States was US$164.59 Billion during 2024, according to the United Nations COMTRADE database on international trade. China Imports from United States - data, historical chart and statistics - was last updated on December of 2025.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States Exports to China was US$143.55 Billion during 2024, according to the United Nations COMTRADE database on international trade. United States Exports to China - data, historical chart and statistics - was last updated on December of 2025.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Gross Domestic Product per capita in China was last recorded at 13121.68 US dollars in 2024. The GDP per Capita in China is equivalent to 104 percent of the world's average. This dataset provides - China GDP per capita - actual values, historical data, forecast, chart, statistics, economic calendar and news.