Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Partial and incremental stratification analysis of a quantitative structure-interference relationship (QSIR) is a novel strategy intended to categorize classification provided by machine learning techniques. It is based on a 2D mapping of classification statistics onto two categorical axes: the degree of consensus and level of applicability domain. An internal cross-validation set allows to determine the statistical performance of the ensemble at every 2D map stratum and hence to define isometric local performance regions with the aim of better hit ranking and selection. During training, isometric stratified ensembles (ISE) applies a recursive decorrelated variable selection and considers the cardinal ratio of classes to balance training sets and thus avoid bias due to possible class imbalance. To exemplify the interest of this strategy, three different highly imbalanced PubChem pairs of AmpC β-lactamase and cruzain inhibition assay campaigns of colloidal aggregators and complementary aggregators data set available at the AGGREGATOR ADVISOR predictor web page were employed. Statistics obtained using this new strategy show outperforming results compared to former published tools, with and without a classical applicability domain. ISE performance on classifying colloidal aggregators shows from a global AUC of 0.82, when the whole test data set is considered, up to a maximum AUC of 0.88, when its highest confidence isometric stratum is retained.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Technical Debt (TD) prediction is crucial to preventing software quality degradation and maintenance cost increase. Recent Machine Learning (ML) approaches have shown promising results in TD prediction, but the imbalanced TD datasets can have a negative impact on ML model performance. Although previous TD studies have investigated various oversampling techniques that generates minority class instances to mitigate the imbalance, potentials of undersampling techniques have not yet been thoroughly explored due to the concerns about information loss. To address this gap, we investigate the impact of undersampling on ML model performance for TD prediction by utilizing 17,797 classes from 25 Java open-source projects. We compare the performance of ML models with different undersampling techniques and evaluate the impact of combining them with widely used oversampling techniques in TD studies. Our findings reveal that (i) undersampling can significantly improve ML model performance compared to oversampling and no resampling; (ii) the combined application of undersampling and oversampling techniques leads to a synergy of further performance improvement compared to applying each technique exclusively. Based on these results, we recommend practitioners to explore various undersampling techniques and their combinations with oversampling techniques for more effective TD prediction.This package is for the replication of 'Less is More: an Empirical Study of Undersampling Techniques for Technical Debt Prediction'File list:X.csv, Y.csv: - These are the datasets for the study, used in the ipynb file below.under_over_sampling_scripts.ipynb: - These scripts can obtain all the experimental results from the study. - They can be run through Jupyter Notebook or Google Colab. - The required packages are listed at the top in the file, so installation via pip or conda is necessary before running.Results_for_all_tables.csv: This is a csv file that summarizes all the results obtained from the study.
This dataset was created by Akalya Subramanian
It is important that credit card companies are able to recognize fraudulent credit card transactions so that customers are not charged for items that they did not purchase.
The datasets contains transactions made by credit cards in September 2013 by european cardholders. This dataset presents transactions that occurred in two days, where we have 492 frauds out of 216,94 transactions. The dataset is highly unbalanced, the positive class (frauds) account for 0.172% of all transactions.
It contains only numerical input variables which are the result of a PCA transformation. Unfortunately, due to confidentiality issues, we cannot provide the original features and more background information about the data. Features V1, V2, … V28 are the principal components obtained with PCA, the only features which have not been transformed with PCA are 'Time' and 'Amount'. Feature 'Time' contains the seconds elapsed between each transaction and the first transaction in the dataset. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-senstive learning. Feature 'Class' is the response variable and it takes value 1 in case of fraud and 0 otherwise.
Identify fraudulent credit card transactions.
Given the class imbalance ratio, we recommend measuring the accuracy using the Area Under the Precision-Recall Curve (AUPRC). Confusion matrix accuracy is not meaningful for unbalanced classification.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The performance of the defect prediction model by using balanced and imbalanced datasets makes a big impact on the discovery of future defects. Current resampling techniques only address the imbalanced datasets without taking into consideration redundancy and noise inherent to the imbalanced datasets. To address the imbalance issue, we propose Kernel Crossover Oversampling (KCO), an oversampling technique based on kernel analysis and crossover interpolation. Specifically, the proposed technique aims to generate balanced datasets by increasing data diversity in order to reduce redundancy and noise. KCO first represents multidimensional features into two-dimensional features by employing Kernel Principal Component Analysis (KPCA). KCO then divides the plotted data distribution by deploying spectral clustering to select the best region for interpolation. Lastly, KCO generates the new defect data by interpolating different data templates within the selected data clusters. According to the prediction evaluation conducted, KCO consistently produced F-scores ranging from 21% to 63% across six datasets, on average. According to the experimental results presented in this study, KCO provides more effective prediction performance than other baseline techniques. The experimental results show that KCO within project and cross project predictions especially consistently achieve higher performance of F-score results.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Two synthetic datasets for binary classification, generated with the Random Radial Basis Function generator from WEKA. They are the same shape and size (104.952 instances, 185 attributes), but the "balanced" dataset has 52,13% of its instances belonging to class c0, while the "unbalanced" one only has 4,04% of its instances belonging to class c0. Therefore, this set of datasets is primarily meant to study how class balance influences the behaviour of a machine learning model.
