17 datasets found
  1. T

    China Money Supply M2

    • tradingeconomics.com
    • it.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Nov 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). China Money Supply M2 [Dataset]. https://tradingeconomics.com/china/money-supply-m2
    Explore at:
    excel, csv, json, xmlAvailable download formats
    Dataset updated
    Nov 13, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1996 - Oct 31, 2025
    Area covered
    China
    Description

    Money Supply M2 in China decreased to 335105.40 CNY Billion in October from 335377.10 CNY Billion in September of 2025. This dataset provides - China Money Supply M2 - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  2. F

    M2 for China

    • fred.stlouisfed.org
    json
    Updated Nov 11, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2019). M2 for China [Dataset]. https://fred.stlouisfed.org/series/MYAGM2CNM189N
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Nov 11, 2019
    License

    https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required

    Area covered
    China
    Description

    Graph and download economic data for M2 for China (MYAGM2CNM189N) from Dec 1998 to Aug 2019 about M2, monetary aggregates, and China.

  3. T

    China Money Supply M1

    • tradingeconomics.com
    • zh.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, China Money Supply M1 [Dataset]. https://tradingeconomics.com/china/money-supply-m1
    Explore at:
    excel, xml, csv, jsonAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1978 - Oct 31, 2025
    Area covered
    China
    Description

    Money Supply M1 in China decreased to 111996.27 CNY Billion in October from 113145.51 CNY Billion in September of 2025. This dataset provides - China Money Supply M1 - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  4. n

    Money Supply, House Price and the Stock Market Dynamics in China: Evidence...

    • narcis.nl
    • data.mendeley.com
    Updated Aug 1, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hong, Y (via Mendeley Data) (2019). Money Supply, House Price and the Stock Market Dynamics in China: Evidence from a TVP-VAR Model with Stochastic Volatility [Dataset]. http://doi.org/10.17632/w34rgh6zgr.1
    Explore at:
    Dataset updated
    Aug 1, 2019
    Dataset provided by
    Data Archiving and Networked Services (DANS)
    Authors
    Hong, Y (via Mendeley Data)
    Area covered
    China
    Description

    The house price data are collected from the official website of China's National Bureau of Statistics . We acquired the month-on-month growth data of the house price for 70 large and medium-sized representative cities in China since January 2006, then compiled the composite house price index (Houidx) based on January 2006 as 100. We use the Shanghai stock exchange composite index (SSEI) to measure the stock market price level, and the seasonal adjusted broad money M2 (M2) to proxy for the money supplying, both indexes are collected from the Wind database. The monthly house price shock (hous), stock price change (ssei) or the money supply growth (m2) are calculated as (ln(Idxt) - ln(Idxt-1))×100, where Index are the Houidx, SSEI or M2, correspondingly. 158 observations from February 2006 to March 2019 are obtained.

  5. F

    Monetary Aggregates and Their Components: Broad Money and Components: M3 for...

    • fred.stlouisfed.org
    json
    Updated Sep 14, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Monetary Aggregates and Their Components: Broad Money and Components: M3 for China [Dataset]. https://fred.stlouisfed.org/series/MABMM301CNQ189S
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Sep 14, 2022
    License

    https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required

    Area covered
    China
    Description

    Graph and download economic data for Monetary Aggregates and Their Components: Broad Money and Components: M3 for China (MABMM301CNQ189S) from Q1 1999 to Q4 2018 about M3, broad, monetary aggregates, and China.

  6. A50: China's Stock Market Enigma (Forecast)

    • kappasignal.com
    Updated May 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). A50: China's Stock Market Enigma (Forecast) [Dataset]. https://www.kappasignal.com/2024/05/a50-chinas-stock-market-enigma.html
    Explore at:
    Dataset updated
    May 8, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    A50: China's Stock Market Enigma

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  7. Will the China A50 Index Continue Its Ascent? (Forecast)

    • kappasignal.com
    Updated Jul 10, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). Will the China A50 Index Continue Its Ascent? (Forecast) [Dataset]. https://www.kappasignal.com/2024/07/will-china-a50-index-continue-its-ascent.html
    Explore at:
    Dataset updated
    Jul 10, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Will the China A50 Index Continue Its Ascent?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  8. Bilibili Battle: Will the Chinese YouTube Knockoff Conquer America? (BILI)...

