Facebook
TwitterThe Access Network Map of England
is a national composite dataset of Access layers, showing analysis of extent of
Access provision for each Lower Super Output Area (LSOA), as a percentage or
area coverage of access in England. The ‘Access Network Map’ was developed by
Natural England to inform its work to improve opportunities for people to enjoy
the natural environment. This map shows, across England, the
relative abundance of accessible land in relation to where people
live. Due to issues explained below, the map does not, and cannot, provide
a definitive statement of where intervention is necessary. Rather,
it should be used to identify areas of interest which require further
exploration. Natural England believes that places where
people can enjoy the natural environment should be improved and created where
they are most wanted. Access Network Maps help support this work by
providing means to assess the amount of accessible land available in relation
to where people live. They combine all the available good quality data on
access provision into a single dataset and relate this to population.
This provides a common foundation for regional and national teams to use when
targeting resources to improve public access to greenspace, or projects that
rely on this resource. The Access Network Maps are compiled from the
datasets available to Natural England which contain robust, nationally
consistent data on land and routes that are normally available to the public
and are free of charge. Datasets contained in the aggregated
data:•
Agri-environment
scheme permissive access (routes and open access)•
CROW access land
(including registered common land and Section 16)•
Country Parks•
Cycleways (Sustrans
Routes) including Local/Regional/National and Link Routes•
Doorstep Greens•
Local Nature
Reserves•
Millennium Greens•
National Nature
Reserves (accessible sites only)•
National Trails•
Public Rights of
Way•
Forestry Commission
‘Woods for People’ data•
Village Greens –
point data only Due to the quantity and complexity of data
used, it is not possible to display clearly on a single map the precise
boundary of accessible land for all areas. We therefore selected a
unit which would be clearly visible at a variety of scales and calculated the
total area (in hectares) of accessible land in each. The units we
selected are ‘Lower Super Output Areas’ (LSOAs), which represent where
approximately 1,500 people live based on postcode. To calculate the
total area of accessible land for each we gave the linear routes a notional
width of 3 metres so they could be measured in hectares. We then
combined together all the datasets and calculated the total hectares of
accessible land in each LSOA. For further information about this data see the following links:Access Network Mapping GuidanceAccess Network Mapping Metadata Full metadata can be viewed on data.gov.uk.
Facebook
TwitterThis global accessibility map enumerates land-based travel time to the nearest densely-populated area for all areas between 85 degrees north and 60 degrees south for a nominal year 2015. Densely-populated areas are defined as contiguous areas with 1,500 or more inhabitants per square kilometre or a majority of built-up land cover types coincident with a population centre of at least 50,000 inhabitants. This map was produced through a collaboration between MAP (University of Oxford), Google, the European Union Joint Research Centre (JRC), and the University of Twente, Netherlands.The underlying datasets used to produce the map include roads (comprising the first ever global-scale use of Open Street Map and Google roads datasets), railways, rivers, lakes, oceans, topographic conditions (slope and elevation), landcover types, and national borders. These datasets were each allocated a speed or speeds of travel in terms of time to cross each pixel of that type. The datasets were then combined to produce a "friction surface"; a map where every pixel is allocated a nominal overall speed of travel based on the types occurring within that pixel. Least-cost-path algorithms (running in Google Earth Engine and, for high-latitude areas, in R) were used in conjunction with this friction surface to calculate the time of travel from all locations to the nearest (in time) city. The cities dataset used is the high-density-cover product created by the Global Human Settlement Project. Each pixel in the resultant accessibility map thus represents the modelled shortest time from that location to a city. Authors: D.J. Weiss, A. Nelson, H.S. Gibson, W. Temperley, S. Peedell, A. Lieber, M. Hancher, E. Poyart, S. Belchior, N. Fullman, B. Mappin, U. Dalrymple, J. Rozier, T.C.D. Lucas, R.E. Howes, L.S. Tusting, S.Y. Kang, E. Cameron, D. Bisanzio, K.E. Battle, S. Bhatt, and P.W. Gething. A global map of travel time to cities to assess inequalities in accessibility in 2015. (2018). Nature. doi:10.1038/nature25181
Processing notes: Data were processed from numerous sources including OpenStreetMap, Google Maps, Land Cover mapping, and others, to generate a global friction surface of average land-based travel speed. This accessibility surface was then derived from that friction surface via a least-cost-path algorithm finding at each location the closest point from global databases of population centres and densely-populated areas. Please see the associated publication for full details of the processing.
