19 datasets found
  1. N

    China, TX Population Breakdown by Gender and Age Dataset: Male and Female...

    • neilsberg.com
    csv, json
    Updated Feb 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). China, TX Population Breakdown by Gender and Age Dataset: Male and Female Population Distribution Across 18 Age Groups // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/e1d7b2bf-f25d-11ef-8c1b-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    China, Texas
    Variables measured
    Male and Female Population Under 5 Years, Male and Female Population over 85 years, Male and Female Population Between 5 and 9 years, Male and Female Population Between 10 and 14 years, Male and Female Population Between 15 and 19 years, Male and Female Population Between 20 and 24 years, Male and Female Population Between 25 and 29 years, Male and Female Population Between 30 and 34 years, Male and Female Population Between 35 and 39 years, Male and Female Population Between 40 and 44 years, and 8 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the three variables, namely (a) Population (Male), (b) Population (Female), and (c) Gender Ratio (Males per 100 Females), we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau across 18 age groups, ranging from under 5 years to 85 years and above. These age groups are described above in the variables section. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of China by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for China. The dataset can be utilized to understand the population distribution of China by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in China. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for China.

    Key observations

    Largest age group (population): Male # 15-19 years (52) | Female # 20-24 years (65). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.

    Variables / Data Columns

    • Age Group: This column displays the age group for the China population analysis. Total expected values are 18 and are define above in the age groups section.
    • Population (Male): The male population in the China is shown in the following column.
    • Population (Female): The female population in the China is shown in the following column.
    • Gender Ratio: Also known as the sex ratio, this column displays the number of males per 100 females in China for each age group.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for China Population by Gender. You can refer the same here

  2. N

    China, Maine Population Breakdown by Gender and Age Dataset: Male and Female...

    • neilsberg.com
    csv, json
    Updated Feb 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). China, Maine Population Breakdown by Gender and Age Dataset: Male and Female Population Distribution Across 18 Age Groups // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/e1d7b1cc-f25d-11ef-8c1b-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Maine, China
    Variables measured
    Male and Female Population Under 5 Years, Male and Female Population over 85 years, Male and Female Population Between 5 and 9 years, Male and Female Population Between 10 and 14 years, Male and Female Population Between 15 and 19 years, Male and Female Population Between 20 and 24 years, Male and Female Population Between 25 and 29 years, Male and Female Population Between 30 and 34 years, Male and Female Population Between 35 and 39 years, Male and Female Population Between 40 and 44 years, and 8 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the three variables, namely (a) Population (Male), (b) Population (Female), and (c) Gender Ratio (Males per 100 Females), we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau across 18 age groups, ranging from under 5 years to 85 years and above. These age groups are described above in the variables section. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of China town by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for China town. The dataset can be utilized to understand the population distribution of China town by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in China town. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for China town.

    Key observations

    Largest age group (population): Male # 25-29 years (307) | Female # 55-59 years (294). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.

    Variables / Data Columns

    • Age Group: This column displays the age group for the China town population analysis. Total expected values are 18 and are define above in the age groups section.
    • Population (Male): The male population in the China town is shown in the following column.
    • Population (Female): The female population in the China town is shown in the following column.
    • Gender Ratio: Also known as the sex ratio, this column displays the number of males per 100 females in China town for each age group.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for China town Population by Gender. You can refer the same here

  3. Hong Kong Population - Women and Men in Hong Kong - Key Statistics [-...

    • data.gov.hk
    csv
    Updated Jul 29, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Census and Statistics Department (2021). Hong Kong Population - Women and Men in Hong Kong - Key Statistics [- Accompanying Files] [CSV Datasets] [Bilingual(Traditional Chinese and English)] [Dataset]. https://data.gov.hk/en-data/dataset/hk-censtatd-tablechart-popn/resource/f6c4ce9f-dd3a-46c5-9bda-0e9c5bf4747b
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jul 29, 2021
    Dataset provided by
    Census And Statistics Departmenthttps://www.censtatd.gov.hk/
    License

    http://data.gov.hk/en/terms-and-conditionshttp://data.gov.hk/en/terms-and-conditions

    Area covered
    Hong Kong
    Description

    Please visit https://www.censtatd.gov.hk/en/EIndexbySubject.html?scode=180&pcode=B1130303 for the historical issues, related publications, concept, methods, definitions of terms, and notes of this dataset. User can download, distribute and reproduce free of charge for both commercial and non-commercial purposes subject to the Terms and Conditions of Use as stipulated under DATA.GOV.HK.

  4. N

    China Township, Michigan Population Breakdown by Gender and Age Dataset:...

    • neilsberg.com
    csv, json
    Updated Feb 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). China Township, Michigan Population Breakdown by Gender and Age Dataset: Male and Female Population Distribution Across 18 Age Groups // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/e1d7b247-f25d-11ef-8c1b-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    China Township, Michigan
    Variables measured
    Male and Female Population Under 5 Years, Male and Female Population over 85 years, Male and Female Population Between 5 and 9 years, Male and Female Population Between 10 and 14 years, Male and Female Population Between 15 and 19 years, Male and Female Population Between 20 and 24 years, Male and Female Population Between 25 and 29 years, Male and Female Population Between 30 and 34 years, Male and Female Population Between 35 and 39 years, Male and Female Population Between 40 and 44 years, and 8 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the three variables, namely (a) Population (Male), (b) Population (Female), and (c) Gender Ratio (Males per 100 Females), we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau across 18 age groups, ranging from under 5 years to 85 years and above. These age groups are described above in the variables section. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of China township by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for China township. The dataset can be utilized to understand the population distribution of China township by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in China township. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for China township.

    Key observations

    Largest age group (population): Male # 10-14 years (214) | Female # 5-9 years (169). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.

