100+ datasets found
  1. E-commerce Customer Churn

    • kaggle.com
    Updated Aug 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Samuel Semaya (2024). E-commerce Customer Churn [Dataset]. https://www.kaggle.com/datasets/samuelsemaya/e-commerce-customer-churn
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 6, 2024
    Dataset provided by
    Kaggle
    Authors
    Samuel Semaya
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    E-commerce Customer Churn Dataset

    Context

    This dataset belongs to a leading online E-commerce company. The company wants to identify customers who are likely to churn, so they can proactively approach these customers with promotional offers.

    Content

    The dataset contains various features related to customer behavior and characteristics, which can be used to predict customer churn.

    Features

    1. Tenure: Tenure of a customer in the company (numeric)
    2. WarehouseToHome: Distance between the warehouse to the customer's home (numeric)
    3. NumberOfDeviceRegistered: Total number of devices registered to a particular customer (numeric)
    4. PreferedOrderCat: Preferred order category of a customer in the last month (categorical)
    5. SatisfactionScore: Satisfactory score of a customer on service (numeric)
    6. MaritalStatus: Marital status of a customer (categorical)
    7. NumberOfAddress: Total number of addresses added for a particular customer (numeric)
    8. Complaint: Whether any complaint has been raised in the last month (binary)
    9. DaySinceLastOrder: Days since last order by customer (numeric)
    10. CashbackAmount: Average cashback in last month (numeric)
    11. Churn: Churn flag (target variable, binary)

    Task

    The main task is to predict customer churn based on the given features. This is a binary classification problem where the target variable is 'Churn'.

    Potential Applications

    1. Customer Retention: Identify at-risk customers and take proactive measures to retain them.
    2. Targeted Marketing: Design specific marketing campaigns for customers likely to churn.
    3. Service Improvement: Analyze features contributing to churn and improve those aspects of the service.

    Acknowledgements

    This dataset is provided for educational purposes. While it represents a real-world scenario, the data itself may be simulated or anonymized.

  2. WA_Fn-UseC_-Telco-Customer-Churn

    • kaggle.com
    Updated Nov 29, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    PalashFendarkar (2018). WA_Fn-UseC_-Telco-Customer-Churn [Dataset]. https://www.kaggle.com/datasets/palashfendarkar/wa-fnusec-telcocustomerchurn
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 29, 2018
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    PalashFendarkar
    Description

    Dataset

    This dataset was created by PalashFendarkar

    Contents

  3. Bank Customer Churn Dataset

    • kaggle.com
    Updated Jul 11, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bhuvi Ranga (2023). Bank Customer Churn Dataset [Dataset]. https://www.kaggle.com/datasets/bhuviranga/customer-churn-data
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 11, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Bhuvi Ranga
    License

    http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/

    Description

    The customer churn dataset is a collection of customer data that focuses on predicting customer churn, which refers to the tendency of customers to stop using a company's products or services. The dataset contains various features that describe each customer, such as their credit score, country, gender, age, tenure, balance, number of products, credit card status, active membership, estimated salary, and churn status. The churn status indicates whether a customer has churned or not. The dataset is used to analyze and understand factors that contribute to customer churn and to build predictive models to identify customers at risk of churning. The goal is to develop strategies and interventions to reduce churn and improve customer retention

  4. Data from: Customer Churn Dataset

    • kaggle.com
    Updated Mar 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Panda-monium (2024). Customer Churn Dataset [Dataset]. https://www.kaggle.com/datasets/divanshu22/customer-churn-dataset/versions/1
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 2, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Panda-monium
    Description

    Dataset

    This dataset was created by Panda-monium

    Contents

  5. Data from: Customer churn dataset

    • kaggle.com
    Updated Jan 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hectar (2025). Customer churn dataset [Dataset]. https://www.kaggle.com/datasets/hectarcarson/customer-churn-dataset/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 6, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Hectar
    Description

