CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
U.S. Census Bureau QuickFacts statistics for Colorado Springs city, Colorado. QuickFacts data are derived from: Population Estimates, American Community Survey, Census of Population and Housing, Current Population Survey, Small Area Health Insurance Estimates, Small Area Income and Poverty Estimates, State and County Housing Unit Estimates, County Business Patterns, Nonemployer Statistics, Economic Census, Survey of Business Owners, Building Permits.
This dataset provides information about the number of properties, residents, and average property values for Town Center Drive cross streets in Colorado Springs, CO.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
U.S. Census Bureau QuickFacts statistics for Glenwood Springs city, Colorado. QuickFacts data are derived from: Population Estimates, American Community Survey, Census of Population and Housing, Current Population Survey, Small Area Health Insurance Estimates, Small Area Income and Poverty Estimates, State and County Housing Unit Estimates, County Business Patterns, Nonemployer Statistics, Economic Census, Survey of Business Owners, Building Permits.
https://www.colorado-demographics.com/terms_and_conditionshttps://www.colorado-demographics.com/terms_and_conditions
A dataset listing Colorado cities by population for 2024.
With 56 Million Businesses in the United States of America, Techsalerator has access to the highest B2B count of Data/ Business Data in the country.
Thanks to our unique tools and large data specialist team, we are able to select the ideal targeted dataset based on the unique elements such as sales volume of a company, the company's location, no. of employees etc...
Whether you are looking for an entire fill install, access to our API's or if you are just looking for a one-time targeted purchase, get in touch with our company and we will fulfill your international data need.
We cover all states and cities in the country : Example covered.
All states :
Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware Florida Georgia Hawaii Idaho IllinoisIndiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri MontanaNebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon PennsylvaniaRhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming
A few cities : New York City NY Los Angeles CA Chicago IL Houston TX Phoenix AZ Philadelphia PA San Antonio TX San Diego CA Dallas TX Austin TX San Jose CA Fort Worth TX Jacksonville FL Columbus OH Charlotte NC Indianapolis IN San Francisco CA Seattle WA Denver CO Washington DC Boston MA El Paso TX Nashville TN Oklahoma City OK Las Vegas NV Detroit MI Portland OR Memphis TN Louisville KY Milwaukee WI Baltimore MD Albuquerque NM Tucson AZ Mesa AZ Fresno CA Sacramento CA Atlanta GA Kansas City MO Colorado Springs CO Raleigh NC Omaha NE Miami FL Long Beach CA Virginia Beach VA Oakland CA Minneapolis MN Tampa FL Tulsa OK Arlington TX Wichita KS Bakersfield CA Aurora CO New Orleans LA Cleveland OH Anaheim CA Henderson NV Honolulu HI Riverside CA Santa Ana CA Corpus Christi TX Lexington KY San Juan PR Stockton CA St. Paul MN Cincinnati OH Greensboro NC Pittsburgh PA Irvine CA St. Louis MO Lincoln NE Orlando FL Durham NC Plano TX Anchorage AK Newark NJ Chula Vista CA Fort Wayne IN Chandler AZ Toledo OH St. Petersburg FL Reno NV Laredo TX Scottsdale AZ North Las Vegas NV Lubbock TX Madison WI Gilbert AZ Jersey City NJ Glendale AZ Buffalo NY Winston-Salem NC Chesapeake VA Fremont CA Norfolk VA Irving TX Garland TX Paradise NV Arlington VA Richmond VA Hialeah FL Boise ID Spokane WA Frisco TX Moreno Valley CA Tacoma WA Fontana CA Modesto CA Baton Rouge LA Port St. Lucie FL San Bernardino CA McKinney TX Fayetteville NC Santa Clarita CA Des Moines IA Oxnard CA Birmingham AL Spring Valley NV Huntsville AL Rochester NY Cape Coral FL Tempe AZ Grand Rapids MI Yonkers NY Overland Park KS Salt Lake City UT Amarillo TX Augusta GA Columbus GA Tallahassee FL Montgomery AL Huntington Beach CA Akron OH Little Rock AR Glendale CA Grand Prairie TX Aurora IL Sunrise Manor NV Ontario CA Sioux Falls SD Knoxville TN Vancouver WA Mobile AL Worcester MA Chattanooga TN Brownsville TX Peoria AZ Fort Lauderdale FL Shreveport LA Newport News VA Providence RI Elk Grove CA Rancho Cucamonga CA Salem OR Pembroke Pines FL Santa Rosa CA Eugene OR Oceanside CA Cary NC Fort Collins CO Corona CA Enterprise NV Garden Grove CA Springfield MO Clarksville TN Bayamon PR Lakewood CO Alexandria VA Hayward CA Murfreesboro TN Killeen TX Hollywood FL Lancaster CA Salinas CA Jackson MS Midland TX Macon County GA Kansas City KS Palmdale CA Sunnyvale CA Springfield MA Escondido CA Pomona CA Bellevue WA Surprise AZ Naperville IL Pasadena TX Denton TX Roseville CA Joliet IL Thornton CO McAllen TX Paterson NJ Rockford IL Carrollton TX Bridgeport CT Miramar FL Round Rock TX Metairie LA Olathe KS Waco TX