    Variables / Data Columns

    • Age Group: This column displays the age group for the China township population analysis. Total expected values are 18 and are define above in the age groups section.
    • Population (Male): The male population in the China township is shown in the following column.
    • Population (Female): The female population in the China township is shown in the following column.
    • Gender Ratio: Also known as the sex ratio, this column displays the number of males per 100 females in China township for each age group.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for China township Population by Gender. You can refer the same here

  5. k

    Worldbank - Gender Statistics

    • datasource.kapsarc.org
    Updated Jul 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Worldbank - Gender Statistics [Dataset]. https://datasource.kapsarc.org/explore/dataset/worldbank-gender-statistics-gcc/
    Explore at:
    Dataset updated
    Jul 11, 2025
    Description

    Explore gender statistics data focusing on academic staff, employment, fertility rates, GDP, poverty, and more in the GCC region. Access comprehensive information on key indicators for Bahrain, China, India, Kuwait, Oman, Qatar, and Saudi Arabia.

    academic staff, Access to anti-retroviral drugs, Adjusted net enrollment rate, Administration and Law programmes, Age at first marriage, Age dependency ratio, Cause of death, Children out of school, Completeness of birth registration, consumer prices, Cost of business start-up procedures, Employers, Employment in agriculture, Employment in industry, Employment in services, employment or training, Engineering and Mathematics programmes, Female headed households, Female migrants, Fertility planning status: mistimed pregnancy, Fertility planning status: planned pregnancy, Fertility rate, Firms with female participation in ownership, Fisheries and Veterinary programmes, Forestry, GDP, GDP growth, GDP per capita, gender parity index, Gini index, GNI, GNI per capita, Government expenditure on education, Government expenditure per student, Gross graduation ratio, Households with water on the premises, Inflation, Informal employment, Labor force, Labor force with advanced education, Labor force with basic education, Labor force with intermediate education, Learning poverty, Length of paid maternity leave, Life expectancy at birth, Mandatory retirement age, Manufacturing and Construction programmes, Mathematics and Statistics programmes, Number of under-five deaths, Part time employment, Population, Poverty headcount ratio at national poverty lines, PPP, Primary completion rate, Retirement age with full benefits, Retirement age with partial benefits, Rural population, Sex ratio at birth, Unemployment, Unemployment with advanced education, Urban population

    Bahrain, China, India, Kuwait, Oman, Qatar, Saudi Arabia

    Follow data.kapsarc.org for timely data to advance energy economics research.

  6. Hong Kong Population - Table E621 : Women and Men in Hong Kong - Key...

    • data.gov.hk
    xlsx
    Updated Jul 29, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Census and Statistics Department (2021). Hong Kong Population - Table E621 : Women and Men in Hong Kong - Key Statistics - Traffic and Transport [Traditional Chinese] [Dataset]. https://data.gov.hk/en-data/dataset/hk-censtatd-tablechart-popn/resource/2406cb46-13d0-4c35-8ceb-9dcc8e46464e
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jul 29, 2021
    Dataset provided by
    Census And Statistics Departmenthttps://www.censtatd.gov.hk/
    License

    http://data.gov.hk/en/terms-and-conditionshttp://data.gov.hk/en/terms-and-conditions

    Area covered
    Hong Kong
    Description

    Please visit https://www.censtatd.gov.hk/tc/EIndexbySubject.html?scode=180&pcode=D5600621 for the historical issues, related publications, concept, methods, definitions of terms, and notes of this dataset. User can download, distribute and reproduce free of charge for both commercial and non-commercial purposes subject to the Terms and Conditions of Use as stipulated under DATA.GOV.HK.

  7. H

    China - Age and Sex Structures (2015-2030)

    • data.humdata.org
    geotiff
    Updated May 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WorldPop (2025). China - Age and Sex Structures (2015-2030) [Dataset]. https://data.humdata.org/dataset/worldpop-age-and-sex-structures-2015-2030-chn
    Explore at:
    geotiffAvailable download formats
    Dataset updated
    May 24, 2025
    Dataset provided by
    WorldPop
    Description

    Constrained estimates of total number of people per grid square broken down by gender and age groupings (including 0-1 and by 5-year up to 90+) for China, version v1. The dataset is available to download in Geotiff format at a resolution of 3 arc (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. The units are estimated number of male, female or both in each age group per grid square.

    More information can be found in the Release Statement

    The difference between constrained and unconstrained is explained on this page: https://www.worldpop.org/methods/top_down_constrained_vs_unconstrained

    File Descriptions:

    {iso} {gender} {age group} {year} {type} {resolution}.tif

    iso

    Three-letter country code

    gender

    m = male, f= female, t = both genders

    age group

    • 00 = age group 0 to 12 months
    • 01 = age group 1 to 4 years
    • 05 = age group 5 to 9 years
    • 90 = age 90 years and over

    year

    Year that the population represents

    type

    CN = Constrained , UC= Unconstrained

    resolution

    Resolution of the data e.q. 100m = 3 arc (approximately 100m at the equator)

  8. Hong Kong Population - Table E611 : Women and Men in Hong Kong - Key...

    • data.gov.hk
    xlsx
    Updated Jul 29, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Census and Statistics Department (2021). Hong Kong Population - Table E611 : Women and Men in Hong Kong - Key Statistics - Marriage, Fertility and Family Conditions [Traditional Chinese] [Dataset]. https://data.gov.hk/en-data/dataset/hk-censtatd-tablechart-popn/resource/ef4d73ca-99fc-4013-9dc0-2ef5178dff7d
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jul 29, 2021
    Dataset provided by
    Census And Statistics Departmenthttps://www.censtatd.gov.hk/
    License

    http://data.gov.hk/en/terms-and-conditionshttp://data.gov.hk/en/terms-and-conditions

    Area covered
    Hong Kong
    Description

    Please visit https://www.censtatd.gov.hk/tc/EIndexbySubject.html?scode=180&pcode=D5600611 for the historical issues, related publications, concept, methods, definitions of terms, and notes of this dataset. User can download, distribute and reproduce free of charge for both commercial and non-commercial purposes subject to the Terms and Conditions of Use as stipulated under DATA.GOV.HK.