    • kappasignal.com
    Updated Jan 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). Bilibili Battle: Will the Chinese YouTube Knockoff Conquer America? (BILI) (Forecast) [Dataset]. https://www.kappasignal.com/2024/01/bilibili-battle-will-chinese-youtube.html
    Explore at:
    Dataset updated
    Jan 7, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Area covered
    YouTube
    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Bilibili Battle: Will the Chinese YouTube Knockoff Conquer America? (BILI)

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  9. Shanghai Index: A Barometer of China's Economic Health? (Forecast)

    • kappasignal.com
    Updated Sep 10, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). Shanghai Index: A Barometer of China's Economic Health? (Forecast) [Dataset]. https://www.kappasignal.com/2024/09/shanghai-index-barometer-of-chinas.html
    Explore at:
    Dataset updated
    Sep 10, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Area covered
    China
    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Shanghai Index: A Barometer of China's Economic Health?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  10. FTSE China A50 Index Target Price Prediction (Forecast)

    • kappasignal.com
    Updated Nov 2, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). FTSE China A50 Index Target Price Prediction (Forecast) [Dataset]. https://www.kappasignal.com/2022/11/ftse-china-a50-index-target-price.html
    Explore at:
    Dataset updated
    Nov 2, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    FTSE China A50 Index Target Price Prediction

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  11. m

    China Fortune Financial Group Ltd - Sale-Or-Purchase-of-Stock

    • macro-rankings.com
    csv, excel
    Updated Sep 18, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    macro-rankings (2025). China Fortune Financial Group Ltd - Sale-Or-Purchase-of-Stock [Dataset]. https://www.macro-rankings.com/markets/stocks/0290-hk/cashflow-statement/sale-or-purchase-of-stock
    Explore at:
    csv, excelAvailable download formats
    Dataset updated
    Sep 18, 2025
    Dataset authored and provided by
    macro-rankings
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    hong kong
    Description

    Sale-Or-Purchase-of-Stock Time Series for China Fortune Financial Group Ltd. GoFintech Quantum Innovation Limited, an investment holding company, provides securities and insurance brokerage, equity investment, asset management, margin and corporate finance, money lending, and supply chain operation services in Hong Kong and the People's Republic of China. It operates through Securities Brokerage and Margin Financing, Corporate Finance, Money Lending, Consultancy and Insurance Brokerage, Asset Management, Equity Investment, Supply Chain Operations, and Investments in Artworks segments. The company offers securities dealing, brokerage, placing, and underwriting services; and account opening, deposit and withdrawal, and internet trading services. It also provides IPO sponsor, fundraising, compliance advisory, and other investment banking services; asset management and advisory services for securities and futures contracts; and wealth management services. In addition, the company offers property mortgage, share pledge, corporate loan, personal loan, and various types of lending services; manages private equity investment funds, private equity and venture capital FOF funds, and venture capital funds; immigration services; and management of financial investments. The company serves corporate, institutional, and retail customers. The company was formerly known as GoFintech Innovation Limited and changed its name to GoFintech Quantum Innovation Limited in March 2025. GoFintech Quantum Innovation Limited was incorporated in 2001 and is headquartered in Central, Hong Kong.

  12. Churchill China Stock (CHH) Forecast: Positive Outlook (Forecast)

    • kappasignal.com
    Updated Dec 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). Churchill China Stock (CHH) Forecast: Positive Outlook (Forecast) [Dataset]. https://www.kappasignal.com/2024/12/churchill-china-stock-chh-forecast.html
    Explore at:
    Dataset updated
    Dec 18, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Churchill China Stock (CHH) Forecast: Positive Outlook

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  13. Hutchmed (HCM) Navigating China's Healthcare Landscape (Forecast)