Source: https://map.ox.ac.uk/research-project/accessibility_to_cities/
Facebook
TwitterA story map on how and why the boundaries were made, and a guide to their use for statistics
Facebook
TwitterThis project systematically processed high-resolution and manuscript historical maps to unlock a dormant body of information about the historical development of cities and regions during periods of structural economic transformation.
The work was organised across six interlinked work packages, combining empirical and theoretical analysis in the UK, France, and Canada. Outputs included peer-reviewed publications and robust algorithms for extracting spatial data from historical sources, contributing valuable tools and insights to the fields of urban economics and economic history.
This data package contains three segmentation codes designed to extract features and segment historical maps.
Little is known about the patterns of city development during the structural transformation of economies. This project will systematically process high-resolution and manuscript historical maps to make a dormant body of information about our cities' and regions' past accessible.
The proposed research will advance our understanding of long-run urban growth through the development of three innovative methodologies, which will overcome practical limitations of historical data sources: 1) A technique to extract land use patterns from historical colour maps applied to France (1750-1950); 2) A recognition algorithm to detect, tag and geo-locate points of interest in historical high-quality maps of the 70 largest urban centre in England and Wales; 3) An algorithm to geo-locate address information from Micro-censuses and trade registers.
We have identified four main research questions that will be developed in the following separate research projects. In Project 1, the main question is: what are the long-term empirical patterns of urban development, most notably the persistence of the spatial organisation of economic activity and the role of building infrastructure in shaping such persistence? In Project 2, the main question is: How do environmental disamenities and their unequal distribution within cities affect the spatial organisation of consumption amenities and production? In Project 3, the main question is: Do cities grow towards their bad parts, their neighbourhoods with the lowest environmental amenities? In Project 4, the main question is: How does vertical growth and advances in building technologies affect the spatial organisation of cities?
To address these research questions, we will organise our workflow in six inter-connected work packages (WP):
WP1--Classification of land use in France (1750-2015): The objective of WP1 will be to recover land use information at a fine scale from digitised maps using state-of-the-art machine learning techniques;
WP2--Digitisation of micro-features embedded in Ordnance Survey (OS) city maps of England and Wales (1870-1960);
WP3--Geo-localization of residents and production units in England and Wales (1851-1911);
WP4--Dynamic model of city growth with persistent building stock: WP4 builds a general equilibrium model of spatial economic activity that embeds the durability of housing and infrastructure and exploits the three hundred years of population settlement data produced in WP1;
WP5--Pollution and the long-run development of cities: WP5 builds on WP2,3 and proposes to study the joint dynamics of residential sorting and the location of production within cities to understand how a major environmental disamenity-industrial pollution-affects the spatial organisation of cities in the longer-run;
WP6--Horizontal and vertical urban growth in Montreal and Toronto: WP6 will bridge between the previous working packages WP1, WP2, WP4 and WP5, and study--empirically and theoretically--horizontal and vertical urban growth.
The project will be jointly led by three teams. The French team will be composed of Gobillon (PI), Combes (CoI) and Duranton (TM) who have contributed to the development of major theoretical approaches in urban economics. The Canadian team will be led by Heblich (PI), who is a lead researcher in urban economics/economic history, and Fortin (Co-I), a lead in GIS analysis. The UK team will be led by Zylberberg (PI), who is an economist specialist in data extraction form historical sources and remote sensing. Shaw-Taylor and Schürer, advisory board, will help design the analysis of the population micro-censuses between 1851 and 1911 (WP3). The collaboration partner, Redding (TM), involved in the design of WP3 and the implementation of WP6, is one of the World lead researchers in urban economics.
Outputs will include articles in top economic journals, and detailed algorithms to extract relevant spatial information from manuscript maps.