  9. N

    China Grove, NC Population Breakdown by Gender and Age Dataset: Male and...

    • neilsberg.com
    csv, json
    Updated Feb 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). China Grove, NC Population Breakdown by Gender and Age Dataset: Male and Female Population Distribution Across 18 Age Groups // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/e1d7b0d4-f25d-11ef-8c1b-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    China Grove, North Carolina
    Variables measured
    Male and Female Population Under 5 Years, Male and Female Population over 85 years, Male and Female Population Between 5 and 9 years, Male and Female Population Between 10 and 14 years, Male and Female Population Between 15 and 19 years, Male and Female Population Between 20 and 24 years, Male and Female Population Between 25 and 29 years, Male and Female Population Between 30 and 34 years, Male and Female Population Between 35 and 39 years, Male and Female Population Between 40 and 44 years, and 8 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the three variables, namely (a) Population (Male), (b) Population (Female), and (c) Gender Ratio (Males per 100 Females), we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau across 18 age groups, ranging from under 5 years to 85 years and above. These age groups are described above in the variables section. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of China Grove by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for China Grove. The dataset can be utilized to understand the population distribution of China Grove by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in China Grove. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for China Grove.

    Key observations

    Largest age group (population): Male # 30-34 years (345) | Female # 30-34 years (366). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.

    Variables / Data Columns

    • Age Group: This column displays the age group for the China Grove population analysis. Total expected values are 18 and are define above in the age groups section.
    • Population (Male): The male population in the China Grove is shown in the following column.
    • Population (Female): The female population in the China Grove is shown in the following column.
    • Gender Ratio: Also known as the sex ratio, this column displays the number of males per 100 females in China Grove for each age group.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for China Grove Population by Gender. You can refer the same here

  10. k

    Development Indicators

    • datasource.kapsarc.org
    Updated Apr 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Development Indicators [Dataset]. https://datasource.kapsarc.org/explore/dataset/saudi-arabia-world-development-indicators-1960-2014/
    Explore at:
    Dataset updated
    Apr 26, 2025
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Description

    Explore the Saudi Arabia World Development Indicators dataset , including key indicators such as Access to clean fuels, Adjusted net enrollment rate, CO2 emissions, and more. Find valuable insights and trends for Saudi Arabia, Bahrain, Kuwait, Oman, Qatar, China, and India.

