The China County-Level Data on Population (Census) and Agriculture, Keyed To 1:1M GIS Map consists of census, agricultural economic, and boundary data for the administrative regions of China for 1990. The census data includes urban and rural residency, age and sex distribution, educational attainment, illiteracy, marital status, childbirth, mortality, immigration (since 1985), industrial/economic activity, occupation, and ethnicity. The agricultural economic data encompasses rural population, labor force, forestry, livestock and fishery, commodities, equipment, utilities, irrigation, and output value. The boundary data are at a scale of one to one million (1:1M) at the county level. This data set is produced in collaboration with the University of Washington as part of the China in Time and Space (CITAS) project, University of California-Davis China in Time and Space (CITAS) project, and the Center for International Earth Science Information Network (CIESIN).
As of 2023, the bulk of the Chinese population was aged between 25 and 59 years, amounting to around half of the population. A breakdown of the population by broad age groups reveals that around 61.3 percent of the total population was in working age between 16 and 59 years in 2023. Age cohorts below 25 years were considerably smaller, although there was a slight growth trend in recent years. Population development in China Population development in China over the past decades has been strongly influenced by political and economic factors. After a time of high fertility rates during the Maoist regime, China introduced birth-control measures in the 1970s, including the so-called one-child policy. The fertility rate dropped accordingly from around six children per woman in the 1960s to below two at the end of the 20th century. At the same time, life expectancy increased consistently. In the face of a rapidly aging society, the government gradually lifted the one-child policy after 2012, finally arriving at a three-child policy in 2021. However, like in most other developed countries nowadays, people in China are reluctant to have more than one or two children due to high costs of living and education, as well as changed social norms and private values. China’s top-heavy age pyramid The above-mentioned developments are clearly reflected in the Chinese age pyramid. The age cohorts between 30 and 39 years are the last two larger age cohorts. The cohorts between 15 and 24, which now enter childbearing age, are decisively smaller, which will have a negative effect on the number of births in the coming decade. When looking at a gender distribution of the population pyramid, a considerable gender gap among the younger age cohorts becomes visible, leaving even less room for growth in birth figures.
This layer shows the Hong Kong population density in 2021 Population Census. It is a subset of the census data 2021 made available by the Census and Statistics Department under the Government of Hong Kong Special Administrative Region (the “Government”) at https://DATA.GOV.HK/ (“DATA.GOV.HK”). The source data is in XLSX format and has been processed and converted into Esri File Geodatabase format and then uploaded to Esri’s ArcGIS Online platform for sharing and reference purpose. The objectives are to facilitate our Hong Kong ArcGIS Online users to use the data in a spatial ready format and save their data conversion effort.For details about the data, source format and terms of conditions of usage, please refer to the website of DATA.GOV.HK at https://data.gov.hk.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Auxiliary Data.gdb: Land_use: original land use data POI_name: interests-point-data from the Amap platform (name indicates category)
New_gridded_population_dataset(.gdb): experimental result data, i.e., a gridded population map of mainland China with a resolution of 100 meters
New_minus_WorldPop_PopulationResidual(.gdb): pixel-level residuals of the new gridded population dataset with the Worldpop dataset
POI_Correlation_Coefficient: Zonal statistical output of POI kernel density values: summary of various POI kernel densities in residential areas of administrative units Summary of POI Pearson correlation coefficients: sum of Pearson's correlation coefficients for 13 types of POIs at a certain bandwidth
PopulationData_AdministrativeUnitLevel.gdb: Population_data_mainlandChina_level3: population data at the district and county level in mainland China Population_data_Name_level4_Table: township and street-level population data for provinces and municipalities
Note: Due to the storage space limitation, 3D building, nighttime light, and WorldPop datasets have not been uploaded. To access these publicly available data, please visit the official website via the "Related links" at the bottom. In addition, we are not authorized to share data for the fourth level of administrative boundaries, so we only share the corresponding population data in tabular form.
This Web Map shows the Hong Kong Population Distribution Able to Read and Write Chinese and English by Large Tertiary Planning Unit Group in 2021. It is a subset of the 2021 Population Census made available by the Census and Statistics Department under the Government of Hong Kong Special Administrative Region (the "Government") at https://portal.csdi.gov.hk ("CSDI Portal"). The source data is in CSV format and has been processed and converted into Esri File Geodatabase format and then uploaded to Esri’s ArcGIS Online platform for sharing and reference purpose. The objectives are to facilitate our Hong Kong ArcGIS Online users to use the data in a spatial ready format and save their data conversion effort.For details about the data, source format and terms of conditions of usage, please refer to the website of CSDI Portal at https://portal.csdi.gov.hk.