Facebook
Twitterhttps://www.ons.gov.uk/methodology/geography/licenceshttps://www.ons.gov.uk/methodology/geography/licences
The Rural-Urban Classification is a Government Statistical Service product developed by the Office for National Statistics; the Department for Environment, Food and Rural Affairs; and the Welsh Assembly Government.Source: Office for National Statistics licensed under the Open Government Licence v.3.0.Contains OS data © Crown copyright 2025Links below to FAQ, Methodology and User Guide FAQ https://geoportal.statistics.gov.uk/documents/ebfac455db0642afaa5052738ce5c32e/about Methodology https://geoportal.statistics.gov.uk/documents/833a35f2a1ec49d98466b679ae0a0646/about User Guide https://geoportal.statistics.gov.uk/documents/c8e8e6db38e04cb8937569d74bce277a/about
Facebook
TwitterA PDF map showing the Rural Urban Classification (2011) of the MSOAs in the East of England Region. (File Size - 932 KB)
Facebook
Twitterhttps://www.ons.gov.uk/methodology/geography/licenceshttps://www.ons.gov.uk/methodology/geography/licences
A PDF map showing the Rural Urban Classification (2011) of the LSOAs in the East Midlands Region. (File Size - 2 MB)
Facebook
Twitterhttps://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Urban sound has a huge influence over how we perceive places. Yet, city planning is concerned mainly with noise, simply because annoying sounds come to the attention of city officials in the form of complaints, whereas general urban sounds do not come to the attention as they cannot be easily captured at city scale. To capture both unpleasant and pleasant sounds, we applied a new methodology that relies on tagging information of georeferenced pictures to the cities of London and Barcelona. To begin with, we compiled the first urban sound dictionary and compared it with the one produced by collating insights from the literature: ours was experimentally more valid (if correlated with official noise pollution levels) and offered a wider geographical coverage. From picture tags, we then studied the relationship between soundscapes and emotions. We learned that streets with music sounds were associated with strong emotions of joy or sadness, whereas those with human sounds were associated with joy or surprise. Finally, we studied the relationship between soundscapes and people's perceptions and, in so doing, we were able to map which areas are chaotic, monotonous, calm and exciting. Those insights promise to inform the creation of restorative experiences in our increasingly urbanized world.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
A PDF map showing the Rural Urban Classification (2011) of the LSOAs in the North East Region. (File Size - 541 KB)
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This is a collection of Opportunity Maps for mine water heat, produced for the Department of Energy Security and Net Zero, and their contractor AECOM, covering the following 10 cities: Birmingham, Bristol, Coventry, Leeds, Manchester, Newcastle, Nottingham, Sheffield, Stoke-on-Trent, Sunderland. Also included is a report outlining the methodology criteria for the opportunity map assessment. The dataset has been developed using Coal Authority data, consisting of Underground Workings data, and Environmental Data, and a bespoke assessment methodology. It consists of 15m x 15m square grid cells, containing attribution of Good, Possible, Challenging on the basis of the opportunity method criteria and expert input. In November 2024, the Coal Authority changed its name to the Mining Remediation Authority to better reflect its mission and continued commitment to environmental sustainability, safety, and community support.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
A PDF map showing the Rural Urban Classification (2011) of the MSOAs in the North West Region. (File Size - 745 KB)
Facebook
TwitterA PDF map showing the Rural Urban Classification (2011) of the MSOAs in the South East Region. (File Size - 1 MB)
Facebook
TwitterThese maps show the 2011 Rural-Urban Classification for Local Enterprise Partnership (LEP) Areas based on Census Output Areas. LEP areas consist of groups of local authority areas, and in some instances neighbouring LEPs will overlap. The maps show the full extent of LEPs, including the areas within which they overlap.
Defra statistics: rural
Email mailto:rural.statistics@defra.gov.uk">rural.statistics@defra.gov.uk
<p class="govuk-body">You can also contact us via Twitter: <a href="https://twitter.com/DefraStats" class="govuk-link">https://twitter.com/DefraStats</a></p>
Facebook
TwitterAttribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
Georeferenced map of 'he City of Edinburgh and its environs' By Robert Kirkwood (1804) as part of the Visualising Urban Geographies project- view other versions of the map at http://geo.nls.uk/urbhist/resources_maps.html. Scanned map. This dataset was first accessioned in the EDINA ShareGeo Open repository on 2011-05-31 and migrated to Edinburgh DataShare on 2017-02-21.