    Dataset

    This dataset was created by Hectar

    Released under Other (specified in description)

    Contents

  6. Tour & Travels Customer Churn Prediction

    • kaggle.com
    Updated Oct 31, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tejashvi (2021). Tour & Travels Customer Churn Prediction [Dataset]. https://www.kaggle.com/datasets/tejashvi14/tour-travels-customer-churn-prediction/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Oct 31, 2021
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Tejashvi
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    A Tour & Travels Company Wants To Predict Whether A Customer Will Churn Or Not Based On Indicators Given Below. Help Build Predictive Models And Save The Company's Money. Perform Fascinating EDAs. The Data Was Used For Practice Purposes And Also During A Mini Hackathon, Its Completely Free To Use

  7. Data from: Telecom Customer Churn Dataset

    • kaggle.com
    Updated May 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Amal Joseph3377 (2024). Telecom Customer Churn Dataset [Dataset]. https://www.kaggle.com/datasets/amaljoseph3377/telecom-customer-churn-dataset/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 5, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Amal Joseph3377
    Description

    Dataset

    This dataset was created by Amal Joseph3377

    Contents

  8. Bank Customer Churn

    • kaggle.com
    Updated Sep 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rubel Mia (2023). Bank Customer Churn [Dataset]. https://www.kaggle.com/datasets/rubelmiads/bank-customer-churn
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 15, 2023
    Dataset provided by
    Kaggle
    Authors
    Rubel Mia
    Description

    Dataset

    This dataset was created by Rubel Mia

    Contents

  9. Customer Churn Prediction Datasets

    • kaggle.com
    zip
    Updated Oct 17, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Al Amin (2020). Customer Churn Prediction Datasets [Dataset]. https://www.kaggle.com/alaminbhuyan/customer-churn-prediction-datasets
    Explore at:
    zip(175743 bytes)Available download formats
    Dataset updated
    Oct 17, 2020
    Authors
    Al Amin
    Description

    Dataset

    This dataset was created by Al Amin

    Contents

    It contains the following files:

  10. Bank Customer Churn Dataset

    • kaggle.com
    Updated Aug 30, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gaurav Topre (2022). Bank Customer Churn Dataset [Dataset]. https://www.kaggle.com/datasets/gauravtopre/bank-customer-churn-dataset/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 30, 2022
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Gaurav Topre
    Description

    This dataset is for ABC Multistate bank with following columns:

    1. customer_id, unused variable.
    2. credit_score, used as input.
    3. country, used as input.
    4. gender, used as input.
    5. age, used as input.
    6. tenure, used as input.
    7. balance, used as input.
    8. products_number, used as input.
    9. credit_card, used as input.
    10. active_member, used as input.
    11. estimated_salary, used as input.
    12. churn, used as the target. 1 if the client has left the bank during some period or 0 if he/she has not.

    Aim is to Predict the Customer Churn for ABC Bank.

    https://miro.medium.com/max/737/1*Xap6OxaZvD7C7eMQKkaHYQ.jpeg" alt="">

  11. Synthetic Telecom Customer Churn Data

    • kaggle.com
    Updated May 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Abdulrahman Qaten (2025). Synthetic Telecom Customer Churn Data [Dataset]. https://www.kaggle.com/datasets/abdulrahmanqaten/synthetic-customer-churn/suggestions
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 27, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Abdulrahman Qaten
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    If you found the dataset useful, your upvote will help others discover it. Thanks for your support!

    This dataset simulates customer behavior for a fictional telecommunications company. It contains demographic information, account details, services subscribed to, and whether the customer ultimately churned (stopped using the service) or not. The data is synthetically generated but designed to reflect realistic patterns often found in telecom churn scenarios.

