100+ datasets found
  1. Data Cleaning Tools Market Report | Global Forecast From 2025 To 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Data Cleaning Tools Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/data-cleaning-tools-market
    Explore at:
    pptx, pdf, csvAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Data Cleaning Tools Market Outlook



    As of 2023, the global market size for data cleaning tools is estimated at $2.5 billion, with projections indicating that it will reach approximately $7.1 billion by 2032, reflecting a robust CAGR of 12.1% during the forecast period. This growth is primarily driven by the increasing importance of data quality in business intelligence and analytics workflows across various industries.



    The growth of the data cleaning tools market can be attributed to several critical factors. Firstly, the exponential increase in data generation across industries necessitates efficient tools to manage data quality. Poor data quality can result in significant financial losses, inefficient business processes, and faulty decision-making. Organizations recognize the value of clean, accurate data in driving business insights and operational efficiency, thereby propelling the adoption of data cleaning tools. Additionally, regulatory requirements and compliance standards also push companies to maintain high data quality standards, further driving market growth.



    Another significant growth factor is the rising adoption of AI and machine learning technologies. These advanced technologies rely heavily on high-quality data to deliver accurate results. Data cleaning tools play a crucial role in preparing datasets for AI and machine learning models, ensuring that the data is free from errors, inconsistencies, and redundancies. This surge in the use of AI and machine learning across various sectors like healthcare, finance, and retail is driving the demand for efficient data cleaning solutions.



    The proliferation of big data analytics is another critical factor contributing to market growth. Big data analytics enables organizations to uncover hidden patterns, correlations, and insights from large datasets. However, the effectiveness of big data analytics is contingent upon the quality of the data being analyzed. Data cleaning tools help in sanitizing large datasets, making them suitable for analysis and thus enhancing the accuracy and reliability of analytics outcomes. This trend is expected to continue, fueling the demand for data cleaning tools.



    In terms of regional growth, North America holds a dominant position in the data cleaning tools market. The region's strong technological infrastructure, coupled with the presence of major market players and a high adoption rate of advanced data management solutions, contributes to its leadership. However, the Asia Pacific region is anticipated to witness the highest growth rate during the forecast period. The rapid digitization of businesses, increasing investments in IT infrastructure, and a growing focus on data-driven decision-making are key factors driving the market in this region.



    As organizations strive to maintain high data quality standards, the role of an Email List Cleaning Service becomes increasingly vital. These services ensure that email databases are free from invalid addresses, duplicates, and outdated information, thereby enhancing the effectiveness of marketing campaigns and communications. By leveraging sophisticated algorithms and validation techniques, email list cleaning services help businesses improve their email deliverability rates and reduce the risk of being flagged as spam. This not only optimizes marketing efforts but also protects the reputation of the sender. As a result, the demand for such services is expected to grow alongside the broader data cleaning tools market, as companies recognize the importance of maintaining clean and accurate contact lists.



    Component Analysis



    The data cleaning tools market can be segmented by component into software and services. The software segment encompasses various tools and platforms designed for data cleaning, while the services segment includes consultancy, implementation, and maintenance services provided by vendors.



    The software segment holds the largest market share and is expected to continue leading during the forecast period. This dominance can be attributed to the increasing adoption of automated data cleaning solutions that offer high efficiency and accuracy. These software solutions are equipped with advanced algorithms and functionalities that can handle large volumes of data, identify errors, and correct them without manual intervention. The rising adoption of cloud-based data cleaning software further bolsters this segment, as it offers scalability and ease of

  2. w

    Dataset of book subjects that contain Data cleaning and exploration with...