This is my second input on the preliminary Congressional Commission redistricting map, based this time on the census numbers that were released in mid-August. These additional comments again use on Dave’s Redistricting App (DRA), which has the current data for counties and precincts. As of this writing, the commission’s tool did not seem to have the current data loaded. My revised draft alternative is at https://davesredistricting.org/join/b26ec349-27da-4df9-a087-ce77af348056. As background, I participated in redistricting initiatives in South Bend, Indiana, in the mid-1980s and for Indiana legislative seats after the 1990 census. I didn’t engage with redistricting during the rest of my 20-year military career. After retiring, and while serving as Public Trustee for El Paso County, I participated in redistricting efforts at the county and city level. I also stood for El Paso County Clerk in 2010. I have lived in Colorado since 2000. Description of Draft Alternative My process started by identifying large-scale geographic communities of interest within Colorado: the Western Slope/mountain areas, the Eastern Plains, Colorado Springs/El Paso County, the North Front Range, and Denver Metro. Two smaller geographic communities of interest are Pueblo and the San Luis Valley—neither is nearly large enough to sustain a district and both are somewhat distinct from their neighboring communities of interest. A choice thus must be made about which other communities of interest to group them with. A second principle I adopted was to prioritize keeping counties intact over municipalities. County boundaries are fixed, unlike municipal boundaries, and do not interlock based on annexation patterns. Precincts and census blocks do not overlap counties, but they may overlap municipal boundaries. Furthermore, county lines more often correspond to other layers of government than do municipal boundaries. This most matters along the western border of Weld County, which several municipalities overlap while also being rather entangled with each other. I was not able to find a particularly elegant alternative to using the county line that would not then require other communities of interest to be divided.I started with El Paso County, which exceeds the ideal district population (721,714) by 8,681 or 1.2%. It therefore must be split among different districts. El Paso, where I have lived for these past 20 years, is itself a coherent community that should remain as intact as possible – no plan that split it into two large pieces would comply with the commission’s mandate. The best options for moving population into other districts would be on the eastern and western edges. The northern part of El Paso County – Palmer Lake, Monument, Woodmoor, and Black Forest – is much more closely tied to the rest of El Paso County than it is to Douglas County. The small population along I-25 in southern El Paso County is also more closely tied to Fort Carson and the Fountain Valley than it is to Pueblo. The eastern parts of El Paso County, on the other hand – Ramah, Calhan, Yoder, Rush, Truckton – have far more in common with Lincoln County and the Eastern Plains than they do with Colorado Springs. Unfortunately, there is not enough population in the easternmost precincts to bring the county within the population limits. Once you get as far west as Peyton, you are reaching the edge of the Colorado Springs exurbs; once you get to Ellicott, you are reaching communities around Schriever Air Force Base that are part of the community of interest associated with the military. Rather than divide the community of interest there, it would be better to link the precincts in Ute Pass, the Rampart Range, and along the southern part of Gold Camp Road with Woodland Park and Teller County. While I will not claim that they are part of the Colorado Springs community, they are more linked to the larger town to their west than the northern and southern edges of El Paso County are to their neighboring counties. The use of census block data, not yet available on DRA, might allow more fine-tuning of this split that creates District 5 out of all but the western and eastern edges of El Paso County. The true Western Slope is not large enough to sustain District 3, even with the obvious addition of Jackson County and the necessary additions of Lake, Chafee, Park, and Teller Counties. The preliminary commission map would exclude most of the San Luis Valley (all but Hinsdale) from the Western Slope district. Based on the revised census numbers, a district that did this would need to add all of Clear Creek, Gilpin, and Fremont Counties to the Western Slope along with the small part of El Paso County. On its face, this maintains county integrity very well and would be a better map than the preliminary commission map that groups parts of Boulder County into the Western Slope. However, there are two problems with such a design. One would be that it breaks up communities of interest to the east: Gilpin and Clear Creek Counties are more associated with the Denver Metro, and Canon City with Pueblo, than any of them are with the Western Slope. The second problem is that it means any district centered in the North Front Range would need to take on arbitrary parts of neighboring Broomfield and Weld County or an even less-logical division of Arvada or Golden in Jefferson County. The draft alternative map submitted with these comments places the San Luis Valley with the Western Slope. To complete the required population, it adds western El Paso County (as described above), western Fremont County, Custer County, and Huerfano County to the Western Slope district. Certainly, arguments can be made about dividing communities of interest here as well, but ties do exist along the Wet Mountain Valley and