    • kappasignal.com
    Updated Oct 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). Hutchmed (HCM) Navigating China's Healthcare Landscape (Forecast) [Dataset]. https://www.kappasignal.com/2024/10/hutchmed-hcm-navigating-chinas.html
    Explore at:
    Dataset updated
    Oct 20, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Area covered
    China
    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Hutchmed (HCM) Navigating China's Healthcare Landscape

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  14. m

    HPF Co Ltd - Preferred-Stock-and-Other-Adjustments

    • macro-rankings.com
    csv, excel
    Updated Aug 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    macro-rankings (2025). HPF Co Ltd - Preferred-Stock-and-Other-Adjustments [Dataset]. https://www.macro-rankings.com/markets/stocks/300350-she/income-statement/preferred-stock-and-other-adjustments
    Explore at:
    csv, excelAvailable download formats
    Dataset updated
    Aug 23, 2025
    Dataset authored and provided by
    macro-rankings
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    china
    Description

    Preferred-Stock-and-Other-Adjustments Time Series for HPF Co Ltd. HPF Co.,Ltd provides integrated logistics services primarily in China. Its integrated logistics services include lean land transportation, warehousing, and international freight forwarding services. The company also provides financial and value-added services, including money collection, advance payment, warehouse receipts pledging, and supply chain commodity sales services, as well as product packaging and barcode, insurance agency, sorting and combination, and product quality inspection services for shippers. In addition, it offers agency procurement services of consumer electronic core components; supply chain services; geographic information surveying and mapping services; and mobile IoT operation services comprising research and development of customized mobile terminals, mobile computing, and other technical models. The company was formerly known as Shenzhen Huapengfei Modern Logistics Co., Ltd. and changed its name to HPF Co.,Ltd in July 2017. HPF Co.,Ltd was incorporated in 2000 and is headquartered in Shenzhen, China.

  15. HCM HUTCHMED (China) Limited American Depositary Shares (Forecast)

    • kappasignal.com
    Updated May 23, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). HCM HUTCHMED (China) Limited American Depositary Shares (Forecast) [Dataset]. https://www.kappasignal.com/2023/05/hcm-hutchmed-china-limited-american.html
    Explore at:
    Dataset updated
    May 23, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Area covered
    United States
    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    HCM HUTCHMED (China) Limited American Depositary Shares

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  16. FTSE China A50 Index assigned short-term B2 & long-term B1 forecasted stock...

    • kappasignal.com
    Updated Oct 27, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). FTSE China A50 Index assigned short-term B2 & long-term B1 forecasted stock rating. (Forecast) [Dataset]. https://www.kappasignal.com/2022/10/ftse-china-a50-index-assigned-short.html
    Explore at:
    Dataset updated
    Oct 27, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    FTSE China A50 Index assigned short-term B2 & long-term B1 forecasted stock rating.

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  17. How accurate is machine learning in stock market? (FTSE China A50 Index...

    • kappasignal.com
    Updated Oct 12, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). How accurate is machine learning in stock market? (FTSE China A50 Index Stock Forecast) (Forecast) [Dataset]. https://www.kappasignal.com/2022/10/how-accurate-is-machine-learning-in_12.html
    Explore at:
    Dataset updated
    Oct 12, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    How accurate is machine learning in stock market? (FTSE China A50 Index Stock Forecast)

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  18. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
TRADING ECONOMICS (2025). China Money Supply M2 [Dataset]. https://tradingeconomics.com/china/money-supply-m2

China Money Supply M2

China Money Supply M2 - Historical Dataset (1996-01-31/2025-10-31)

Explore at:
17 scholarly articles cite this dataset (View in Google Scholar)
excel, csv, json, xmlAvailable download formats
Dataset updated
Nov 13, 2025
Dataset authored and provided by
TRADING ECONOMICS
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Time period covered
Jan 31, 1996 - Oct 31, 2025
Area covered
China
Description

Money Supply M2 in China decreased to 335105.40 CNY Billion in October from 335377.10 CNY Billion in September of 2025. This dataset provides - China Money Supply M2 - actual values, historical data, forecast, chart, statistics, economic calendar and news.

Search
Clear search
Close search
Google apps
Main menu