4 datasets found
  1. Households who spend 30 percent or more of income on housing

    • coronavirus-disasterresponse.hub.arcgis.com
    • coronavirus-resources.esri.com
    • +1more
    Updated Dec 21, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Observatory by Esri (2018). Households who spend 30 percent or more of income on housing [Dataset]. https://coronavirus-disasterresponse.hub.arcgis.com/maps/f9a964e38eae479dbe0b71ad6067e5f2
    Explore at:
    Dataset updated
    Dec 21, 2018
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Urban Observatory by Esri
    Area covered
    Description

    This map shows households that spend 30 percent or more of their income on housing, a threshold widely used by many affordable housing advocates and official government sources including Housing and Urban Development. Census asks about income and housing costs to understand whether housing is affordable in local communities. When housing is not sufficient or not affordable, income data helps communities: Enroll eligible households in programs designed to assist them.Qualify for grants from the Community Development Block Grant (CDBG), HOME Investment Partnership Program, Emergency Solutions Grants (ESG), Housing Opportunities for Persons with AIDS (HOPWA), and other programs.When rental housing is not affordable, the Department of Housing and Urban Development (HUD) uses rent data to determine the amount of tenant subsidies in housing assistance programs.Map opens in Atlanta. Use the bookmarks or search bar to view other cities. Data is symbolized to show the relationship between burdensome housing costs for owner households with a mortgage and renter households:This map uses these hosted feature layers containing the most recent American Community Survey data. These layers are part of the ArcGIS Living Atlas, and are updated every year when the American Community Survey releases new estimates, so values in the map always reflect the newest data available.

  2. Real estate Banking - AI Capstone Project

    • kaggle.com
    Updated Jul 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Deependra Verma (2023). Real estate Banking - AI Capstone Project [Dataset]. https://www.kaggle.com/datasets/deependraverma13/real-estate-banking-ai-capstone-project/versions/1
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 30, 2023
    Dataset provided by
    Kaggle
    Authors
    Deependra Verma
    Description

    DESCRIPTION

    A banking institution requires actionable insights into mortgage-backed securities, geographic business investment, and real estate analysis. The mortgage bank would like to identify potential monthly mortgage expenses for each region based on monthly family income and rental of the real estate. A statistical model needs to be created to predict the potential demand in dollars amount of loan for each of the region in the USA. Also, there is a need to create a dashboard which would refresh periodically post data retrieval from the agencies. The dashboard must demonstrate relationships and trends for the key metrics as follows: number of loans, average rental income, monthly mortgage and owner’s cost, family income vs mortgage cost comparison across different regions. The metrics described here do not limit the dashboard to these few. Dataset Description

    Variables

    Description Second mortgage Households with a second mortgage statistics Home equity Households with a home equity loan statistics Debt Households with any type of debt statistics Mortgage Costs Statistics regarding mortgage payments, home equity loans, utilities, and property taxes Home Owner Costs Sum of utilities, and property taxes statistics Gross Rent Contract rent plus the estimated average monthly cost of utility features High school Graduation High school graduation statistics Population Demographics Population demographics statistics Age Demographics Age demographic statistics Household Income Total income of people residing in the household Family Income Total income of people related to the householder Project Task: Week 1

    Data Import and Preparation:

    Import data.

    Figure out the primary key and look for the requirement of indexing.

    Gauge the fill rate of the variables and devise plans for missing value treatment. Please explain explicitly the reason for the treatment chosen for each variable.

    Exploratory Data Analysis (EDA):

    Perform debt analysis. You may take the following steps:

    Explore the top 2,500 locations where the percentage of households with a second mortgage is the highest and percent ownership is above 10 percent. Visualize using geo-map. You may keep the upper limit for the percent of households with a second mortgage to 50 percent

    Use the following bad debt equation:

    Bad Debt = P (Second Mortgage ∩ Home Equity Loan) Bad Debt = second_mortgage + home_equity - home_equity_second_mortgage Create pie charts to show overall debt and bad debt

    Create Box and whisker plot and analyze the distribution for 2nd mortgage, home equity, good debt, and bad debt for different cities

    Create a collated income distribution chart for family income, house hold income, and remaining income

    Perform EDA and come out with insights into population density and age. You may have to derive new fields (make sure to weight averages for accurate measurements):

    Use pop and ALand variables to create a new field called population density

    Use male_age_median, female_age_median, male_pop, and female_pop to create a new field called median age

    Visualize the findings using appropriate chart type

    Create bins for population into a new variable by selecting appropriate class interval so that the number of categories don’t exceed 5 for the ease of analysis.

    Analyze the married, separated, and divorced population for these population brackets

    Visualize using appropriate chart type

    Please detail your observations for rent as a percentage of income at an overall level, and for different states.

    Perform correlation analysis for all the relevant variables by creating a heatmap. Describe your findings.

    Project Task: Week 2

    Data Pre-processing:

    The economic multivariate data has a significant number of measured variables. The goal is to find where the measured variables depend on a number of smaller unobserved common factors or latent variables.