    • workwithdata.com
    Updated Nov 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Work With Data (2024). Dataset of book subjects that contain Data cleaning and exploration with machine learning : clean data with machine learning algorithms and techniques [Dataset]. https://www.workwithdata.com/datasets/book-subjects?f=1&fcol0=j0-book&fop0=%3D&fval0=Data+cleaning+and+exploration+with+machine+learning+:+clean+data+with+machine+learning+algorithms+and+techniques&j=1&j0=books
    Explore at:
    Dataset updated
    Nov 7, 2024
    Dataset authored and provided by
    Work With Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset is about book subjects. It has 3 rows and is filtered where the books is Data cleaning and exploration with machine learning : clean data with machine learning algorithms and techniques. It features 10 columns including number of authors, number of books, earliest publication date, and latest publication date.

  3. d

    TagX Data collection for AI/ ML training | LLM data | Data collection for AI...

    • datarade.ai
    .json, .csv, .xls
    Updated Jun 18, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TagX (2021). TagX Data collection for AI/ ML training | LLM data | Data collection for AI development & model finetuning | Text, image, audio, and document data [Dataset]. https://datarade.ai/data-products/data-collection-and-capture-services-tagx
    Explore at:
    .json, .csv, .xlsAvailable download formats
    Dataset updated
    Jun 18, 2021
    Dataset authored and provided by
    TagX
    Area covered
    Equatorial Guinea, Benin, Djibouti, Antigua and Barbuda, Saudi Arabia, Belize, Russian Federation, Qatar, Iceland, Colombia
    Description

    We offer comprehensive data collection services that cater to a wide range of industries and applications. Whether you require image, audio, or text data, we have the expertise and resources to collect and deliver high-quality data that meets your specific requirements. Our data collection methods include manual collection, web scraping, and other automated techniques that ensure accuracy and completeness of data.

    Our team of experienced data collectors and quality assurance professionals ensure that the data is collected and processed according to the highest standards of quality. We also take great care to ensure that the data we collect is relevant and applicable to your use case. This means that you can rely on us to provide you with clean and useful data that can be used to train machine learning models, improve business processes, or conduct research.

    We are committed to delivering data in the format that you require. Whether you need raw data or a processed dataset, we can deliver the data in your preferred format, including CSV, JSON, or XML. We understand that every project is unique, and we work closely with our clients to ensure that we deliver the data that meets their specific needs. So if you need reliable data collection services for your next project, look no further than us.

  4. d

    Prediction data from: Machine learning predicts which rivers, streams, and...

    • dataone.org
    • data.niaid.nih.gov
    • +1more
    Updated Jun 21, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Simon Greenhill; Hannah Druckenmiller; Sherrie Wang; David Keiser; Manuela Girotto; Jason Moore; Nobuhiro Yamaguchi; Alberto Todeschini; Joseph Shapiro (2024). Prediction data from: Machine learning predicts which rivers, streams, and wetlands the Clean Water Act regulates [Dataset]. http://doi.org/10.5061/dryad.z34tmpgm7
    Explore at:
    Dataset updated
    Jun 21, 2024
    Dataset provided by
    Dryad Digital Repository
    Authors
    Simon Greenhill; Hannah Druckenmiller; Sherrie Wang; David Keiser; Manuela Girotto; Jason Moore; Nobuhiro Yamaguchi; Alberto Todeschini; Joseph Shapiro
    Time period covered
    Jan 1, 2023
    Description

    We assess which waters the Clean Water Act protects and how Supreme Court and White House rules change this regulation. We train a deep learning model using aerial imagery and geophysical data to predict 150,000 jurisdictional determinations from the Army Corps of Engineers, each deciding regulation for one water resource. Under a 2006 Supreme Court ruling, the Clean Water Act protects two-thirds of US streams and over half of wetlands; under a 2020 White House rule, it protects under half of streams and a fourth of wetlands, implying deregulation of 690,000 stream miles, 35 million wetland acres, and 30% of waters around drinking water sources. Our framework can support permitting, policy design, and use of machine learning in regulatory implementation problems., This dataset contains model outputs that were analyzed to produce the main results of the paper., , # Prediction data from: Machine learning predicts which rivers, streams, and wetlands the Clean Water Act regulates

    This dataset contains data used to produce the predictions and other results reported in Greenhill et al. (2023). All data are publicly available and can be accessed either through Google Earth Engine or directly from the data providers, as described in Table S3 of the Supplementary Material. In addition, we are providing access to a subset of the data used for prediction, as well as all data needed for reproducing the results of the paper via this repository. We are also providing access to all data used to train the models in another Dryad repository: . All code written for the project is available at https://doi.org/10.5281/zenodo.10108709.