    Purpose:

    The primary goal of this dataset is to provide a clean and straightforward resource for beginners learning about:

    • Exploratory Data Analysis (EDA): Understanding customer characteristics and identifying potential drivers of churn through visualization and statistical summaries.
    • Data Preprocessing: Handling categorical features (like converting text to numbers) and scaling numerical features.
    • Classification Modeling: Building and evaluating simple machine learning models (like Logistic Regression or Decision Trees) to predict customer churn.

    Features:

    The dataset includes the following columns:

    • CustomerID: Unique identifier for each customer.
    • Age: Customer's age in years.
    • Gender: Customer's gender (Male/Female).
    • Location: General location of the customer (e.g., New York, Los Angeles).
    • SubscriptionDurationMonths: How many months the customer has been subscribed.
    • MonthlyCharges: The amount the customer is charged each month.
    • TotalCharges: The total amount the customer has been charged over their subscription period.
    • ContractType: The type of contract the customer has (Month-to-month, One year, Two year).
    • PaymentMethod: How the customer pays their bill (e.g., Electronic check, Credit card).
    • OnlineSecurity: Whether the customer has online security service (Yes, No, No internet service).
    • TechSupport: Whether the customer has tech support service (Yes, No, No internet service).
    • StreamingTV: Whether the customer has TV streaming service (Yes, No, No internet service).
    • StreamingMovies: Whether the customer has movie streaming service (Yes, No, No internet service).
    • Churn: (Target Variable) Whether the customer churned (1 = Yes, 0 = No).

    Data Quality:

    This dataset is intentionally clean with no missing values, making it easy for beginners to focus on analysis and modeling concepts without complex data cleaning steps.

    Inspiration:

    Understanding customer churn is crucial for many businesses. This dataset provides a sandbox environment to practice the fundamental techniques used in churn analysis and prediction.

  12. Customer Churn Analysis

    • kaggle.com
    Updated Jul 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Md Maaz (2024). Customer Churn Analysis [Dataset]. https://www.kaggle.com/datasets/mohammadmaaz23/customer-churn-analysis/suggestions
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 1, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Md Maaz
    Description

    Dataset

    This dataset was created by Md Maaz

    Released under Other (specified in description)

    Contents

  13. Bank Churn (test)

    • kaggle.com
    Updated Jan 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Harshit Sharma (2024). Bank Churn (test) [Dataset]. https://www.kaggle.com/datasets/harshitstark/bank-churn-dataset-test
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 21, 2024
    Dataset provided by
    Kaggle
    Authors
    Harshit Sharma
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Explore the 'Bank Churn (test)' dataset, a comprehensive collection designed for evaluating predictive models and analyzing customer attrition in the banking sector. This test dataset, derived from real-world scenarios, offers a robust platform to assess the effectiveness of machine learning algorithms in predicting and understanding bank churn dynamics.

  14. Customer Churn - Decision Tree & Random Forest

    • kaggle.com
    Updated Jul 6, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    vikram amin (2023). Customer Churn - Decision Tree & Random Forest [Dataset]. https://www.kaggle.com/datasets/vikramamin/customer-churn-decision-tree-and-random-forest
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 6, 2023
    Dataset provided by
    Kaggle
    Authors
    vikram amin
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description
    • Main objective: Find out customers who will churn and who will not.
    • Methodology: It is a classification problem. We will use decision tree and random forest to predict the outcome.
    • Steps Involved
    • Read the data
    • Check for data types https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F10868729%2F1ffb600d8a4b4b36bc25e957524a3524%2FPicture1.png?generation=1688638600831386&alt=media" alt="">
    1. Change character vector to factor vector as this is as classification problem
    2. Drop the variable which is not significant for the analysis. We drop "customerID".
    3. Check for missing values. None are found.
    4. Split the data into train and test so we can use the train data for building the model and use test data for prediction. We split this into 80-20 ratio (train/test) using the sample function.
    5. Install and run libraries (rpart, rpart.plot, rattle, RColorBrewer, caret)
    6. Run decision tree using rpart function. The dependent variable is Churn and 19 other independent variables