    Indicator, Access to clean fuels and technologies for cooking, rural (% of rural population), Access to electricity (% of population), Adjusted net enrollment rate, primary, female (% of primary school age children), Adjusted net national income (annual % growth), Adjusted savings: education expenditure (% of GNI), Adjusted savings: mineral depletion (current US$), Adjusted savings: natural resources depletion (% of GNI), Adjusted savings: net national savings (current US$), Adolescents out of school (% of lower secondary school age), Adolescents out of school, female (% of female lower secondary school age), Age dependency ratio (% of working-age population), Agricultural methane emissions (% of total), Agriculture, forestry, and fishing, value added (current US$), Agriculture, forestry, and fishing, value added per worker (constant 2015 US$), Alternative and nuclear energy (% of total energy use), Annualized average growth rate in per capita real survey mean consumption or income, total population (%), Arms exports (SIPRI trend indicator values), Arms imports (SIPRI trend indicator values), Average working hours of children, working only, ages 7-14 (hours per week), Average working hours of children, working only, male, ages 7-14 (hours per week), Cause of death, by injury (% of total), Cereal yield (kg per hectare), Changes in inventories (current US$), Chemicals (% of value added in manufacturing), Child employment in agriculture (% of economically active children ages 7-14), Child employment in manufacturing, female (% of female economically active children ages 7-14), Child employment in manufacturing, male (% of male economically active children ages 7-14), Child employment in services (% of economically active children ages 7-14), Child employment in services, female (% of female economically active children ages 7-14), Children (ages 0-14) newly infected with HIV, Children in employment, study and work (% of children in employment, ages 7-14), Children in employment, unpaid family workers (% of children in employment, ages 7-14), Children in employment, wage workers (% of children in employment, ages 7-14), Children out of school, primary, Children out of school, primary, male, Claims on other sectors of the domestic economy (annual growth as % of broad money), CO2 emissions (kg per 2015 US$ of GDP), CO2 emissions (kt), CO2 emissions from other sectors, excluding residential buildings and commercial and public services (% of total fuel combustion), CO2 emissions from transport (% of total fuel combustion), Communications, computer, etc. (% of service exports, BoP), Condom use, population ages 15-24, female (% of females ages 15-24), Container port traffic (TEU: 20 foot equivalent units), Contraceptive prevalence, any method (% of married women ages 15-49), Control of Corruption: Estimate, Control of Corruption: Percentile Rank, Upper Bound of 90% Confidence Interval, Control of Corruption: Standard Error, Coverage of social insurance programs in 4th quintile (% of population), CPIA building human resources rating (1=low to 6=high), CPIA debt policy rating (1=low to 6=high), CPIA policies for social inclusion/equity cluster average (1=low to 6=high), CPIA public sector management and institutions cluster average (1=low to 6=high), CPIA quality of budgetary and financial management rating (1=low to 6=high), CPIA transparency, accountability, and corruption in the public sector rating (1=low to 6=high), Current education expenditure, secondary (% of total expenditure in secondary public institutions), DEC alternative conversion factor (LCU per US$), Deposit interest rate (%), Depth of credit information index (0=low to 8=high), Diarrhea treatment (% of children under 5 who received ORS packet), Discrepancy in expenditure estimate of GDP (current LCU), Domestic private health expenditure per capita, PPP (current international $), Droughts, floods, extreme temperatures (% of population, average 1990-2009), Educational attainment, at least Bachelor's or equivalent, population 25+, female (%) (cumulative), Educational attainment, at least Bachelor's or equivalent, population 25+, male (%) (cumulative), Educational attainment, at least completed lower secondary, population 25+, female (%) (cumulative), Educational attainment, at least completed primary, population 25+ years, total (%) (cumulative), Educational attainment, at least Master's or equivalent, population 25+, male (%) (cumulative), Educational attainment, at least Master's or equivalent, population 25+, total (%) (cumulative), Electricity production from coal sources (% of total), Electricity production from nuclear sources (% of total), Employers, total (% of total employment) (modeled ILO estimate), Employment in industry (% of total employment) (modeled ILO estimate), Employment in services, female (% of female employment) (modeled ILO estimate), Employment to population ratio, 15+, male (%) (modeled ILO estimate), Employment to population ratio, ages 15-24, total (%) (national estimate), Energy use (kg of oil equivalent per capita), Export unit value index (2015 = 100), Exports of goods and services (% of GDP), Exports of goods, services and primary income (BoP, current US$), External debt stocks (% of GNI), External health expenditure (% of current health expenditure), Female primary school age children out-of-school (%), Female share of employment in senior and middle management (%), Final consumption expenditure (constant 2015 US$), Firms expected to give gifts in meetings with tax officials (% of firms), Firms experiencing losses due to theft and vandalism (% of firms), Firms formally registered when operations started (% of firms), Fixed broadband subscriptions, Fixed telephone subscriptions (per 100 people), Foreign direct investment, net outflows (% of GDP), Forest area (% of land area), Forest area (sq. km), Forest rents (% of GDP), GDP growth (annual %), GDP per capita (constant LCU), GDP per unit of energy use (PPP $ per kg of oil equivalent), GDP, PPP (constant 2017 international $), General government final consumption expenditure (current LCU), GHG net emissions/removals by LUCF (Mt of CO2 equivalent), GNI growth (annual %), GNI per capita (constant LCU), GNI, PPP (current international $), Goods and services expense (current LCU), Government Effectiveness: Percentile Rank, Government Effectiveness: Percentile Rank, Lower Bound of 90% Confidence Interval, Government Effectiveness: Standard Error, Gross capital formation (annual % growth), Gross capital formation (constant 2015 US$), Gross capital formation (current LCU), Gross fixed capital formation, private sector (% of GDP), Gross intake ratio in first grade of primary education, male (% of relevant age group), Gross intake ratio in first grade of primary education, total (% of relevant age group), Gross national expenditure (current LCU), Gross national expenditure (current US$), Households and NPISHs Final consumption expenditure (constant LCU), Households and NPISHs Final consumption expenditure (current US$), Households and NPISHs Final consumption expenditure, PPP (constant 2017 international $), Households and NPISHs final consumption expenditure: linked series (current LCU), Human capital index (HCI) (scale 0-1), Human capital index (HCI), male (scale 0-1), Immunization, DPT (% of children ages 12-23 months), Import value index (2015 = 100), Imports of goods and services (% of GDP), Incidence of HIV, ages 15-24 (per 1,000 uninfected population ages 15-24), Incidence of HIV, all (per 1,000 uninfected population), Income share held by highest 20%, Income share held by lowest 20%, Income share held by third 20%, Individuals using the Internet (% of population), Industry (including construction), value added (constant LCU), Informal payments to public officials (% of firms), Intentional homicides, male (per 100,000 male), Interest payments (% of expense), Interest rate spread (lending rate minus deposit rate, %), Internally displaced persons, new displacement associated with conflict and violence (number of cases), International tourism, expenditures for passenger transport items (current US$), International tourism, expenditures for travel items (current US$), Investment in energy with private participation (current US$), Labor force participation rate for ages 15-24, female (%) (modeled ILO estimate), Development

    Saudi Arabia, Bahrain, Kuwait, Oman, Qatar, China, India Follow data.kapsarc.org for timely data to advance energy economics research..

  11. f

    Data_Sheet_1_Influencing Factors Related to Female Sports Participation...

    • frontiersin.figshare.com
    pdf
    Updated Jun 6, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ping Fang; Lei Sun; Shu Sheng Shi; Rizwan Ahmed Laar; Yan Lu (2023). Data_Sheet_1_Influencing Factors Related to Female Sports Participation Under the Implementation of Chinese Government Interventions: An Analysis Based on the China Family Panel Studies.pdf [Dataset]. http://doi.org/10.3389/fpubh.2022.875373.s001
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 6, 2023
    Dataset provided by
    Frontiers
    Authors
    Ping Fang; Lei Sun; Shu Sheng Shi; Rizwan Ahmed Laar; Yan Lu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    China
    Description

    ObjectivesRegular sports participation is a gendered phenomenon in China. Women have reported much higher constraints than men on time, partner, psychology, knowledge, and interest. This study explores personal, family, lifestyle, and health factors associated with sports participation.Study DesignThis study is a cross-sectional study.MethodsData were collected from the national reprehensive China Family Panel Studies (CFPS) database (2018) to analyze personal information, family background, lifestyle, and health in relation to women's sports participation. Multiple classification logistic regression was used to quantify the association between independent variables and sports time.ResultsWomen with high personal income and education, who were unmarried, in faster economic development areas have more awareness and more time for sports participation. Women who were overweight and self-rated as unattractive spent less time on sports participation. Women with a small family population and no children have more time for sports participation. Less time on the internet and moderate sleep contribute to active sports participation. Women with chronic diseases and high medical costs are less likely to participate in sports.ConclusionsNegative body aesthetic perception, the burden of family environment, modernization of lifestyle, and the normalization of sub-health are essential factors affecting women's sports participation. The government should understand the inner and outer barriers to women's participation in sports, develop policies and regulations to protect and support women's sports participation, and guide and monitor the effective implementation of women's sports activities.