This web map shows the Population distribution by Ethnicity in 2016 within the 18 districts of Hong Kong. It is a subset of the census data 2016 made available by the Census and Statistics Department under the Government of Hong Kong Special Administrative Region (the “Government”) at https://DATA.GOV.HK/ (“DATA.GOV.HK”). The source data is in XLSX format and has been processed and converted into Esri File Geodatabase format and then uploaded to Esri’s ArcGIS Online platform for sharing and reference purpose. The objectives are to facilitate our Hong Kong ArcGIS Online users to use the data in a spatial ready format and save their data conversion effort.For details about the data, source format and terms of conditions of usage, please refer to the website of DATA.GOV.HK at https://data.gov.hk.
In 2023, approximately 127.1 million people lived in Guangdong province in China. That same year, only about 3.65 million people lived in the sparsely populated highlands of Tibet. Regional differences in China China is the world’s most populous country, with an exceptional economic growth momentum. The country can be roughly divided into three regions: Western, Eastern, and Central China. Western China covers the most remote regions from the sea. It also has the highest proportion of minority population and the lowest levels of economic output. Eastern China, on the other hand, enjoys a high level of economic development and international corporations. Central China lags behind in comparison to the booming coastal regions. In order to accelerate the economic development of Western and Central Chinese regions, the PRC government has ramped up several incentive plans such as ‘Rise of Central China’ and ‘China Western Development’. Economic power of different provinces When observed individually, some provinces could stand an international comparison. Jiangxi province, for example, a medium-sized Chinese province, had a population size comparable to Argentina or Spain in 2023. That year, the GDP of Zhejiang, an eastern coastal province, even exceeded the economic output of the Netherlands. In terms of per capita annual income, the municipality of Shanghai reached a level close to that of the Czech Republik. Nevertheless, as shown by the Gini Index, China’s economic spur leaves millions of people in dust. Among the various kinds of economic inequality in China, regional or the so-called coast-inland disparity is one of the most significant. Posing as evidence for the rather large income gap in China, the poorest province Heilongjiang had a per capita income similar to that of Sri Lanka that year.
This web map shows the Population distribution by quarter type in 2016 within the 18 districts of Hong Kong. It is a subset of the census data 2016 made available by the Census and Statistics Department under the Government of Hong Kong Special Administrative Region (the “Government”) at https://DATA.GOV.HK/ (“DATA.GOV.HK”). The source data is in XLSX format and has been processed and converted into Esri File Geodatabase format and then uploaded to Esri’s ArcGIS Online platform for sharing and reference purpose. The objectives are to facilitate our Hong Kong ArcGIS Online users to use the data in a spatial ready format and save their data conversion effort.For details about the data, source format and terms of conditions of usage, please refer to the website of DATA.GOV.HK at https://data.gov.hk.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This web map shows the Working population distribution by industry in 2016 within the 18 districts of Hong Kong. It is a subset of the census data 2016 made available by the Census and Statistics Department under the Government of Hong Kong Special Administrative Region (the “Government”) at https://DATA.GOV.HK/ (“DATA.GOV.HK”). The source data is in CSV format and has been processed and converted into Esri File Geodatabase format and then uploaded to Esri’s ArcGIS Online platform for sharing and reference purpose. The objectives are to facilitate our Hong Kong ArcGIS Online users to use the data in a spatial ready format and save their data conversion effort.For details about the data, source format and terms of conditions of usage, please refer to the website of DATA.GOV.HK at https://data.gov.hk.
This layer shows the Hong Kong Population Distribution Able to Read and Write Chinese and English by Large TPU in 2016. It is a subset of the census data 2016 made available by the Census and Statistics Department under the Government of Hong Kong Special Administrative Region (the “Government”) at https://DATA.GOV.HK/ (“DATA.GOV.HK”). The source data is in XLSX format and has been processed and converted into Esri File Geodatabase format and then uploaded to Esri’s ArcGIS Online platform for sharing and reference purpose. The objectives are to facilitate our Hong Kong ArcGIS Online users to use the data in a spatial ready format and save their data conversion effort.For details about the data, source format and terms of conditions of usage, please refer to the website of DATA.GOV.HK at https://data.gov.hk.
This web map shows the population distribution by quinquennial age group 2001 within the 18 districts of Hong Kong. It is a subset of the census data 2001 made available by the Census and Statistics Department under the Government of Hong Kong Special Administrative Region (the “Government”) at https://DATA.GOV.HK/ (“DATA.GOV.HK”). The source data is in CSV format and has been processed and converted into Esri File Geodatabase format and then uploaded to Esri’s ArcGIS Online platform for sharing and reference purpose. The objectives are to facilitate our Hong Kong ArcGIS Online users to use the data in a spatial ready format and save their data conversion effort.For details about the data, source format and terms of conditions of usage, please refer to the website of Data.gov.hk at https://data.gov.hk.