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F10868729%2F8d3442e6c82d8026c6a448e4780ab38c%2FPicture2.png?generation=1688638685268853&alt=media" alt=""> 9. Plot the decision tree

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F10868729%2F9ab0591e323dc30fe116c79f6d014d06%2FPicture3.png?generation=1688638747644320&alt=media" alt="">

    Average customer churn is 27%. The churn can take place if the tenure is more than >=7.5 and there is no internet service

    1. Tuning the model
    2. Define the search grid using the expand.grid function
    3. Set up the control parameters through 5 fold cross validation
    4. When we print the model we get the best CP = 0.01 and an accuracy of 79.00%

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F10868729%2F16080ac04d3743ec238227e1ef2c8269%2FPicture4.png?generation=1688639197455166&alt=media" alt="">

    1. Predict the model
    2. Find out the variables which are most and least significant. https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F10868729%2F61beb4224e9351cfc772147c43800502%2FPicture5.png?generation=1688639468638950&alt=media" alt="">

    Significant variables are Internet Service, Tenure and the least significant are Streaming Movies, Tech Support.

    USE RANDOM FOREST

    1. Run library(randomForest). Here we are using the default ntree (500) and mtry (p/3) where p is the number of independent variables. https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F10868729%2Fc27fe7e83f0b53b7e067371b69c7f4a7%2FPicture6.png?generation=1688640478682685&alt=media" alt="">

      Through confusion matrix, accuracy is coming 79.27%. The accuracy is marginally higher than that of decision tree i.e 79.00%. The error rate is pretty low when predicting "No" and much higher when predicting "Yes".

    2. Plot the model showing which variables reduce the gini impunity the most and least. Total charges and tenure reduce the gini impunity the most while phone service has the least impact.

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F10868729%2Fec25fc3ba74ab9cef1a81188209512b1%2FPicture7.png?generation=1688640726235724&alt=media" alt="">

    1. Predict the model and create a new data frame showing the actuals vs predicted values

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F10868729%2F50aa40e5dd676c8285020fd2fe627bf1%2FPicture8.png?generation=1688640896763066&alt=media" alt="">

    1. Plot the model so as to find out where the OOB (out of bag ) error stops decreasing or becoming constant. As we can see that the error stops decreasing between 100 to 200 trees. So we decide to take ntree = 200 when we tune the model.

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F10868729%2F87211e1b218c595911fbe6ea2806e27a%2FPicture9.png?generation=1688641103367564&alt=media" alt="">

    Tune the model mtry=2 has the lowest OOB error rate

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F10868729%2F6057af5bb0719b16f1a97a58c3d4aa1d%2FPicture10.png?generation=1688641391027971&alt=media" alt="">

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F10868729%2Fc7045eba4ee298c58f1bd0230c24c00d%2FPicture11.png?generation=1688641605829830&alt=media" alt="">

    Use random forest with mtry = 2 and ntree = 200

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F10868729%2F01541eff1f9c6303591aa50dd707b5f5%2FPicture12.png?generation=1688641634979403&alt=media" alt="">

    Through confusion matrix, accuracy is coming 79.71%. The accuracy is marginally higher than that of default (when ntree was 500 and mtry was 4) i.e 79.27% and of decision tree i.e 79.00%. The error rate is pretty low when predicting "No" and m...

  15. Churn Data Sets

    • kaggle.com
    zip
    Updated Dec 11, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rashid60 (2021). Churn Data Sets [Dataset]. https://www.kaggle.com/rashid60/churn-data-sets
    Explore at:
    zip(118284 bytes)Available download formats
    Dataset updated
    Dec 11, 2021
    Authors
    Rashid60
    Description

    Dataset

    This dataset was created by Rashid60

    Contents

  16. Churn Dataset

    • kaggle.com
    Updated Nov 11, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Halime Doğan (2021). Churn Dataset [Dataset]. https://www.kaggle.com/datasets/halimedogan/churn-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 11, 2021
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Halime Doğan
    Description