  12. H

    Taiwan (Province of China) - Age and Sex Structures (2015-2030)

    • data.humdata.org
    geotiff
    Updated May 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WorldPop (2025). Taiwan (Province of China) - Age and Sex Structures (2015-2030) [Dataset]. https://data.humdata.org/dataset/worldpop-age-and-sex-structures-2015-2030-twn
    Explore at:
    geotiffAvailable download formats
    Dataset updated
    May 24, 2025
    Dataset provided by
    WorldPop
    Area covered
    China, Taiwan
    Description

    Constrained estimates of total number of people per grid square broken down by gender and age groupings (including 0-1 and by 5-year up to 90+) for Taiwan, version v1. The dataset is available to download in Geotiff format at a resolution of 3 arc (approximately 100m at the equator). The projection is Geographic Coordinate System, WGS84. The units are estimated number of male, female or both in each age group per grid square.

    More information can be found in the Release Statement

    The difference between constrained and unconstrained is explained on this page: https://www.worldpop.org/methods/top_down_constrained_vs_unconstrained

    File Descriptions:

    {iso} {gender} {age group} {year} {type} {resolution}.tif

    iso

    Three-letter country code

    gender

    m = male, f= female, t = both genders

    age group

    • 00 = age group 0 to 12 months
    • 01 = age group 1 to 4 years
    • 05 = age group 5 to 9 years
    • 90 = age 90 years and over

    year

    Year that the population represents

    type

    CN = Constrained , UC= Unconstrained

    resolution

    Resolution of the data e.q. 100m = 3 arc (approximately 100m at the equator)

  13. f

    Table_1_Safety of Exercise Testing in the Clinical Chinese Population.DOCX

    • frontiersin.figshare.com
    docx
    Updated Jun 8, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yaoshan Dun; Thomas P. Olson; Jeffrey W. Ripley-Gonzalez; Kangling Xie; Wenliang Zhang; Ying Cai; Yuan Liu; Yanan Shen; Nanjiang Zhou; Xun Gong; Suixin Liu (2023). Table_1_Safety of Exercise Testing in the Clinical Chinese Population.DOCX [Dataset]. http://doi.org/10.3389/fcvm.2021.638682.s002
    Explore at:
    docxAvailable download formats
    Dataset updated
    Jun 8, 2023
    Dataset provided by
    Frontiers
    Authors
    Yaoshan Dun; Thomas P. Olson; Jeffrey W. Ripley-Gonzalez; Kangling Xie; Wenliang Zhang; Ying Cai; Yuan Liu; Yanan Shen; Nanjiang Zhou; Xun Gong; Suixin Liu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This 18-year cross-sectional study was conducted to provide data on the safety of exercise testing in the clinical Chinese population. We retrospectively identified exercise tests completed at Xiangya Hospital of Central South University from January 1, 2002 to December 31, 2019. From 43,130 unique individuals (50.9% female), a total of consecutive 50,142 tests (standard exercise testing 29,466; cardiopulmonary exercise testing 20,696) were retrieved. Demographics, patients' medical history, exercise testing characteristics, and exercise testing-related adverse events were described. Safety data is expressed as the number of adverse events per 10,000 tests, with 95% confidence interval. The average patients' age was 51 ± 13 years. The majority of patients were diagnosed with at least one disease (N = 44,941, 89.6%). Tests were maximal or symptom-limited. Common clinical symptoms included dizziness (6,822, 13.6%), chest pain or distress (2,760, 5.5%), and musculoskeletal limitations (2,507, 5.0%). Out of 50,142 tests, three adverse events occurred, including one sustained ventricular tachycardia, one sinus arrest with junctional escape rhythm at a rate of 28 bpm, and one syncopal event with fecal and urinary incontinence. The rate of adverse events was 0.8 events per 10,000 tests (95% confidence interval, 0.2–3.0) in men, 0.4 per 10,000 tests (0.7–2.2) in women, and 0.6 per 10,000 tests (0.21.8) total. This study represents the largest dataset analysis of exercise testing in the clinical Chinese population. Our results demonstrate that clinical exercise testing is safe, and the low rate of adverse events related to exercise testing might be due to the overall changes in clinical practice over time.

  14. N

    East China Township, Michigan Population Breakdown by Gender and Age...

    • neilsberg.com
    csv, json
    Updated Feb 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). East China Township, Michigan Population Breakdown by Gender and Age Dataset: Male and Female Population Distribution Across 18 Age Groups // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/e1dd5068-f25d-11ef-8c1b-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    East China Township, Michigan
    Variables measured
    Male and Female Population Under 5 Years, Male and Female Population over 85 years, Male and Female Population Between 5 and 9 years, Male and Female Population Between 10 and 14 years, Male and Female Population Between 15 and 19 years, Male and Female Population Between 20 and 24 years, Male and Female Population Between 25 and 29 years, Male and Female Population Between 30 and 34 years, Male and Female Population Between 35 and 39 years, Male and Female Population Between 40 and 44 years, and 8 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the three variables, namely (a) Population (Male), (b) Population (Female), and (c) Gender Ratio (Males per 100 Females), we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau across 18 age groups, ranging from under 5 years to 85 years and above. These age groups are described above in the variables section. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of East China township by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for East China township. The dataset can be utilized to understand the population distribution of East China township by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in East China township. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for East China township.

    Key observations

    Largest age group (population): Male # 50-54 years (239) | Female # 60-64 years (254). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.