    Description of the data and file structure

    The files here include:

    • Model predictions, inclu...
  5. t

    Data from: Decoding Wayfinding: Analyzing Wayfinding Processes in the...

    • researchdata.tuwien.at
    html, pdf, zip
    Updated Mar 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Negar Alinaghi; Ioannis Giannopoulos; Ioannis Giannopoulos; Negar Alinaghi; Negar Alinaghi; Negar Alinaghi (2025). Decoding Wayfinding: Analyzing Wayfinding Processes in the Outdoor Environment [Dataset]. http://doi.org/10.48436/m2ha4-t1v92
    Explore at:
    html, zip, pdfAvailable download formats
    Dataset updated
    Mar 19, 2025
    Dataset provided by
    TU Wien
    Authors
    Negar Alinaghi; Ioannis Giannopoulos; Ioannis Giannopoulos; Negar Alinaghi; Negar Alinaghi; Negar Alinaghi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    How To Cite?

    Alinaghi, N., Giannopoulos, I., Kattenbeck, M., & Raubal, M. (2025). Decoding wayfinding: analyzing wayfinding processes in the outdoor environment. International Journal of Geographical Information Science, 1–31. https://doi.org/10.1080/13658816.2025.2473599

    Link to the paper: https://www.tandfonline.com/doi/full/10.1080/13658816.2025.2473599

    Folder Structure

    The folder named “submission” contains the following:

    1. “pythonProject”: This folder contains all the Python files and subfolders needed for analysis.
    2. ijgis.yml: This file lists all the Python libraries and dependencies required to run the code.

    Setting Up the Environment

    1. Use the ijgis.yml file to create a Python project and environment. Ensure you activate the environment before running the code.
    2. The pythonProject folder contains several .py files and subfolders, each with specific functionality as described below.

    Subfolders

    1. Data_4_IJGIS

    • This folder contains the data used for the results reported in the paper.
    • Note: The data analysis that we explain in this paper already begins with the synchronization and cleaning of the recorded raw data. The published data is already synchronized and cleaned. Both the cleaned files and the merged files with features extracted for them are given in this directory. If you want to perform the segmentation and feature extraction yourself, you should run the respective Python files yourself. If not, you can use the “merged_…csv” files as input for the training.

    2. results_[DateTime] (e.g., results_20240906_15_00_13)

    • This folder will be generated when you run the code and will store the output of each step.
    • The current folder contains results created during code debugging for the submission.
    • When you run the code, a new folder with fresh results will be generated.

    Python Files

    1. helper_functions.py

    • Contains reusable functions used throughout the analysis.
    • Each function includes a description of its purpose and the input parameters required.

    2. create_sanity_plots.py

    • Generates scatter plots like those in Figure 3 of the paper.
    • Although the code has been run for all 309 trials, it can be used to check the sample data provided.
    • Output: A .png file for each column of the raw gaze and IMU recordings, color-coded with logged events.
    • Usage: Run this file to create visualizations similar to Figure 3.

    3. overlapping_sliding_window_loop.py

    • Implements overlapping sliding window segmentation and generates plots like those in Figure 4.
    • Output:
      • Two new subfolders, “Gaze” and “IMU”, will be added to the Data_4_IJGIS folder.
      • Segmented files (default: 2–10 seconds with a 1-second step size) will be saved as .csv files.
      • A visualization of the segments, similar to Figure 4, will be automatically generated.

    4. gaze_features.py & imu_features.py (Note: there has been an update to the IDT function implementation in the gaze_features.py on 19.03.2025.)