    Dataset

    This dataset was created by Halime Doğan

    Contents

  17. Netflix Customer Churn dataset

    • kaggle.com
    Updated Jul 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Abdul Wadood (2025). Netflix Customer Churn dataset [Dataset]. https://www.kaggle.com/datasets/abdulwadood11220/netflix-customer-churn-dataset/data
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 5, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Abdul Wadood
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    This dataset contains synthetic data simulating customer behavior for a Netflix-like video streaming service. It includes 5,000 records with 14 carefully engineered features designed for churn prediction modeling, business insights, and customer segmentation.

    The dataset is ideal for:

    Machine learning classification tasks (churn vs. non-churn)

    Exploratory data analysis (EDA)

    Customer behavior modeling in OTT platforms

  18. Telecom Churn Dataset

    • kaggle.com
    Updated Apr 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cyril Bedu Addo (2025). Telecom Churn Dataset [Dataset]. https://www.kaggle.com/datasets/cyrilbeduaddo/telecom-churn-dataset/suggestions
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 12, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Cyril Bedu Addo
    Description

    Dataset

    This dataset was created by Cyril Bedu Addo

    Contents

  19. Data from: Customer-Churn

    • kaggle.com
    Updated Feb 27, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Karam ALhanatleh (2024). Customer-Churn [Dataset]. https://www.kaggle.com/datasets/karamalhanatleh/customer-churn/data
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 27, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Karam ALhanatleh
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    Dataset

    This dataset was created by Karam ALhanatleh

    Released under Apache 2.0

    Contents

  20. Data from: Customer Churn

    • kaggle.com
    Updated Sep 4, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rohit Salla (2023). Customer Churn [Dataset]. https://www.kaggle.com/datasets/rohitsalla/customer-churn
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 4, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Rohit Salla
    Description

    Dataset

    This dataset was created by Rohit Salla

    Contents

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Samuel Semaya (2024). E-commerce Customer Churn [Dataset]. https://www.kaggle.com/datasets/samuelsemaya/e-commerce-customer-churn
Organization logo

E-commerce Customer Churn

Explore at:
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Aug 6, 2024
Dataset provided by
Kaggle
Authors
Samuel Semaya
License

MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically

Description

E-commerce Customer Churn Dataset

Context

This dataset belongs to a leading online E-commerce company. The company wants to identify customers who are likely to churn, so they can proactively approach these customers with promotional offers.

Content

The dataset contains various features related to customer behavior and characteristics, which can be used to predict customer churn.

Features

  1. Tenure: Tenure of a customer in the company (numeric)
  2. WarehouseToHome: Distance between the warehouse to the customer's home (numeric)
  3. NumberOfDeviceRegistered: Total number of devices registered to a particular customer (numeric)
  4. PreferedOrderCat: Preferred order category of a customer in the last month (categorical)
  5. SatisfactionScore: Satisfactory score of a customer on service (numeric)
  6. MaritalStatus: Marital status of a customer (categorical)
  7. NumberOfAddress: Total number of addresses added for a particular customer (numeric)
  8. Complaint: Whether any complaint has been raised in the last month (binary)
  9. DaySinceLastOrder: Days since last order by customer (numeric)
  10. CashbackAmount: Average cashback in last month (numeric)
  11. Churn: Churn flag (target variable, binary)

Task

The main task is to predict customer churn based on the given features. This is a binary classification problem where the target variable is 'Churn'.

Potential Applications

  1. Customer Retention: Identify at-risk customers and take proactive measures to retain them.
  2. Targeted Marketing: Design specific marketing campaigns for customers likely to churn.
  3. Service Improvement: Analyze features contributing to churn and improve those aspects of the service.

Acknowledgements

This dataset is provided for educational purposes. While it represents a real-world scenario, the data itself may be simulated or anonymized.

Search
Clear search
Close search
Google apps
Main menu