This web map shows the population distribution by quinquennial age group 2011 within the 18 districts of Hong Kong. It is a subset of the census data 2011 made available by the Census and Statistics Department under the Government of Hong Kong Special Administrative Region (the “Government”) at https://DATA.GOV.HK/ (“DATA.GOV.HK”). The source data is in XLSX format and has been processed and converted into Esri File Geodatabase format and then uploaded to Esri’s ArcGIS Online platform for sharing and reference purpose. The objectives are to facilitate our Hong Kong ArcGIS Online users to use the data in a spatial ready format and save their data conversion effort.
For details about the data, source format and terms of conditions of usage, please refer to the website of DATA.GOV.HK at https://data.gov.hk.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This paper examines the spatial distribution pattern and influencing factors of Martial Arts Schools (MASs) based on Baidu map data and Geographic Information System (GIS) in China. Using python to obtain the latitude and longitude data of the MASs through Baidu Map API, and with the help of ArcGIS (10.7) to coordinate information presented on the map of China. By harnessing the geographic latitude and longitude data for 492 MASs across 31 Provinces in China mainland as of May 2024, this study employs a suite of analytical tools including nearest neighbor analysis, kernel density estimation, the disequilibrium index, spatial autocorrelation, and geographically weighted regression analysis within the ArcGIS environment, to graphically delineate the spatial distribution nuances of MASs. The investigation draws upon variables such as martial arts boxings, Wushu hometowns, intangible cultural heritage boxings of Wushu, population education level, Per capita disposable income, and population density to elucidate the spatial distribution idiosyncrasies of MASs. (1) The spatial analytical endeavor unveiled a Moran’s I value of 0.172, accompanied by a Z-score of 1.75 and a P-value of 0.079, signifying an uneven and clustered distribution pattern predominantly concentrated in provinces such as Shandong, Henan, Hebei, Hunan, and Sichuan. (2) The delineation of MASs exhibited a prominent high-density core centered around Shandong, flanked by secondary high-density clusters with Hunan and Sichuan at their heart. (3) Amongst the array of variables dissected to explain the spatial distribution traits, the explicative potency of ‘martial arts boxings’, ‘Wushu hometowns’, ‘intangible cultural heritage boxings of Wushu’, ‘population education level’, ‘Per capita disposable income’, and ‘population density’ exhibited a descending trajectory, whilst ‘educational level of the populace’ inversely correlated with the geographical dispersion of MASs. (4) The entrenched regional cultural ethos significantly impacts the spatial layout of martial arts institutions, endowing them with distinct regional characteristics.
This web map shows the Population distribution by household sizes in 2016 within the 18 districts of Hong Kong. It is a subset of the census data 2016 made available by the Census and Statistics Department under the Government of Hong Kong Special Administrative Region (the “Government”) at https://DATA.GOV.HK/ (“DATA.GOV.HK”). The source data is in XLSX format and has been processed and converted into Esri File Geodatabase format and then uploaded to Esri’s ArcGIS Online platform for sharing and reference purpose. The objectives are to facilitate our Hong Kong ArcGIS Online users to use the data in a spatial ready format and save their data conversion effort.For details about the data, source format and terms of conditions of usage, please refer to the website of DATA.GOV.HK at https://data.gov.hk.
This web map shows the Population distribution by quarter type in 2001 within the 18 districts of Hong Kong. It is a subset of the census data 2001 made available by the Census and Statistics Department under the Government of Hong Kong Special Administrative Region (the “Government”) at https://DATA.GOV.HK/ (“DATA.GOV.HK”). The source data is in CSV format and has been processed and converted into Esri File Geodatabase format and then uploaded to Esri’s ArcGIS Online platform for sharing and reference purpose. The objectives are to facilitate our Hong Kong ArcGIS Online users to use the data in a spatial ready format and save their data conversion effort.For details about the data, source format and terms of conditions of usage, please refer to the website of Data.gov.hk at https://data.gov.hk.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Infectious disease transmission is an inherently spatial process in which a host’s home location and their social mixing patterns are important, with the mixing of infectious individuals often different to that of susceptible individuals. Although incidence data for humans have traditionally been aggregated into low-resolution data sets, modern representative surveillance systems such as electronic hospital records generate high volume case data with precise home locations. Here, we use a gridded spatial transmission model of arbitrary resolution to investigate the theoretical relationship between population density, differential population movement and local variability in incidence. We show analytically that a uniform local attack rate is typically only possible for individual pixels in the grid if susceptible and infectious individuals move in the same way. Using a population in Guangdong, China, for which a robust quantitative description of movement is available (a travel kernel), and a natural history consistent with pandemic influenza; we show that local cumulative incidence is positively correlated with population density when susceptible individuals are more connected in space than infectious individuals. Conversely, under the less intuitively likely scenario, when infectious individuals are more connected, local cumulative incidence is negatively correlated with population density. The strength and direction of correlation changes sign for other kernel parameter values. We show that simulation models in which it is assumed implicitly that only infectious individuals move are assuming a slightly unusual specific correlation between population density and attack rate. However, we also show that this potential structural bias can be corrected by using the appropriate non-isotropic kernel that maps infectious-only code onto the isotropic dual-mobility kernel. These results describe a precise relationship between the spatio-social mixing of infectious and susceptible individuals and local variability in attack rates. More generally, these results suggest a genuine risk that mechanistic models of high-resolution attack rate data may reach spurious conclusions if the precise implications of spatial force-of-infection assumptions are not first fully characterized, prior to models being fit to data.