across La Veta Pass. Throughout the map – throughout any map – tradeoffs must be made among which communities remain together. The draft alternative District 4 is based on the Eastern Plains. In the south, this includes eastern Fremont County (including Canon City), Pueblo County, Las Animas County, the Lower Arkansas Valley, and parts of far eastern El Paso County. In the north, this includes all of Weld and Elbert Counties, retaining them as intact political subdivisions. It does not extend into Larimer, Broomfield, Adams, Arapahoe, or Douglas Counties. The draft alternative District 2 is placed in the North Front Range and includes Larimer, Boulder, Gilpin, and Clear Creek Counties. This is nearly enough population to form a complete district, so it is rounded out by adding Evergreen and the rest of Coal Creek in Jefferson County. The City and County of Denver (and the Arapahoe County enclave municipalities of Glendale and Holly Hills) forms the basis of draft alternative District 1. This is approximately the right size to form a district, but the complexities of interlocking communities make it sensible to include Bow Mar and a small piece of southern Lakewood in this district and exclude the Indian Creek and Kennedy neighborhoods. This leaves three districts to place in suburban Denver. A great place for a boundary among these three districts that does not split communities of interest is in the area of low population to the northeast of Denver International Airport. District 7 in this numbering (which is arbitrary) would include all of Adams County to the west of the airport: to name only the largest communities, Commerce City, Brighton (except the part in Weld), Thornton, Northglenn, and Westminster. It would also include the City and County of Broomfield, and Arvada and the rest of Westminster in Jefferson County. District 6 would include all of the City of Aurora and the parts of Adams and Arapahoe Counties to its east. It would also include Parker, Stonegate, and Meridian in Douglas County; Centennial, Greenwood Village, and Cherry Hills Village in Arapahoe County; and the Indian Creek and Kennedy neighborhoods in Denver. District 8 would include the rest. It would include all of Jefferson County from Golden and Lakewood south (except for small parts of southeastern Lakewood and western Bow Mar) It would include the rest of Douglas County, including Highlands Ranch, Lone Tree, Castle Pines, and The Pinery. Comparison of Maps Precise Population Equality The preliminary commission map has exact population equality. The draft alternative map has a variation of 0.28% (2,038 persons). This is well within the courts’ guidelines for population equality, without even considering that errors in the census data likely exceed this variation, the census data are already a year out of date, and relative district populations will fluctuate over the next 10 years. Both the “good-faith effort†and “as practicable†language leave room for a bit of variance in service of other goals. The need to “justify any variance†does not mean “no variance will be allowed.†It may be better to maintain unity in a community of interest or political subdivision rather than separate part of it for additional precision. Contiguity The draft alternative map meets this requirement. The preliminary commission map violates the spirit if not the actual language of this requirement. While its districts are connected by land, the only way to travel to all parts of preliminary Districts 3 and 4 without leaving the districts would be on foot. There is no road connection between the parts of Boulder County that are in District 3 and the rest of that district in Grand County without leaving the district and passing through District 2 in either Gilpin or Larimer Counties. There also is no road connection between some of the southwestern portions of Mineral County and the rest of District 4 without passing through Archuleta or Hinsdale Counties in District 3. Voting Rights Act The draft alternative
This is a comment on the preliminary Congressional Commission redistricting map. Along with providing feedback on that map, it offers a draft alternative that better meets the criteria of the Colorado Constitution. As background, I participated in redistricting initiatives in South Bend, Indiana, in the mid-1980s and for Indiana legislative seats after the 1990 census. I didn’t engage with redistricting during the rest of my 20-year military career. After retiring, and while serving as Public Trustee for El Paso County, I participated in redistricting efforts at the county and city level. I also stood for El Paso County Clerk in 2010. I have lived in Colorado since 2000. The draft alternative map is created using Dave’s Redistricting App (DRA) and can be found at https://davesredistricting.org/join/346f297c-71d1-4443-9110-b92e3362b105. I used DRA because it was more user-friendly in that it allows selection by precinct and by city or town, while the tool provided by the commission seems to allow only selection by census block (or larger clusters). The two tools also use slightly different population estimates, but this will be resolved when the 2020 data are released in August. These comments acknowledge that any map created using estimated populations will need to change to account for the actual census data.