    Variables / Data Columns

    • Age Group: This column displays the age group for the East China township population analysis. Total expected values are 18 and are define above in the age groups section.
    • Population (Male): The male population in the East China township is shown in the following column.
    • Population (Female): The female population in the East China township is shown in the following column.
    • Gender Ratio: Also known as the sex ratio, this column displays the number of males per 100 females in East China township for each age group.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for East China township Population by Gender. You can refer the same here

  15. N

    China Grove, NC annual income distribution by work experience and gender...

    • neilsberg.com
    csv, json
    Updated Feb 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). China Grove, NC annual income distribution by work experience and gender dataset: Number of individuals ages 15+ with income, 2023 // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/ba9d3b0a-f4ce-11ef-8577-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    China Grove, North Carolina
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time, Number of males working full time for a given income bracket, Number of males working part time for a given income bracket, Number of females working full time for a given income bracket, Number of females working part time for a given income bracket
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To portray the number of individuals for both the genders (Male and Female), within each income bracket we conducted an initial analysis and categorization of the American Community Survey data. Households are categorized, and median incomes are reported based on the self-identified gender of the head of the household. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the detailed breakdown of the count of individuals within distinct income brackets, categorizing them by gender (men and women) and employment type - full-time (FT) and part-time (PT), offering valuable insights into the diverse income landscapes within China Grove. The dataset can be utilized to gain insights into gender-based income distribution within the China Grove population, aiding in data analysis and decision-making..

    Key observations

    • Employment patterns: Within China Grove, among individuals aged 15 years and older with income, there were 1,682 men and 1,439 women in the workforce. Among them, 1,026 men were engaged in full-time, year-round employment, while 677 women were in full-time, year-round roles.
    • Annual income under $24,999: Of the male population working full-time, 10.43% fell within the income range of under $24,999, while 6.35% of the female population working full-time was represented in the same income bracket.
    • Annual income above $100,000: 15.79% of men in full-time roles earned incomes exceeding $100,000, while 14.77% of women in full-time positions earned within this income bracket.
    • Refer to the research insights for more key observations on more income brackets ( Annual income under $24,999, Annual income between $25,000 and $49,999, Annual income between $50,000 and $74,999, Annual income between $75,000 and $99,999 and Annual income above $100,000) and employment types (full-time year-round and part-time)
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Income brackets:

    • $1 to $2,499 or loss
    • $2,500 to $4,999
    • $5,000 to $7,499
    • $7,500 to $9,999
    • $10,000 to $12,499
    • $12,500 to $14,999
    • $15,000 to $17,499
    • $17,500 to $19,999
    • $20,000 to $22,499
    • $22,500 to $24,999
    • $25,000 to $29,999
    • $30,000 to $34,999
    • $35,000 to $39,999
    • $40,000 to $44,999
    • $45,000 to $49,999
    • $50,000 to $54,999
    • $55,000 to $64,999
    • $65,000 to $74,999
    • $75,000 to $99,999
    • $100,000 or more

    Variables / Data Columns

    • Income Bracket: This column showcases 20 income brackets ranging from $1 to $100,000+..
    • Full-Time Males: The count of males employed full-time year-round and earning within a specified income bracket
    • Part-Time Males: The count of males employed part-time and earning within a specified income bracket
    • Full-Time Females: The count of females employed full-time year-round and earning within a specified income bracket
    • Part-Time Females: The count of females employed part-time and earning within a specified income bracket

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for China Grove median household income by race. You can refer the same here

  16. N

    China, Maine annual income distribution by work experience and gender...

    • neilsberg.com
    csv, json
    Updated Feb 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). China, Maine annual income distribution by work experience and gender dataset: Number of individuals ages 15+ with income, 2023 // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/ba9d3c04-f4ce-11ef-8577-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Maine, China
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time, Number of males working full time for a given income bracket, Number of males working part time for a given income bracket, Number of females working full time for a given income bracket, Number of females working part time for a given income bracket
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To portray the number of individuals for both the genders (Male and Female), within each income bracket we conducted an initial analysis and categorization of the American Community Survey data. Households are categorized, and median incomes are reported based on the self-identified gender of the head of the household. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the detailed breakdown of the count of individuals within distinct income brackets, categorizing them by gender (men and women) and employment type - full-time (FT) and part-time (PT), offering valuable insights into the diverse income landscapes within China town. The dataset can be utilized to gain insights into gender-based income distribution within the China town population, aiding in data analysis and decision-making..

    Key observations

    • Employment patterns: Within China town, among individuals aged 15 years and older with income, there were 1,732 men and 1,570 women in the workforce. Among them, 1,152 men were engaged in full-time, year-round employment, while 727 women were in full-time, year-round roles.
    • Annual income under $24,999: Of the male population working full-time, 0.78% fell within the income range of under $24,999, while 9.77% of the female population working full-time was represented in the same income bracket.
    • Annual income above $100,000: 14.06% of men in full-time roles earned incomes exceeding $100,000, while 7.29% of women in full-time positions earned within this income bracket.
    • Refer to the research insights for more key observations on more income brackets ( Annual income under $24,999, Annual income between $25,000 and $49,999, Annual income between $50,000 and $74,999, Annual income between $75,000 and $99,999 and Annual income above $100,000) and employment types (full-time year-round and part-time)
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Income brackets:

    • $1 to $2,499 or loss
    • $2,500 to $4,999
    • $5,000 to $7,499
    • $7,500 to $9,999
    • $10,000 to $12,499
    • $12,500 to $14,999
    • $15,000 to $17,499
    • $17,500 to $19,999
    • $20,000 to $22,499
    • $22,500 to $24,999
    • $25,000 to $29,999
    • $30,000 to $34,999
    • $35,000 to $39,999
    • $40,000 to $44,999
    • $45,000 to $49,999
    • $50,000 to $54,999
    • $55,000 to $64,999
    • $65,000 to $74,999
    • $75,000 to $99,999
    • $100,000 or more

    Variables / Data Columns

    • Income Bracket: This column showcases 20 income brackets ranging from $1 to $100,000+..
    • Full-Time Males: The count of males employed full-time year-round and earning within a specified income bracket
    • Part-Time Males: The count of males employed part-time and earning within a specified income bracket
    • Full-Time Females: The count of females employed full-time year-round and earning within a specified income bracket
    • Part-Time Females: The count of females employed part-time and earning within a specified income bracket

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for China town median household income by race. You can refer the same here

  17. N

    China Township, Michigan annual income distribution by work experience and...