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
here, we provide plankton image data that was sorted with the web applications ecotaxa and morphocluster. the data set was used for image classification tasks as described in schröder et. al (in preparation) and does not include any geospatial or temporal meta-data.plankton was imaged using the underwater vision profiler 5 (picheral et al. 2010) in various regions of the world's oceans between 2012-10-24 and 2017-08-08.this data publication consists of an archive containing "training.csv" (list of 392k training images for classification, validated using ecotaxa), "validation.csv" (list of 196k validation images for classification, validated using ecotaxa), "unlabeld.csv" (list of 1m unlabeled images), "morphocluster.csv" (1.2m objects validated using morphocluster, a subset of "unlabeled.csv" and "validation.csv") and the image files themselves. the csv files each contain the columns "object_id" (a unique id), "image_fn" (the relative filename), and "label" (the assigned name).the training and validation sets were sorted into 65 classes using the web application ecotaxa (http://ecotaxa.obs-vlfr.fr). this data shows a severe class imbalance; the 10% most populated classes contain more than 80% of the objects and the class sizes span four orders of magnitude. the validation set and a set of additional 1m unlabeled images were sorted during the first trial of morphocluster (https://github.com/morphocluster).the images in this data set were sampled during rv meteor cruises m92, m93, m96, m97, m98, m105, m106, m107, m108, m116, m119, m121, m130, m131, m135, m136, m137 and m138, during rv maria s merian cruises msm22, msm23, msm40 and msm49, during the rv polarstern cruise ps88b and during the fluxes1 experiment with rv sarmiento de gamboa.the following people have contributed to the sorting of the image data on ecotaxa:rainer kiko, tristan biard, benjamin blanc, svenja christiansen, justine courboules, charlotte eich, jannik faustmann, christine gawinski, augustin lafond, aakash panchal, marc picheral, akanksha singh and helena haussin schröder et al. (in preparation), the training set serves as a source for knowledge transfer in the training of the feature extractor. the classification using morphocluster was conducted by rainer kiko. used labels are operational and not yet matched to respective ecotaxa classes.
This task focuses on sound event detection in a few-shot learning setting for animal (mammal and bird) vocalisations. Participants will be expected to create a method that can extract information from five exemplar vocalisations (shots) of mammals or birds and detect and classify sounds in field recordings.
For more info please reffer to the official website: https://dcase.community/challenge2023/task-few-shot-bioacoustic-event-detection
Few-shot learning is a highly promising paradigm for sound event detection. It is also an extremely good fit to the needs of users in bioacoustics, in which increasingly large acoustic datasets commonly need to be labelled for events of an identified category (e.g. species or call-type), even though this category might not be known in other datasets or have any yet-known label. While satisfying user needs, this will also benchmark few-shot learning for the wider domain of sound event detection (SED).
Few-shot learning describes tasks in which an algorithm must make predictions given only a few instances of each class, contrary to standard supervised learning paradigm. The main objective is to find reliable algorithms that are capable of dealing with data sparsity, class imbalance and noisy/busy environments. Few-shot learning is usually studied using N-way-K-shot classification, where N denotes the number of classes and K the number of examples for each class.
Some reasons why few-shot learning has been of increasing interest:
Scarcity of supervised data can lead to unreliable generalisations of machine learning models. Explicitly labeling a huge dataset can be costly both in time and resources. Fixed ontologies or class labels used in SED and other DCASE tasks are often a poor fit to a given user’s goal. Development Set The development set is pre-split into training and validation sets. The training set consists of five sub-folders deriving from a different source each. Along with the audio files multi-class annotations are provided for each. The validation set consists of two sub-folders deriving from a different source each, with a single-class (class of interest) annotation file provided for each audio file.