Description of Draft Alternative
My process started by
identifying large-scale geographic communities of interest within Colorado: the Western Slope/mountain areas, the Eastern Plains, Colorado Springs/El Paso County, the North Front Range, and Denver Metro. Two smaller geographic communities of interest are Pueblo and the San Luis Valley—neither is nearly large enough to sustain a district and both are somewhat distinct from their neighboring communities of interest. A choice thus must be made about which other communities of interest to group them with. El Paso County is within 0.3% of the optimal population, so it is set as District 5. The true Western Slope is not large enough to sustain a district, even with the obvious addition of Jackson County. Rather than including the San Luis Valley with the Western Slope, the preliminary commission map extends the Western Slope district to include all of Fremont County (even Canon City, Florence, and Penrose), Clear Creek County, and some of northern Boulder County. The draft alternative District 3 instead adds the San Luis Valley, the Upper Arkansas Valley (Lake and Chaffee Counties, and the western part of Fremont County), Park and Teller Counties, and Custer County. The draft alternative District 4 is based on the Eastern Plains. In the south, this includes the rest of Fremont County (including Canon City), Pueblo, and the Lower Arkansas Valley. In the north, this includes all of Weld County, retaining it as an intact political subdivision. This is nearly enough population to form a complete district; it is rounded out by including the easternmost portions of Adams and Arapahoe Counties. All of Elbert County is in this district; none of Douglas County is. The draft alternative District 2 is placed in the North Front Range and includes Larimer, Boulder, Gilpin, and Clear Creek Counties. This is nearly enough population to form a complete district, so it is rounded out by adding Evergreen and the rest of Coal Creek in Jefferson County. The City and County of Denver (and the Arapahoe County enclave municipalities of Glendale and Holly Hills) forms the basis of draft alternative District 1. This is a bit too large to form a district, so small areas are shaved off into neighboring districts: DIA (mostly for compactness), Indian Creek, and part of Marston. This leaves three districts to place in suburban Denver. The draft alternative keeps Douglas County intact, as well as the city of Aurora, except for the part that extends into Douglas County. The map prioritizes the county over the city as a political subdivision. Draft alternative District 6, anchored in Douglas County, extends north into Arapahoe County to include suburbs like Centennial, Littleton, Englewood, Greenwood Village, and Cherry Hills Village. This is not enough population, so the district extends west into southern Jefferson County to include Columbine, Ken Caryl, and Dakota Ridge. The northwestern edge of this district would run along Deer Creek Road, Pleasant Park Road, and Kennedy Gulch Road. Draft alternative District 8, anchored in Aurora, includes the rest of western Arapahoe County and extends north into Adams County to include Commerce City, Brighton (except the part in Weld County), Thornton, and North Washington. In the draft alternative, this district includes a sliver of Northglenn east of Stonehocker Park. While this likely would be resolved when final population totals are released, this division of Northglenn is the most notable division of a city within a single county other than the required division of Denver. Draft alternative District 7 encompasses what is left: The City and County of Broomfield; Westminster, in both Jefferson and Adams Counties; Federal Heights, Sherrelwood, Welby, Twin Lakes, Berkley, and almost all of Northglenn in western Adams County; and Lakewood, Arvada, Golden, Wheat Ridge, Morrison, Indian Hills, Aspen Park, Genesee, and Kittredge in northern Jefferson County. The border with District 2 through the communities in the western portion of Jefferson County would likely be adjusted after final population totals are released.