    • neilsberg.com
    csv, json
    Updated Feb 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). China Township, Michigan annual income distribution by work experience and gender dataset: Number of individuals ages 15+ with income, 2023 // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/ba9d3c7f-f4ce-11ef-8577-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    China Township, Michigan
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time, Number of males working full time for a given income bracket, Number of males working part time for a given income bracket, Number of females working full time for a given income bracket, Number of females working part time for a given income bracket
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To portray the number of individuals for both the genders (Male and Female), within each income bracket we conducted an initial analysis and categorization of the American Community Survey data. Households are categorized, and median incomes are reported based on the self-identified gender of the head of the household. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the detailed breakdown of the count of individuals within distinct income brackets, categorizing them by gender (men and women) and employment type - full-time (FT) and part-time (PT), offering valuable insights into the diverse income landscapes within China township. The dataset can be utilized to gain insights into gender-based income distribution within the China township population, aiding in data analysis and decision-making..

    Key observations

    • Employment patterns: Within China township, among individuals aged 15 years and older with income, there were 1,431 men and 1,120 women in the workforce. Among them, 808 men were engaged in full-time, year-round employment, while 354 women were in full-time, year-round roles.
    • Annual income under $24,999: Of the male population working full-time, 0.87% fell within the income range of under $24,999, while 5.93% of the female population working full-time was represented in the same income bracket.
    • Annual income above $100,000: 40.97% of men in full-time roles earned incomes exceeding $100,000, while 11.86% of women in full-time positions earned within this income bracket.
    • Refer to the research insights for more key observations on more income brackets ( Annual income under $24,999, Annual income between $25,000 and $49,999, Annual income between $50,000 and $74,999, Annual income between $75,000 and $99,999 and Annual income above $100,000) and employment types (full-time year-round and part-time)
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Income brackets:

    • $1 to $2,499 or loss
    • $2,500 to $4,999
    • $5,000 to $7,499
    • $7,500 to $9,999
    • $10,000 to $12,499
    • $12,500 to $14,999
    • $15,000 to $17,499
    • $17,500 to $19,999
    • $20,000 to $22,499
    • $22,500 to $24,999
    • $25,000 to $29,999
    • $30,000 to $34,999
    • $35,000 to $39,999
    • $40,000 to $44,999
    • $45,000 to $49,999
    • $50,000 to $54,999
    • $55,000 to $64,999
    • $65,000 to $74,999
    • $75,000 to $99,999
    • $100,000 or more

    Variables / Data Columns

    • Income Bracket: This column showcases 20 income brackets ranging from $1 to $100,000+..
    • Full-Time Males: The count of males employed full-time year-round and earning within a specified income bracket
    • Part-Time Males: The count of males employed part-time and earning within a specified income bracket
    • Full-Time Females: The count of females employed full-time year-round and earning within a specified income bracket
    • Part-Time Females: The count of females employed part-time and earning within a specified income bracket

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for China township median household income by race. You can refer the same here

  18. N

    China Grove, TX annual income distribution by work experience and gender...

    • neilsberg.com
    csv, json
    Updated Jan 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). China Grove, TX annual income distribution by work experience and gender dataset (Number of individuals ages 15+ with income, 2021) [Dataset]. https://www.neilsberg.com/research/datasets/23829f26-981b-11ee-99cf-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Jan 9, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    China Grove, Texas
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time, Number of males working full time for a given income bracket, Number of males working part time for a given income bracket, Number of females working full time for a given income bracket, Number of females working part time for a given income bracket
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. To portray the number of individuals for both the genders (Male and Female), within each income bracket we conducted an initial analysis and categorization of the American Community Survey data. Households are categorized, and median incomes are reported based on the self-identified gender of the head of the household. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the detailed breakdown of the count of individuals within distinct income brackets, categorizing them by gender (men and women) and employment type - full-time (FT) and part-time (PT), offering valuable insights into the diverse income landscapes within China Grove. The dataset can be utilized to gain insights into gender-based income distribution within the China Grove population, aiding in data analysis and decision-making..

    Key observations

    • Employment patterns: Within China Grove, among individuals aged 15 years and older with income, there were 502 men and 570 women in the workforce. Among them, 257 men were engaged in full-time, year-round employment, while 205 women were in full-time, year-round roles.
    • Annual income under $24,999: Of the male population working full-time, 3.89% fell within the income range of under $24,999, while 18.05% of the female population working full-time was represented in the same income bracket.
    • Annual income above $100,000: 25.29% of men in full-time roles earned incomes exceeding $100,000, while 6.83% of women in full-time positions earned within this income bracket.
    • Refer to the research insights for more key observations on more income brackets ( Annual income under $24,999, Annual income between $25,000 and $49,999, Annual income between $50,000 and $74,999, Annual income between $75,000 and $99,999 and Annual income above $100,000) and employment types (full-time year-round and part-time)

    https://i.neilsberg.com/ch/china-grove-tx-income-distribution-by-gender-and-employment-type.jpeg" alt="China Grove, TX gender and employment-based income distribution analysis (Ages 15+)">

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Income brackets:

    • $1 to $2,499 or loss
    • $2,500 to $4,999
    • $5,000 to $7,499
    • $7,500 to $9,999
    • $10,000 to $12,499
    • $12,500 to $14,999
    • $15,000 to $17,499
    • $17,500 to $19,999
    • $20,000 to $22,499
    • $22,500 to $24,999
    • $25,000 to $29,999
    • $30,000 to $34,999
    • $35,000 to $39,999
    • $40,000 to $44,999
    • $45,000 to $49,999
    • $50,000 to $54,999
    • $55,000 to $64,999
    • $65,000 to $74,999
    • $75,000 to $99,999
    • $100,000 or more

    Variables / Data Columns

    • Income Bracket: This column showcases 20 income brackets ranging from $1 to $100,000+..
    • Full-Time Males: The count of males employed full-time year-round and earning within a specified income bracket
    • Part-Time Males: The count of males employed part-time and earning within a specified income bracket
    • Full-Time Females: The count of females employed full-time year-round and earning within a specified income bracket
    • Part-Time Females: The count of females employed part-time and earning within a specified income bracket

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for China Grove median household income by gender. You can refer the same here

  19. f

    Dataset extracted from included full texts.

    • figshare.com
    xlsx
    Updated Apr 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kaeleigh Brown; Katherine Choi; Esther Kim; Sandra M. Campbell; Jane Schulz; Pertice Moffitt; Susan Chatwood (2025). Dataset extracted from included full texts. [Dataset]. http://doi.org/10.1371/journal.pone.0307010.s003
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Apr 3, 2025
    Dataset provided by
    PLOS ONE
    Authors
    Kaeleigh Brown; Katherine Choi; Esther Kim; Sandra M. Campbell; Jane Schulz; Pertice Moffitt; Susan Chatwood
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Background Pelvic health conditions significantly impact quality of life and are prevalent in the general population. Urinary and fecal incontinence, pelvic organ prolapse, and pelvic pain are examples of pelvic health conditions. A scoping review was conducted to understand what is currently known about pelvic health conditions experienced by Indigenous populations worldwide. To date, no such review has been reported. Methods A scoping review methodology was used. In February 2024, a search was conducted, capturing both primary and grey literature. An iterative process of abstract and full text screening was conducted by two reviewers before proceeding to data extraction. Inclusion criteria focused on English publications and reports of pelvic health conditions experienced by Indigenous peoples. Data was collected in Google Sheets, and then underwent descriptive statistical analysis. Publications that provided qualitative data were further analyzed using thematic analysis. Results A total of 242 publications were included in the analysis. Several patterns emerged: most publications originated from English-speaking regions, fewer than half of publications specifically recruited Indigenous peoples, women participated in more studies than men, and bladder conditions were most frequently reported. Perceptions of pelvic health conditions and experiences with help seeking and the health care system were described. Notable gaps were a lack of publications and representation of Indigenous peoples from China, Russia, and Nordic countries, minimal representation of gender diverse populations, few publications reporting on auto-immune and bowel conditions, and limited mention of trauma-informed and culturally safe approaches. Conclusions This study highlights gaps in the current literature around gender representation, bowel and auto-immune conditions, regional representation, and the use of safety frameworks, which may inform future research initiatives. It also summarizes the existing literature, which may inform clinical and health system-level decision making.

  20. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Neilsberg Research (2025). China, TX Population Breakdown by Gender and Age Dataset: Male and Female Population Distribution Across 18 Age Groups // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/e1d7b2bf-f25d-11ef-8c1b-3860777c1fe6/

China, TX Population Breakdown by Gender and Age Dataset: Male and Female Population Distribution Across 18 Age Groups // 2025 Edition

Explore at:
json, csvAvailable download formats
Dataset updated
Feb 24, 2025
Dataset authored and provided by
Neilsberg Research
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Area covered
China, Texas
Variables measured
Male and Female Population Under 5 Years, Male and Female Population over 85 years, Male and Female Population Between 5 and 9 years, Male and Female Population Between 10 and 14 years, Male and Female Population Between 15 and 19 years, Male and Female Population Between 20 and 24 years, Male and Female Population Between 25 and 29 years, Male and Female Population Between 30 and 34 years, Male and Female Population Between 35 and 39 years, Male and Female Population Between 40 and 44 years, and 8 more
Measurement technique
The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the three variables, namely (a) Population (Male), (b) Population (Female), and (c) Gender Ratio (Males per 100 Females), we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau across 18 age groups, ranging from under 5 years to 85 years and above. These age groups are described above in the variables section. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
Dataset funded by
Neilsberg Research
Description
About this dataset

Context

The dataset tabulates the population of China by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for China. The dataset can be utilized to understand the population distribution of China by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in China. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for China.

Key observations

Largest age group (population): Male # 15-19 years (52) | Female # 20-24 years (65). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

Content

When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

Age groups:

  • Under 5 years
  • 5 to 9 years
  • 10 to 14 years
  • 15 to 19 years
  • 20 to 24 years
  • 25 to 29 years
  • 30 to 34 years
  • 35 to 39 years
  • 40 to 44 years
  • 45 to 49 years
  • 50 to 54 years
  • 55 to 59 years
  • 60 to 64 years
  • 65 to 69 years
  • 70 to 74 years
  • 75 to 79 years
  • 80 to 84 years
  • 85 years and over

Scope of gender :

Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.

Variables / Data Columns

  • Age Group: This column displays the age group for the China population analysis. Total expected values are 18 and are define above in the age groups section.
  • Population (Male): The male population in the China is shown in the following column.
  • Population (Female): The female population in the China is shown in the following column.
  • Gender Ratio: Also known as the sex ratio, this column displays the number of males per 100 females in China for each age group.

Good to know

Margin of Error

Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

Custom data

If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

Inspiration

Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

Recommended for further research

This dataset is a part of the main dataset for China Population by Gender. You can refer the same here

Search
Clear search
Close search
Google apps
Main menu