    • These files compute features as explained in Tables 1 and 2 of the paper, respectively.
    • They process the segmented recordings generated by the overlapping_sliding_window_loop.py.
    • Usage: Just to know how the features are calculated, you can run this code after the segmentation with the sliding window and run these files to calculate the features from the segmented data.

    5. training_prediction.py

    • This file contains the main machine learning analysis of the paper. This file contains all the code for the training of the model, its evaluation, and its use for the inference of the “monitoring part”. It covers the following steps:
    a. Data Preparation (corresponding to Section 5.1.1 of the paper)
    • Prepares the data according to the research question (RQ) described in the paper. Since this data was collected with several RQs in mind, we remove parts of the data that are not related to the RQ of this paper.
    • A function named plot_labels_comparison(df, save_path, x_label_freq=10, figsize=(15, 5)) in line 116 visualizes the data preparation results. As this visualization is not used in the paper, the line is commented out, but if you want to see visually what has been changed compared to the original data, you can comment out this line.
    b. Training/Validation/Test Split
    • Splits the data for machine learning experiments (an explanation can be found in Section 5.1.1. Preparation of data for training and inference of the paper).
    • Make sure that you follow the instructions in the comments to the code exactly.
    • Output: The split data is saved as .csv files in the results folder.
    c. Machine and Deep Learning Experiments

    This part contains three main code blocks:

    iii. One for the XGboost code with correct hyperparameter tuning:
    Please read the instructions for each block carefully to ensure that the code works smoothly. Regardless of which block you use, you will get the classification results (in the form of scores) for unseen data. The way we empirically test the confidence threshold of

    • MLP Network (Commented Out): This code was used for classification with the MLP network, and the results shown in Table 3 are from this code. If you wish to use this model, please comment out the following blocks accordingly.
    • XGBoost without Hyperparameter Tuning: If you want to run the code but do not want to spend time on the full training with hyperparameter tuning (as was done for the paper), just uncomment this part. This will give you a simple, untuned model with which you can achieve at least some results.
    • XGBoost with Hyperparameter Tuning: If you want to train the model the way we trained it for the analysis reported in the paper, use this block (the plots in Figure 7 are from this block). We ran this block with different feature sets and different segmentation files and created a simple bar chart from the saved results, shown in Figure 6.

    Note: Please read the instructions for each block carefully to ensure that the code works smoothly. Regardless of which block you use, you will get the classification results (in the form of scores) for unseen data. The way we empirically calculated the confidence threshold of the model (explained in the paper in Section 5.2. Part II: Decoding surveillance by sequence analysis) is given in this block in lines 361 to 380.

    d. Inference (Monitoring Part)
    • Final inference is performed using the monitoring data. This step produces a .csv file containing inferred labels.
    • Figure 8 in the paper is generated using this part of the code.

    6. sequence_analysis.py

    • Performs analysis on the inferred data, producing Figures 9 and 10 from the paper.
    • This file reads the inferred data from the previous step and performs sequence analysis as described in Sections 5.2.1 and 5.2.2.

    Licenses

    The data is licensed under CC-BY, the code is licensed under MIT.

  6. Data Wrangling Market Size, Share, Growth, Forecast, By Component...

    • verifiedmarketresearch.com
    Updated Jun 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    VERIFIED MARKET RESEARCH (2025). Data Wrangling Market Size, Share, Growth, Forecast, By Component (Solutions, Services), By Deployment Mode (On-premises, Cloud-based), By End-user Industry (Banking, Financial Services, and Insurance (BFSI), Healthcare & Life Sciences, Retail & E-commerce, IT & Telecom, Government & Public Sector, Manufacturing) [Dataset]. https://www.verifiedmarketresearch.com/product/data-wrangling-market/
    Explore at:
    Dataset updated
    Jun 18, 2025
    Dataset provided by
    Verified Market Researchhttps://www.verifiedmarketresearch.com/
    Authors
    VERIFIED MARKET RESEARCH
    License