Comparison of Maps
Precise Population Equality
The preliminary commission
map has exact population equality. The draft alternative map has a variation of 0.6% (4,239 persons). Given that the maps are based on population estimates, and that I left it at the precinct and municipality level, this aspect of the preliminary map is premature to pinpoint. Once final population data are released, either map would need to be adjusted. It would be simple to tweak district boundaries to achieve any desired level of equality. That said, such precision is a bit of a fallacy: errors in the census data likely exceed the 0.6% in the draft map, the census data will be a year out of date when received, and relative district populations will fluctuate over the next 10 years. Both the “good-faith effort†and “as practicable†language leave room for a bit of variance in service of other goals. The need to “justify any variance†does not mean “no variance will be allowed.†For example, it may be better to maintain unity in a community of interest or political subdivision rather than separate part of it for additional precision. The major sticking point here is likely to be El Paso County: given how close it seems to be to the optimal district size, will it be worth it to divide the county or one of its neighbors to achieve precision? The same question would be likely to apply among the municipalities in Metro Denver.
Contiguity
The draft alternative map
meets this requirement. The preliminary commission map violates the spirit if not the actual language of this requirement. While its districts are connected by land, the only way to travel to all parts of preliminary Districts 3 and 4 without leaving the districts would be on foot. There is no road connection between the parts of Boulder County that are in District 3 and the rest of that district in Grand County without leaving the district and passing through District 2 in either Gilpin or Larimer Counties. There also is no road connection between some of the southwestern portions of Mineral County and the rest of District 4 without passing through Archuleta or Hinsdale Counties in District 3.
Voting Rights Act
The preliminary staff
analysis assumes it would be possible to create a majority-minority district; they are correct, it can be done via a noncompact district running from the west side of Denver up to Commerce City and Brighton and down to parts of northeastern Denver and northern Aurora. Such a district would go against criteria for compactness, political subdivisions, and even other definitions of communities of interest. Staff asserts that the election of Democratic candidates in this area suffices for VRA. Appendix B is opaque regarding the actual non-White or Hispanic population in each district, but I presume that if they had created a majority-minority district they would have said so. In the draft alternative map, District 8 (Aurora, Commerce City, Brighton, and Thornton) has a 39.6% minority population and District 1 (Denver) has a 34.9% minority population. The proposals are similar in meeting this criterion.
Communities of Interest
Staff presented a long list
of communities of interest. While keeping all of these intact would be ideal, drawing a map requires compromises based on geography and population. Many communities of interest overlap with each other, especially at their edges. This difficulty points to a reason to focus on existing subdivisions (county, city, and town boundaries): those boundaries are stable and overlap with shared public policy concerns. The preliminary commission map chooses to group the San Luis Valley, as far upstream as Del Norte and Creede, with Pueblo and the Eastern Plains rather than with the Western Slope/Mountains. To balance the population numbers, the preliminary commission map thus had to reach east in northern and central Colorado. The commission includes Canon City and Florence