    Each variable is assumed to be dependent upon a linear combination of the common factors, and the coefficients are known as loadings. Each measured variable also includes a component due to independent random variability, known as “specific variance” because it is specific to one variable. Obtain the common factors and then plot the loadings. Use factor analysis to find latent variables in our dataset and gain insight into the linear relationships in the data.

      Following are the list of latent variables:
    

    Highschool graduation rates

    Median population age

    Second mortgage statistics

    Percent own

    Bad debt expense

    Data Modeling :

    Build a linear Regression model to predict the total monthly expenditure for home mortgages loan.

      Please refer deplotment_RE.xlsx. Column hc_mortgage_mean is predicted variable. This is the mean monthly mortgage and owner costs of specified geographical location.
    
      Note: Exclude loans from prediction model which have NaN (Not a Numb...
    
  3. Average resale house prices Canada 2011-2024, with a forecast until 2026, by...

    • statista.com
    • ai-chatbox.pro
    Updated Jun 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Average resale house prices Canada 2011-2024, with a forecast until 2026, by province [Dataset]. https://www.statista.com/statistics/587661/average-house-prices-canada-by-province/
    Explore at:
    Dataset updated
    Jun 20, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Canada
    Description

    The average resale house price in Canada was forecast to reach nearly ******* Canadian dollars in 2026, according to a January forecast. In 2024, house prices increased after falling for the first time since 2019. One of the reasons for the price correction was the notable drop in transaction activity. Housing transactions picked up in 2024 and are expected to continue to grow until 2026. British Columbia, which is the most expensive province for housing, is projected to see the average house price reach *** million Canadian dollars in 2026. Affordability in Vancouver Vancouver is the most populous city in British Columbia and is also infamously expensive for housing. In 2023, the city topped the ranking for least affordable housing market in Canada, with the average homeownership cost outweighing the average household income. There are a multitude of reasons for this, but most residents believe that foreigners investing in the market cause the high housing prices. Victoria housing market The capital of British Columbia is Victoria, where housing prices are also very high. The price of a single family home in Victoria's most expensive suburb, Oak Bay was *** million Canadian dollars in 2024.

  4. D

    Housing Tenure and Costs - Seattle Neighborhoods

    • data.seattle.gov
    • data-seattlecitygis.opendata.arcgis.com
    application/rdfxml +5
    Updated Jan 31, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Housing Tenure and Costs - Seattle Neighborhoods [Dataset]. https://data.seattle.gov/dataset/Housing-Tenure-and-Costs-Seattle-Neighborhoods/a5mu-b2ub
    Explore at:
    tsv, xml, csv, json, application/rssxml, application/rdfxmlAvailable download formats
    Dataset updated
    Jan 31, 2025
    Area covered
    Seattle
    Description

    Table from the American Community Survey (ACS) 5-year series on housing tenure and cost related topics for City of Seattle Council Districts, Comprehensive Plan Growth Areas and Community Reporting Areas. Table includes B25003 Tenure of Occupied Housing Units, B25070 Gross Rent as a Percentage of Household Income in the Past 12 Months, B25063 Gross Rent, B25091 Mortgage Status by Selected Monthly Owner Costs as a Percentage of Household Income in the Past 12 Months, B25087 Mortgage Stauts and Selected Monthly Owner Costs, B25064 Median Gross Rent, B25088 Median Selected Monthly Owner Costs by Mortgage Status. Data is pulled from block group tables for the most recent ACS vintage and summarized to the neighborhoods based on block group assignment.


    Table created for and used in the Neighborhood Profiles application.

    Vintages: 2023


    The United States Census Bureau's American Community Survey (ACS):
    This ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.

    Data Note from the Census:
    Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.

    Data Processing Notes:
    • Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb(year)a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes.<span style='font-family:inherit;

  5. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Urban Observatory by Esri (2018). Households who spend 30 percent or more of income on housing [Dataset]. https://coronavirus-disasterresponse.hub.arcgis.com/maps/f9a964e38eae479dbe0b71ad6067e5f2
Organization logo

Households who spend 30 percent or more of income on housing

Explore at:
Dataset updated
Dec 21, 2018
Dataset provided by
Esrihttp://esri.com/
Authors
Urban Observatory by Esri
Area covered
Description

This map shows households that spend 30 percent or more of their income on housing, a threshold widely used by many affordable housing advocates and official government sources including Housing and Urban Development. Census asks about income and housing costs to understand whether housing is affordable in local communities. When housing is not sufficient or not affordable, income data helps communities: Enroll eligible households in programs designed to assist them.Qualify for grants from the Community Development Block Grant (CDBG), HOME Investment Partnership Program, Emergency Solutions Grants (ESG), Housing Opportunities for Persons with AIDS (HOPWA), and other programs.When rental housing is not affordable, the Department of Housing and Urban Development (HUD) uses rent data to determine the amount of tenant subsidies in housing assistance programs.Map opens in Atlanta. Use the bookmarks or search bar to view other cities. Data is symbolized to show the relationship between burdensome housing costs for owner households with a mortgage and renter households:This map uses these hosted feature layers containing the most recent American Community Survey data. These layers are part of the ArcGIS Living Atlas, and are updated every year when the American Community Survey releases new estimates, so values in the map always reflect the newest data available.

Search
Clear search
Close search
Google apps
Main menu