The training set contains four different sub-folders (BV, HV, JD, MT,WMW). Statistics are given overall and specific for each sub-folder.
Overall Statistics Values Number of audio recordings 174 Total duration 21 hours Total classes (excl. UNK) 47 Total events (excl. UNK) 14229
The BirdVox-DCASE-10h (BV for short) contains five audio files from four different autonomous recording units, each lasting two hours. These autonomous recording units are all located in Tompkins County, New York, United States. Furthermore, they follow the same hardware specification: the Recording and Observing Bird Identification Node (ROBIN) developed by the Cornell Lab of Ornithology. Andrew Farnsworth, an expert ornithologist, has annotated these recordings for the presence of flight calls from migratory passerines, namely: American sparrows, cardinals, thrushes, and warblers. In total, the annotator found 2,662 from 11 different species. We estimate these flight calls to have a duration of 150 milliseconds and a fundamental frequency between 2 kHz and 10 kHz.
Statistics Values Number of audio recordings 5 Total duration 10 hours Total classes (excl. UNK) 11 Total events (excl. UNK) 9026 Ratio event/duration 0.04 Sampling rate 24,000 Hz
Spotted hyenas are a highly social species that live in "fission-fusion" groups where group members range alone or in smaller subgroups that split and merge over time. Hyenas use a variety of types of vocalizations to coordinate with one another over both short and long distances. Spotted hyena vocalization data were recorded on custom-developed audio tags designed by Mark Johnson and integrated into combined GPS / acoustic collars (Followit Sweden AB) by Frants Jensen and Mark Johnson. Collars were deployed on female hyenas of the Talek West hyena clan at the MSU-Mara Hyena Project (directed by Kay Holekamp) in the Masai Mara, Kenya as part of a multi-species study on communication and collective behavior. Field work was carried out by Kay Holekamp, Andrew Gersick, Frants Jensen, Ariana Strandburg-Peshkin, and Benson Pion; labeling was done by Kenna Lehmann and colleagues.
Statistics Values Number of audio recordings 5 Total duration 5 hours Total classes (excl. UNK) 3 Total events (excl. UNK) 611 Ratio events/duration 0.05 Sampling rate 6000 Hz
Jackdaws are corvid songbirds which usually breed, forage and sleep in large groups, but form a pair bond with the same partner for life. They produce thousands of vocalisations per day, but many aspects of their vocal behaviour remained unexplored due to the difficulty in recording and assigning vocalisations to specific individuals, especia...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Additional file 3. Candidate predictors per database.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Shows parameters of the datasets used in this study.
Replication package for the paper:
F. Calefato, F. Lanubile, and N. Novielli (2018) “An Empirical Assessment of Best-Answer Prediction Models in Technical Q&A Sites.” Empirical Software Engineering Journal, DOI: 10.1007/s10664-018-9642-5.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Instructions for the data and code repository
Results, post-processing workflow, and datasets for the research paper titled "Random Forest Classification and Solar Flares Data: Analysis and Validation".
The folder contains three .csv files: the complete dataset (dataset.csv), the balanced training dataset (train_dataset.csv), and the testing dataset (test_dataset.csv).
The folder also contains the result files from the research (.csv output files with predictions and .html files with evaluation metrics, etc.) exported from the JASP software. The number in each file name corresponds to the number of trees utilized in Random Forest modelling.
In addition, the Python script for the post-processing workflow is provided, with comments located in the script.
The soft range X-ray irradiance and VLF amplitude data were obtained from:
National Centers for Environmental Information (NCEI) Available online: https://www.ncei.noaa.gov/. Accessed on: 24th June 2023.
Worldwide archive of low-frequency data and observations (WALDO) Available online: https://waldo.world/. Accessed on: 24th June 2023.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Additional file 3 The R code for implementing the sssHD algorithm and related calculations is available.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains 50 features and was generated through 12,852 time-domain simulations performed on the IEEE New England 39 bus system test case using DIgSILENT PowerFactory and Python automation. The simulations span diverse operating conditions by varying the generation/load profile from 80% to 120% in 5% increments. For each condition, three-phase short-circuit faults were applied at seven distinct locations (0%, 10%, 20%, 50%, 80%, 90%, 100%) along all transmission lines, with fault clearing times ranging from 0.1s to 0.3s.