Facebook
TwitterA PDF map showing the Rural Urban Classification (2011) of the LSOAs in the South East Region. (File Size - 2 MB)
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
A PDF map showing the Rural Urban Classification (2011) of the MSOAs in the East Midlands Region. (File Size - 955 KB)
Facebook
TwitterODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
This is a collection of simple maps in PDF format that are designed to be printed off and used in the classroom. The include maps of Great Britain that show the location of major rivers, cities and mountains as well as maps of continents and the World. There is very little information on the maps to allow teachers to download them and add their own content to fit with their lesson plans. Customise one print out then photocopy them for your lesson. data not available yet, holding data set (7th August). Other. This dataset was first accessioned in the EDINA ShareGeo Open repository on 2012-08-07 and migrated to Edinburgh DataShare on 2017-02-22.
Facebook
TwitterLiving England is a multi-year project which delivers a broad habitat map for the whole of England, created using satellite imagery, field data records and other geospatial data in a machine learning framework. The Living England habitat map shows the extent and distribution of broad habitats across England aligned to the UKBAP classification, providing a valuable insight into our natural capital assets and helping to inform land management decisions. Living England is a project within Natural England, funded by and supports the Defra Natural Capital and Ecosystem Assessment (NCEA) Programme and Environmental Land Management (ELM) Schemes to provide an openly available national map of broad habitats across England.This dataset includes very complex geometry with a large number of features so it has a default viewing distance set to 1:80,000 (City in the map viewer).Process Description:A number of data layers are used to develop a ground dataset of habitat reference data, which are then used to inform a machine-learning model and spatial analyses to generate a map of the likely locations and distributions of habitats across England. The main source data layers underpinning the spatial framework and models are Sentinel-2 and Sentinel-1 satellite data from the ESA Copernicus programme, Lidar from the EA's national Lidar Programme and collected data through the project's national survey programme. Additional datasets informing the approach as detailed below and outlined in the accompanying technical user guide.Datasets used:OS MasterMap® Topography Layer; Geology aka BGS Bedrock Mapping 1:50k; Long Term Monitoring Network; Uplands Inventory; Coastal Dune Geomatics Mapping Ground Truthing; Crop Map of England (RPA) CROME; Lowland Heathland Survey; National Grassland Survey; National Plant Monitoring Scheme; NE field Unit Surveys; Northumberland Border Mires Survey; Sentinel-2 multispectral imagery; Sentinel-1 backscatter imagery; Sentinel-1 single look complex (SLC) imagery; National forest inventory (NFI); Cranfield NATMAP; Agri-Environment HLS Monitoring; Living England desktop validation; Priority Habitat Inventory; Space2 Eye Lens: Ainsdale NNR, State of the Bog Bowland Survey, State of the Bog Dark Peak Condition Survey, State of the Bog Manchester Metropolitan University (MMU) Mountain Hare Habitat Survey Dark Peak, State of the Bog; Moors for the Future Dark Peak Survey; West Pennines Designation NVC Survey; Wetland Annex 1 inventory; Soils-BGS Soil Parent Material; Met Office HadUK gridded climate product; Saltmarsh Extent and Zonation; EA LiDAR DSM & DTM; New Forest Mires Wetland Survey; New Forest Mires Wetland Survey; West Cumbria Mires Survey; England Peat Map Vegetation Surveys; NE protected sites monitoring; ERA5; OS Open Built-up Areas; OS Boundaries dataset; EA IHM (Integrated height model) DTM; OS VectorMap District; EA Coastal Flood Boundary: Extreme Sea Levels; AIMS Spatial Sea Defences; LIDAR Sand Dunes 2022; EA Coastal saltmarsh species surveys; Aerial Photography GB (APGB); NASA SRT (Shuttle Radar Topography Mission) M30; Provisional Agricultural Land Classification; Renewable Energy Planning Database (REPD); Open Street Map 2024.Attribute descriptions: Column Heading Full Name Format Description
SegID SegID Character (100) Unique Living England segment identifier. Format is LEZZZZ_BGZXX_YYYYYYY where Z = release year (2223 for this version), X = BGZ and Y = Unique 7-digit number
Prmry_H Primary_Habitat Date Primary Living England Habitat
Relblty
Reliability
Character (12)
Reliability Metric Score
Mdl_Hbs Model_Habs Interger List of likely habitats output by the Random Forest model.
Mdl_Prb Model_Probs Double (6,2) List of probabilities for habitats listed in ‘Model_Habs’, calculated by the Random Forest model.
