U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
2016, 2015. Data were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. The project was funded by the Robert Wood Johnson Foundation (RWJF) in conjunction with the CDC Foundation. 500 cities project city-level data in GIS-friendly format can be joined with city spatial data (https://chronicdata.cdc.gov/500-Cities/500-Cities-City-Boundaries/n44h-hy2j) in a geographic information system (GIS) to produce maps of 27 measures at the city-level. There are 4 measures (high blood pressure, taking high blood pressure medication, high cholesterol, cholesterol screening) in this 2018 release from the 2015 BRFSS that were the same as the 2017 release.
This data set consists of 6 classes of zoning features: zoning districts, special purpose districts, special purpose district subdistricts, limited height districts, commercial overlay districts, and zoning map amendments.
All previously released versions of this data are available at BYTES of the BIG APPLE- Archive.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
City of Phoenix parcel boundaries and details are shown for use to provide the best readability when used with different basemaps or aerial photos. Not intended for surveying, legal or engineering purposes. For non-commercial purposes only! This data is updated monthly.
This world cities layer presents the locations of many cities of the world, both major cities and many provincial capitals.Population estimates are provided for those cities listed in open source data from the United Nations and US Census.
The Digital Geologic-GIS Map of City of Rocks National Reserve and Vicinity, Idaho is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (ciro_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (ciro_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (ciro_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (ciro_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (ciro_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (ciro_geology_metadata_faq.pdf). Please read the ciro_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (ciro_geology_metadata.txt or ciro_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This feature service includes change areas for city boundaries and county line adjustments filed in accordance with Government Code 54900. The boundaries in this map are based on the State Board of Equalization's tax rate area maps for the assessment roll year specified in the COFILE field. The information is updated regularly within 10 business days of the most recent BOE acknowledgement date. Some differences may occur between actual recorded boundaries and boundary placement in the tax rate area GIS map. Tax rate area boundaries are representations of taxing jurisdictions for the purpose of determining property tax assessments and should not be used to determine precise city or county boundary line locations. BOE_CityAnx Data Dictionary: COFILE = county number - assessment roll year - file number; CHANGE = affected city, unincorporated county, or boundary correction; EFFECTIVE = date the change was effective by resolution or ordinance; RECEIVED = date the change was received at the BOE; ACKNOWLEDGED = date the BOE accepted the filing for inclusion into the tax rate area system; NOTES: additional clarifying information about the action. BOE_CityCounty Data Dictionary: COUNTY = county name; CITY = city name or unincorporated territory; COPRI = county number followed by the 3-digit city primary number used in the BOE's 6-digit tax rate area numbering system (for the purpose of this map, unincorporated areas are assigned 000 to indicate that the area is not within a city).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This feature class is used for cartographic purposes, for generating statistical data, and for clipping data. Ideally, state and federal agencies should be using the same framework data for common themes such as county boundaries. This layer provides an initial offering as "best available" at 1:24,000 scale for counties.Incorporated cities were merged from the Board of Equalization's 11/16/2021 City and County boundaries dataset. The Cal Fire FRAP County boundaries v 19_1 were maintained for consistency with other use in CA Nature.
Web map for City Properties and Facilities in support of the Land & Building Management System
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Planning, Engineering & Permitting - GIS Mapping files
The data created by the City of San Antonio is available to download in the ESRI ArcGIS 10.1 File Geodatabase format and is in the NAD 1983 State Plane Texas South Central FIPS 4204 Feet coordinate system.
This application shows general City information such as the locations of fire stations and government services, and also tax information for all the parcels located in the City of Winchester, Virginia.
The Digital Geologic-GIS Map of the Buffalo City Quadrangle, Arkansas is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (bfci_geology.gdb), and a 2.) Open Geospatial Consortium (OGC) geopackage. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (bfci_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (bfci_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (buff_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (buff_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (bfci_geology_metadata_faq.pdf). Please read the buff_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. QGIS software is available for free at: https://www.qgis.org/en/site/. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Arkansas Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (bfci_geology_metadata.txt or bfci_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains all DOMI Street Closure Permit data in the Computronix (CX) system from the date of its adoption (in May 2020) until the present. The data in each record can be used to determine when street closures are occurring, who is requesting these closures, why the closure is being requested, and for mapping the closures themselves. It is updated hourly (as of March 2024).
It is important to distinguish between a permit, a permit's street closure(s), and the roadway segments that are referenced to that closure(s).
• The CX system identifies a street in segments of roadway. (As an example, the CX system could divide Maple Street into multiple segments.)
• A single street closure may span multiple segments of a street.
• The street closure permit refers to all the component line segments.
• A permit may have multiple streets which are closed. Street closure permits often reference many segments of roadway.
The roadway_id
field is a unique GIS line segment representing the aforementioned
segments of road. The roadway_id
values are assigned internally by the CX system and are unlikely to be known by the permit applicant. A section of roadway may have multiple permits issued over its lifespan. Therefore, a given roadway_id
value may appear in multiple permits.