Key features captured for each of the 10 generators (G02 is the reference machine) include:
P in MW - Active Power ut in p.u. - Terminal Voltage ie in p.u. - Excitation Current xspeed in p.u. - Rotor Speed firel in deg - Rotor Angle (relative to G02)
Simulations lasted 10 seconds to ensure accurate transient stability assessment. Post-fault data was sampled every 0.01s from fault clearance up to 0.6s afterward, labeling the stability state as 1 (stable) or 0 (unstable). The dataset generation process took 5,840 seconds. The dataset exhibits a class imbalance, with 42% of cases belonging to the unstable class. All simulation data were exported to .csv files and subsequently unified into a single pickle file (tsa_data.pkl).
Helper scripts are provided:
dataset_loader.py: Includes the load_tsa_data function to load the dataset. usage.py: Demonstrates how to use the loader module.
This dataset serves as a comprehensive foundation for machine learning applications in transient stability assessment (TSA), offering insights into system behavior under dynamic conditions.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Credit scoring models play a crucial role for financial institutions in evaluating borrower risk and sustaining profitability. Logistic regression is widely used in credit scoring due to its robustness, interpretability, and computational efficiency; however, its predictive power decreases when applied to complex or non-linear datasets, resulting in reduced accuracy. In contrast, tree-based machine learning models often provide enhanced predictive performance but struggle with interpretability. Furthermore, imbalanced class distributions, which are prevalent in credit scoring, can adversely impact model accuracy and robustness, as the majority class tends to dominate. Despite these challenges, research that comprehensively addresses both the predictive performance and explainability aspects within the credit scoring domain remains limited. This paper introduces the Non-pArameTric oversampling approach for Explainable credit scoring (NATE), a framework designed to address these challenges by combining oversampling techniques with tree-based classifiers to enhance model performance and interpretability. NATE incorporates class balancing methods to mitigate the impact of imbalanced data distributions and integrates interpretability features to elucidate the model’s decision-making process. Experimental results show that NATE substantially outperforms traditional logistic regression in credit risk classification, with improvements of 19.33% in AUC, 71.56% in MCC, and 85.33% in F1 Score. Oversampling approaches, particularly when used with gradient boosting, demonstrated superior effectiveness compared to undersampling, achieving optimal metrics of AUC: 0.9649, MCC: 0.8104, and F1 Score: 0.9072. Moreover, NATE enhances interpretability by providing detailed insights into feature contributions, aiding in understanding individual predictions. These findings highlight NATE’s capability in managing class imbalance, improving predictive performance, and enhancing model interpretability, demonstrating its potential as a reliable and transparent tool for credit scoring applications.
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
Dataset Card for resampled_IDS_datasets
Intrusion Detection Systems (IDS) play a crucial role in securing computer networks against malicious activities. However, their efficacy is consistently hindered by the persistent challenge of class imbalance in real-world datasets. While various methods, such as resampling techniques, ensemble methods, cost-sensitive learning, data augmentation, and so on, have individually addressed imbalance classification issues, there exists a notable… See the full description on the dataset page: https://huggingface.co/datasets/Thi-Thu-Huong/resampled_IDS_datasets.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is part of the UCR Archive maintained by University of Southampton researchers. Please cite a relevant or the latest full archive release if you use the datasets. See http://www.timeseriesclassification.com/.
This dataset was formatted by R. Olszewski as part of his thesis Generalized feature extraction for structural pattern recognition in time-series data at Carnegie Mellon University, 2001. Wafer data relates to semi-conductor microelectronics fabrication. A collection of inline process control measurements recorded from various sensors during the processing of silicon wafers for semiconductor fabrication constitute the wafer database; each data set in the wafer database contains the measurements recorded by one sensor during the processing of one wafer by one tool. The two classes are normal and abnormal. There is a large class imbalance between normal and abnormal (10.7% of the train are abnormal, 12.1% of the test).