The Home Owners' Loan Corporation (HOLC) was created in the New Deal Era and trained many home appraisers in the 1930s. The HOLC created a neighborhood ranking system infamously known today as redlining. Local real estate developers and appraisers in over 200 cities assigned grades to residential neighborhoods. These maps and neighborhood ratings set the rules for decades of real estate practices. The grades ranged from A to D. A was traditionally colored in green, B was traditionally colored in blue, C was traditionally colored in yellow, and D was traditionally colored in red. A (Best): Always upper- or upper-middle-class White neighborhoods that HOLC defined as posing minimal risk for banks and other mortgage lenders, as they were "ethnically homogeneous" and had room to be further developed.B (Still Desirable): Generally nearly or completely White, U.S. -born neighborhoods that HOLC defined as "still desirable" and sound investments for mortgage lenders.C (Declining): Areas where the residents were often working-class and/or first or second generation immigrants from Europe. These areas often lacked utilities and were characterized by older building stock.D (Hazardous): Areas here often received this grade because they were "infiltrated" with "undesirable populations" such as Jewish, Asian, Mexican, and Black families. These areas were more likely to be close to industrial areas and to have older housing.Banks received federal backing to lend money for mortgages based on these grades. Many banks simply refused to lend to areas with the lowest grade, making it impossible for people in many areas to become homeowners. While this type of neighborhood classification is no longer legal thanks to the Fair Housing Act of 1968 (which was passed in large part due to the activism and work of the NAACP and other groups), the effects of disinvestment due to redlining are still observable today. For example, the health and wealth of neighborhoods in Chicago today can be traced back to redlining (Chicago Tribune). In addition to formerly redlined neighborhoods having fewer resources such as quality schools, access to fresh foods, and health care facilities, new research from the Science Museum of Virginia finds a link between urban heat islands and redlining (Hoffman, et al., 2020). This layer comes out of that work, specifically from University of Richmond's Digital Scholarship Lab. More information on sources and digitization process can be found on the Data and Download and About pages. NOTE: This map has been updated as of 1/16/24 to use a newer version of the data layer which contains more cities than it previously did. As mentioned above, over 200 cities were redlined and therefore this is not a complete dataset of every city that experienced redlining by the HOLC in the 1930s. Map opens in Sacramento, CA. Use bookmarks or the search bar to get to other cities.Cities included in this mapAlabama: Birmingham, Mobile, MontgomeryArizona: PhoenixArkansas: Arkadelphia, Batesville, Camden, Conway, El Dorado, Fort Smith, Little Rock, Russellville, TexarkanaCalifornia: Fresno, Los Angeles, Oakland, Sacramento, San Diego, San Francisco, San Jose, StocktonColorado: Boulder, Colorado Springs, Denver, Fort Collins, Fort Morgan, Grand Junction, Greeley, Longmont, PuebloConnecticut: Bridgeport and Fairfield; Hartford; New Britain; New Haven; Stamford, Darien, and New Canaan; WaterburyFlorida: Crestview, Daytona Beach, DeFuniak Springs, DeLand, Jacksonville, Miami, New Smyrna, Orlando, Pensacola, St. Petersburg, TampaGeorgia: Atlanta, Augusta, Columbus, Macon, SavannahIowa: Boone, Cedar Rapids, Council Bluffs, Davenport, Des Moines, Dubuque, Sioux City, WaterlooIllinois: Aurora, Chicago, Decatur, East St. Louis, Joliet, Peoria, Rockford, SpringfieldIndiana: Evansville, Fort Wayne, Indianapolis, Lake County Gary, Muncie, South Bend, Terre HauteKansas: Atchison, Greater Kansas City, Junction City, Topeka, WichitaKentucky: Covington, Lexington, LouisvilleLouisiana: New Orleans, ShreveportMaine: Augusta, Boothbay, Portland, Sanford, WatervilleMaryland: BaltimoreMassachusetts: Arlington, Belmont, Boston, Braintree, Brockton, Brookline, Cambridge, Chelsea, Dedham, Everett, Fall River, Fitchburg, Haverhill, Holyoke Chicopee, Lawrence, Lexington, Lowell, Lynn, Malden, Medford, Melrose, Milton, Needham, New Bedford, Newton, Pittsfield, Quincy, Revere, Salem, Saugus, Somerville, Springfield, Waltham, Watertown, Winchester, Winthrop, WorcesterMichigan: Battle Creek, Bay City, Detroit, Flint, Grand Rapids, Jackson, Kalamazoo, Lansing, Muskegon, Pontiac, Saginaw, ToledoMinnesota: Austin, Duluth, Mankato, Minneapolis, Rochester, Staples, St. Cloud, St. PaulMississippi: JacksonMissouri: Cape Girardeau, Carthage, Greater Kansas City, Joplin, Springfield, St. Joseph, St. LouisNorth Carolina: Asheville, Charlotte, Durham, Elizabeth City, Fayetteville, Goldsboro, Greensboro, Hendersonville, High