The field closure_id
represents a unique ID for each closure, and permit_id
uniquely identifies each permit. This is in contrast to the aforementioned roadway_id
field which, again, is a unique ID only for the roadway segments.
City teams that use this data requested that each segment of each street closure permit
be represented as a unique row in the dataset. Thus, a street closure permit that refers to three segments of roadway would be represented as three rows in the table. Aside from the roadway_id
field, most other data from that permit pertains equally to those three rows.
Thus, the values in most fields of the three records are identical.
Each row has the fields segment_num
and total_segments
which detail the relationship
of each record, and its corresponding permit, according to street segment. The above example
produced three records for a single permit. In this case, total_segments
would equal 3 for each record. Each of those records would have a unique value between 1 and 3.
The geometry
field consists of string values of lat/long coordinates, which can be used
to map the street segments.
All string text (most fields) were converted to UPPERCASE data. Most of the data are manually entered and often contain non-uniform formatting. While several solutions for cleaning the data exist, text were transformed to UPPERCASE to provide some degree of regularization. Beyond that, it is recommended that the user carefully think through cleaning any unstructured data, as there are many nuances to consider. Future improvements to this ETL pipeline may approach this problem with a more sophisticated technique.
These data are used by DOMI to track the status of street closures (and associated permits).
An archived dataset containing historical street closure records (from before May of 2020) for the City of Pittsburgh may be found here: https://data.wprdc.org/dataset/right-of-way-permits
This web map contains the City's portion of the Parcel layer maintained and provided by Miami Dade County. The parcel layer is updated weekly. The folio number (attribute) included identifies each individual parcel within city boundaries. The parcel id (PID) field is a unique internal ID that represents the geometry of the parcel as an object in the layer. For inquiries, you can reach the GIS Team at ITDGISTeam@miamigov.com.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘500 Cities: City-level Data (GIS Friendly Format), 2017 release’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/3ce84b26-03d1-4be3-aea0-fa629a51ec48 on 26 January 2022.
--- Dataset description provided by original source is as follows ---
2015, 2014. Data were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. The project was funded by the Robert Wood Johnson Foundation (RWJF) in conjunction with the CDC Foundation. 500 cities project census city-level data in GIS-friendly format can be joined with city spatial data (https://chronicdata.cdc.gov/500-Cities/500-Cities-City-Boundaries/n44h-hy2j) in a geographic information system (GIS) to produce maps of 27 measures at the city-level. Because some questions are only asked every other year in the BRFSS, there are 7 measures in this 2017 release from the 2014 BRFSS that were the same as the 2016 release.
--- Original source retains full ownership of the source dataset ---
The City of Zachary web map displays all property-related and administrative units within the corporate limits of Zachary, Louisiana.
This layer contains the boundaries and IDs of the Maryland tax maps produced by Maryland Department of Planning. Tax maps, also known as assessment maps, property maps or parcel maps, are a graphic representation of real property showing and defining individual property boundaries in relationship to contiguous real property.This is a MD iMAP hosted service layer. Find more information at https://imap.maryland.gov.Feature Service Layer Link:https://geodata.md.gov/imap/rest/services/PlanningCadastre/MD_PropertyData/MapServer/2
Vector polygon map data of property parcels from City of Chesapeake, Virginia containing 93,013 features.
Property parcel GIS map data consists of detailed information about individual land parcels, including their boundaries, ownership details, and geographic coordinates.
Property parcel data can be used to analyze and visualize land-related information for purposes such as real estate assessment, urban planning, or environmental management.
Available for viewing and sharing as a map in a Koordinates map viewer. This data is also available for export to DWG for CAD, PDF, KML, CSV, and GIS data formats, including Shapefile, MapInfo, and Geodatabase.
2017, 2016. Data were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. The project was funded by the Robert Wood Johnson Foundation (RWJF) in conjunction with the CDC Foundation. 500 cities project city-level data in GIS-friendly format can be joined with city spatial data (https://chronicdata.cdc.gov/500-Cities/500-Cities-City-Boundaries/n44h-hy2j) in a geographic information system (GIS) to produce maps of 27 measures at the city-level. There are 7 measures (all teeth lost, dental visits, mammograms, Pap tests, colorectal cancer screening, core preventive services among older adults, and sleep less than 7 hours) in this 2019 release from the 2016 BRFSS that were the same as the 2018 release.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Dunwoody was incorporated as a city in December, 2008. It is comprised of the northern tip of DeKalb County, Ga in the area north of I-285. Dunwoody is surrounded by cities on all sides and is 13.2 square miles.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
2016, 2015. Data were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. The project was funded by the Robert Wood Johnson Foundation (RWJF) in conjunction with the CDC Foundation. 500 cities project city-level data in GIS-friendly format can be joined with city spatial data (https://chronicdata.cdc.gov/500-Cities/500-Cities-City-Boundaries/n44h-hy2j) in a geographic information system (GIS) to produce maps of 27 measures at the city-level. There are 4 measures (high blood pressure, taking high blood pressure medication, high cholesterol, cholesterol screening) in this 2018 release from the 2015 BRFSS that were the same as the 2017 release.