Mixd_Sg Mixed_Segment Character (50) Indication of the likelihood a segment contains a mixture of dominant habitats. Either Unlikely or Probable.
Source Source
Description of how the habitat classification was derived. Options are: Random Forest; Vector OSMM Urban; Vector Classified OS Water; Vector EA saltmarsh; LE saltmarsh & QA; Vector RPA Crome, ALC grades 1-4; Vector LE Bare Ground Analysis; LE QA Adjusted
SorcRsn Source_Reason
Reasoning for habitat class adjustment if ‘Source’ equals ‘LE QA Adjusted’
Shap_Ar Shape_Area
Segment area (m2) Full metadata can be viewed on data.gov.uk.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This is our internet map portal/service for sharing relevant map data for the Local Enterprise Partnership (LEP) City Deal initiative. This is mainly focused on showing housing and economic growth, and transport links, for the following authorities: Coventry Met. Borough, Warwickshire County, North Warwickshire Borough, Nuneaton and Bedworth Borough, Rugby Borough, Warwick District, Stratford-on-Avon District, and Hinckley and Bosworth Borough.
Facebook
Twitterhttps://www.ons.gov.uk/methodology/geography/licenceshttps://www.ons.gov.uk/methodology/geography/licences
The Rural-Urban Classification is a Government Statistical Service product developed by the Office for National Statistics; the Department for Environment, Food and Rural Affairs; and the Welsh Assembly Government.Source: Office for National Statistics licensed under the Open Government Licence v.3.0.Contains OS data © Crown copyright 2025Links below to FAQ, Methodology and User Guide FAQ https://geoportal.statistics.gov.uk/documents/ebfac455db0642afaa5052738ce5c32e/about Methodology https://geoportal.statistics.gov.uk/documents/833a35f2a1ec49d98466b679ae0a0646/about User Guide https://geoportal.statistics.gov.uk/documents/c8e8e6db38e04cb8937569d74bce277a/about
Facebook
TwitterThe Access Network Map of England
is a national composite dataset of Access layers, showing analysis of extent of
Access provision for each Lower Super Output Area (LSOA), as a percentage or
area coverage of access in England. The ‘Access Network Map’ was developed by
Natural England to inform its work to improve opportunities for people to enjoy
the natural environment. This map shows, across England, the
relative abundance of accessible land in relation to where people
live. Due to issues explained below, the map does not, and cannot, provide
a definitive statement of where intervention is necessary. Rather,
it should be used to identify areas of interest which require further
exploration. Natural England believes that places where
people can enjoy the natural environment should be improved and created where
they are most wanted. Access Network Maps help support this work by
providing means to assess the amount of accessible land available in relation
to where people live. They combine all the available good quality data on
access provision into a single dataset and relate this to population.
This provides a common foundation for regional and national teams to use when
targeting resources to improve public access to greenspace, or projects that
rely on this resource. The Access Network Maps are compiled from the
datasets available to Natural England which contain robust, nationally
consistent data on land and routes that are normally available to the public
and are free of charge. Datasets contained in the aggregated
data:•
Agri-environment
scheme permissive access (routes and open access)•
CROW access land
(including registered common land and Section 16)•
Country Parks•
Cycleways (Sustrans
Routes) including Local/Regional/National and Link Routes•
Doorstep Greens•
Local Nature
Reserves•
Millennium Greens•
National Nature
Reserves (accessible sites only)•
National Trails•
Public Rights of
Way•
Forestry Commission
‘Woods for People’ data•
Village Greens –
point data only Due to the quantity and complexity of data
used, it is not possible to display clearly on a single map the precise
boundary of accessible land for all areas. We therefore selected a
unit which would be clearly visible at a variety of scales and calculated the
total area (in hectares) of accessible land in each. The units we
selected are ‘Lower Super Output Areas’ (LSOAs), which represent where
approximately 1,500 people live based on postcode. To calculate the
total area of accessible land for each we gave the linear routes a notional
width of 3 metres so they could be measured in hectares. We then
combined together all the datasets and calculated the total hectares of
accessible land in each LSOA. For further information about this data see the following links:Access Network Mapping GuidanceAccess Network Mapping Metadata Full metadata can be viewed on data.gov.uk.