Point, New Bern, Rocky Mount, Statesville, Winston-SalemNorth Dakota: Fargo, Grand Forks, Minot, WillistonNebraska: Lincoln, OmahaNew Hampshire: ManchesterNew Jersey: Atlantic City, Bergen County, Camden, Essex County, Monmouth, Passaic County, Perth Amboy, Trenton, Union CountyNew York: Albany, Binghamton/Johnson City, Bronx, Brooklyn, Buffalo, Elmira, Jamestown, Lower Westchester County, Manhattan, Niagara Falls, Poughkeepsie, Queens, Rochester, Schenectady, Staten Island, Syracuse, Troy, UticaOhio: Akron, Canton, Cleveland, Columbus, Dayton, Hamilton, Lima, Lorain, Portsmouth, Springfield, Toledo, Warren, YoungstownOklahoma: Ada, Alva, Enid, Miami Ottawa County, Muskogee, Norman, Oklahoma City, South McAlester, TulsaOregon: PortlandPennsylvania: Allentown, Altoona, Bethlehem, Chester, Erie, Harrisburg, Johnstown, Lancaster, McKeesport, New Castle, Philadelphia, Pittsburgh, Wilkes-Barre, YorkRhode Island: Pawtucket & Central Falls, Providence, WoonsocketSouth Carolina: Aiken, Charleston, Columbia, Greater Anderson, Greater Greensville, Orangeburg, Rock Hill, Spartanburg, SumterSouth Dakota: Aberdeen, Huron, Milbank, Mitchell, Rapid City, Sioux Falls, Vermillion, WatertownTennessee: Chattanooga, Elizabethton, Erwin, Greenville, Johnson City, Knoxville, Memphis, NashvilleTexas: Amarillo, Austin, Beaumont, Dallas, El Paso, Forth Worth, Galveston, Houston, Port Arthur, San Antonio, Waco, Wichita FallsUtah: Ogden, Salt Lake CityVirginia: Bristol, Danville, Harrisonburg, Lynchburg, Newport News, Norfolk, Petersburg, Phoebus, Richmond, Roanoke, StauntonVermont: Bennington, Brattleboro, Burlington, Montpelier, Newport City, Poultney, Rutland, Springfield, St. Albans, St. Johnsbury, WindsorWashington: Seattle, Spokane, TacomaWisconsin: Kenosha, Madison, Milwaukee County, Oshkosh, RacineWest Virginia: Charleston, Huntington, WheelingAn example of a map produced by the HOLC of Philadelphia:
https://www.colorado-demographics.com/terms_and_conditionshttps://www.colorado-demographics.com/terms_and_conditions
A dataset listing Colorado counties by population for 2024.
The Traffic Counts feature layer models the locations and daily volume of traffic counts within the Pikes Peak Area Council of Governments (PPACG) region. The data in this feature class is developed by PPACG from information provided by or acquired from the Colorado Department of Transportation (CDOT), county and municipal governments within the region, and private companies contracted to perform traffic count collections.The 'Source_ID' field references the ID for the counter, location, or report provided by the source of each count, which may not be unique to the dataset. The 'RouteCL_ID' field stores the unique ID for a related Route_Centerlines feature class segment, while the 'Loc_Desc' field describes the relative location of the traffic counter.The Hourly Traffic Counts layer records the average number of vehicles at each location in one-hour intervals, and has fields for storing each hour's count and a field identifying the number of days the counter collected at each location. The Daily Traffic Counts layer records daily traffic volume at each location, and has a 'Count_Type' field that identifies the type of count collected. Most of the daily counts are a measure of Annual Average Daily Traffic (AADT), which is a calculated average of traffic volume recorded at that location throughout a single year, while an Average Daily Traffic (ADT) count is an average of traffic volume recorded at that location across multiple days, and a 24-hr count is the traffic volume recorded during a single day. Both layers have a 'Count_Yr' field to record the year the count was collected.For more detailed information regarding the information contained, including available attribute fields, extents, and data sources, please examine the descriptions and metadata for each layer.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
U.S. Census Bureau QuickFacts statistics for Colorado Springs city, Colorado. QuickFacts data are derived from: Population Estimates, American Community Survey, Census of Population and Housing, Current Population Survey, Small Area Health Insurance Estimates, Small Area Income and Poverty Estimates, State and County Housing Unit Estimates, County Business Patterns, Nonemployer Statistics, Economic Census, Survey of Business Owners, Building Permits.