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The urban spatial structure in this study refers to the combination of different categories of land use, and the purpose of the study is to reveal the intrinsic correlation characteristics between urban land use structural combination forms and urban functions. Through the integration of land and population maps and other multi-source data, with the help of exploratory spatial data analysis and other models, this research deals with the land use spatial structure characteristics of Changchun city and its coordination relationship with urban functions. Main conclusions of the study are as follows. The overall density of the land use in the central urban area of Changchun shows patterns of the core being higher than the periphery, the large-scale agglomeration being significant and the small-scale relatively scattered, and the pattern of the mixed land use function index has obvious differentiation characteristics. The study shows that, in the context of the spatial pattern, the overall coupling coordination degree of the land use structure index and the urban function index shows a trend of a gradual decrease, from the core to the periphery. In the context of category differences, the coupling coordination of the land use structure with the population distribution and the Baidu thermal distribution is relatively high, and the coupling coordination with various service facilities is relatively low. Finally, in the context of scale differences, all types of coupling coordination degrees have significant sensitivity to the spatial scales. A large scale significantly reflects the overall decrease in the coupling coordination degrees from the core to the periphery, while a small scale shows the polycentric pattern characteristics of the urban spatial structure.
This layer shows the Mid Year Population Density within the 18 districts of Hong Kong. It is a subset of data made available by the Census and Statistics Department under the Government of Hong Kong Special Administrative Region (the “Government”) at https://DATA.GOV.HK/ (“DATA.GOV.HK”). The source data is in CSV format and has been processed and converted into Esri File Geodatabase format and then uploaded to Esri’s ArcGIS Online platform for sharing and reference purpose. The objectives are to facilitate our Hong Kong ArcGIS Online users to use the data in a spatial ready format and save their data conversion effort.For details about the data, source format and terms of conditions of usage, please refer to the website of DATA.GOV.HK at https://data.gov.hk.
The research on the vulnerability dataset of disaster bearing bodies in the China Pakistan Economic Corridor (domestic section) is based on multi-source data fusion, and a vulnerability evaluation system covering natural disasters and socio-economic systems has been constructed. This dataset integrates field survey data (infrastructure distribution, population density), satellite remote sensing data (surface deformation monitoring, vegetation coverage), and statistical yearbook data (GDP, disaster prevention investment), and forms a multidimensional vulnerability database through GIS spatial analysis, remote sensing interpretation, and data standardization processing. The research team has developed a three-dimensional evaluation index system that includes exposure, sensitivity, and adaptability. The exposure index covers physical elements such as the proportion of geological hazard prone areas and the density of transportation arteries; Sensitivity indicators involve socio-economic factors such as ecological vulnerability index and poverty incidence rate; The indicators of adaptability include emergency response capability, medical resource density, and other elements of disaster prevention and reduction capability. To improve the evaluation accuracy, the traditional vulnerability index model was improved by introducing the random forest algorithm for weight optimization, and the stability of the model was verified through Monte Carlo simulation. The analysis results show that there is significant spatial heterogeneity in the domestic section of the corridor: high vulnerability areas are concentrated in the Karakoram Pamir geologically active zone, driven by a combination of frequent extreme weather events, insufficient infrastructure disaster resistance standards, and weak regional economic resilience. The future research can be further extended to the high-altitude mountains along the "the Belt and Road". In combination with multi-scale remote sensing monitoring and socio-economic big data, we can deepen the research on the formation mechanism of cross-border disaster risk in the context of climate change, and provide scientific support for building a resilient Silk Road.
The China County-Level Data on Population (Census) and Agriculture, Keyed To 1:1M GIS Map consists of census, agricultural economic, and boundary data for the administrative regions of China for 1990. The census data includes urban and rural residency, age and sex distribution, educational attainment, illiteracy, marital status, childbirth, mortality, immigration (since 1985), industrial/economic activity, occupation, and ethnicity. The agricultural economic data encompasses rural population, labor force, forestry, livestock and fishery, commodities, equipment, utilities, irrigation, and output value. The boundary data are at a scale of one to one million (1:1M) at the county level. This data set is produced in collaboration with the University of Washington as part of the China in Time and Space (CITAS) project, University of California-Davis China in Time and Space (CITAS) project, and the Center for International Earth Science Information Network (CIESIN).