Donator: R. Olszewski
Machine learning‐based behaviour classification using acceleration data is a powerful tool in bio‐logging research. Deep learning architectures such as convolutional neural networks (CNN), long short‐term memory (LSTM) and self‐attention mechanisms as well as related training techniques have been extensively studied in human activity recognition. However, they have rarely been used in wild animal studies. The main challenges of acceleration‐based wild animal behaviour classification include data shortages, class imbalance problems, various types of noise in data due to differences in individual behaviour and where the loggers were attached and complexity in data due to complex animal‐specific behaviours, which may have limited the application of deep learning techniques in this area. To overcome these challenges, we explored the effectiveness of techniques for efficient model training: data augmentation, manifold mixup and pre‐training of deep learning models with unlabelled data, usin...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Online imbalanced learning is an emerging topic that combines the challenges of class imbalance and concept drift. However, current works account for issues of class imbalance and concept drift. And only few works have considered these issues simultaneously. To this end, this paper proposes an entropy-based dynamic ensemble classification algorithm (EDAC) to consider data streams with class imbalance and concept drift simultaneously. First, to address the problem of imbalanced learning in training data chunks arriving at different times, EDAC adopts an entropy-based balanced strategy. It divides the data chunks into multiple balanced sample pairs based on the differences in the information entropy between classes in the sample data chunk. Additionally, we propose a density-based sampling method to improve the accuracy of classifying minority class samples into high quality samples and common samples via the density of similar samples. In this manner high quality and common samples are randomly selected for training the classifier. Finally, to solve the issue of concept drift, EDAC designs and implements an ensemble classifier that uses a self-feedback strategy to determine the initial weight of the classifier by adjusting the weight of the sub-classifier according to the performance on the arrived data chunks. The experimental results demonstrate that EDAC outperforms five state-of-the-art algorithms considering four synthetic and one real-world data streams.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
1: Machine learning-based behaviour classification using acceleration data is a powerful tool in bio-logging research. Deep learning architectures such as convolutional neural networks (CNN), long short-term memory (LSTM), and self-attention mechanism as well as related training techniques have been extensively studied in human activity recognition. However, they have rarely been used in wild animal studies. The main challenges of acceleration-based wild animal behaviour classification include data shortages, class imbalance problems, various types of noise in data due to differences in individual behaviour and where the loggers were attached, and complexity in data due to complex animal-specific behaviours, which may have limited the application of deep learning techniques in this area.
2: To overcome these challenges, we explored the effectiveness of techniques for efficient model training: data augmentation, manifold mixup, and pre-training of deep learning models with unlabelled data, using datasets from two species of wild seabirds and state-of-the-art deep learning model architectures.
3: Data augmentation improved the overall model performance when one of various techniques (none, scaling, jittering, permutation, time-warping, and rotation) was randomly applied to each data during mini-batch training. Manifold mixup also improved model performance, but not as much as random data augmentation. Pre-training with unlabelled data did not improve model performance. The state-of-the-art deep learning models, including a model consisting of four CNN layers, an LSTM layer, and a multi-head attention layer, as well as its modified version with shortcut connection, showed better performance among other comparative models. Using only raw acceleration data as inputs, these models outperformed classic machine learning approaches that used 119 handcrafted features.
4: Our experiments showed that deep learning techniques are promising for acceleration-based behaviour classification of wild animals and highlighted some challenges (e.g. effective use of unlabelled data). There is scope for greater exploration of deep learning techniques in wild animal studies (e.g. advanced data augmentation, multimodal sensor data use, transfer learning, and self-supervised learning). We hope that this study will stimulate the development of deep learning techniques for wild animal behaviour classification using time-series sensor data.
This abstract is cited from the original article "Exploring deep learning techniques for wild animal behaviour classification using animal-borne accelerometers" in Methods in Ecology and Evolution (Otsuka et al., 2024).Please see README for the details of the datasets.
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Partial and incremental stratification analysis of a quantitative structure-interference relationship (QSIR) is a novel strategy intended to categorize classification provided by machine learning techniques. It is based on a 2D mapping of classification statistics onto two categorical axes: the degree of consensus and level of applicability domain. An internal cross-validation set allows to determine the statistical performance of the ensemble at every 2D map stratum and hence to define isometric local performance regions with the aim of better hit ranking and selection. During training, isometric stratified ensembles (ISE) applies a recursive decorrelated variable selection and considers the cardinal ratio of classes to balance training sets and thus avoid bias due to possible class imbalance. To exemplify the interest of this strategy, three different highly imbalanced PubChem pairs of AmpC β-lactamase and cruzain inhibition assay campaigns of colloidal aggregators and complementary aggregators data set available at the AGGREGATOR ADVISOR predictor web page were employed. Statistics obtained using this new strategy show outperforming results compared to former published tools, with and without a classical applicability domain. ISE performance on classifying colloidal aggregators shows from a global AUC of 0.82, when the whole test data set is considered, up to a maximum AUC of 0.88, when its highest confidence isometric stratum is retained.