    https://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/

    Time period covered
    2026 - 2032
    Area covered
    Global
    Description

    Data Wrangling Market size was valued at USD 1.99 Billion in 2024 and is projected to reach USD 4.07 Billion by 2032, growing at a CAGR of 9.4% during the forecast period 2026-2032.• Big Data Analytics Growth: Organizations are generating massive volumes of unstructured and semi-structured data from diverse sources including social media, IoT devices, and digital transactions. Data wrangling tools become essential for cleaning, transforming, and preparing this complex data for meaningful analytics and business intelligence applications.• Machine Learning and AI Adoption: The rapid expansion of artificial intelligence and machine learning initiatives requires high-quality, properly formatted training datasets. Data wrangling solutions enable data scientists to efficiently prepare, clean, and structure raw data for model training, driving sustained market demand across AI-focused organizations.

  7. d

    Training data from: Machine learning predicts which rivers, streams, and...

    • datadryad.org
    • data.niaid.nih.gov
    zip
    Updated Dec 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Simon Greenhill; Hannah Druckenmiller; Sherrie Wang; David Keiser; Manuela Girotto; Jason Moore; Nobuhiro Yamaguchi; Alberto Todeschini; Joseph Shapiro (2023). Training data from: Machine learning predicts which rivers, streams, and wetlands the Clean Water Act regulates [Dataset]. http://doi.org/10.5061/dryad.m63xsj47s
    Explore at:
    zipAvailable download formats
    Dataset updated
    Dec 12, 2023
    Dataset provided by
    Dryad
    Authors
    Simon Greenhill; Hannah Druckenmiller; Sherrie Wang; David Keiser; Manuela Girotto; Jason Moore; Nobuhiro Yamaguchi; Alberto Todeschini; Joseph Shapiro
    Time period covered
    2023
    Description

    This dataset contains data used to train the models.

  8. f

    Data from: Leveraging Supervised Machine Learning Algorithms for System...

    • acs.figshare.com
    zip
    Updated Sep 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Russell R. Kibbe; Alexandria L. Sohn; David C. Muddiman (2024). Leveraging Supervised Machine Learning Algorithms for System Suitability Testing of Mass Spectrometry Imaging Platforms [Dataset]. http://doi.org/10.1021/acs.jproteome.4c00360.s001
    Explore at:
    zipAvailable download formats
    Dataset updated
    Sep 3, 2024
    Dataset provided by
    ACS Publications
    Authors
    Russell R. Kibbe; Alexandria L. Sohn; David C. Muddiman
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    Quality control and system suitability testing are vital protocols implemented to ensure the repeatability and reproducibility of data in mass spectrometry investigations. However, mass spectrometry imaging (MSI) analyses present added complexity since both chemical and spatial information are measured. Herein, we employ various machine learning algorithms and a novel quality control mixture to classify the working conditions of an MSI platform. Each algorithm was evaluated in terms of its performance on unseen data, validated with negative control data sets to rule out confounding variables or chance agreement, and utilized to determine the necessary sample size to achieve a high level of accurate classifications. In this work, a robust machine learning workflow was established where models could accurately classify the instrument condition as clean or compromised based on data metrics extracted from the analyzed quality control sample. This work highlights the power of machine learning to recognize complex patterns in MSI data and use those relationships to perform a system suitability test for MSI platforms.

  9. M

    MRO Data Cleansing and Enrichment Service Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated Apr 10, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). MRO Data Cleansing and Enrichment Service Report [Dataset]. https://www.marketreportanalytics.com/reports/mro-data-cleansing-and-enrichment-service-76185
    Explore at:
    pdf, doc, pptAvailable download formats
    Dataset updated
    Apr 10, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The MRO (Maintenance, Repair, and Operations) Data Cleansing and Enrichment Service market is experiencing robust growth, driven by the increasing need for accurate and reliable data across diverse industries. The rising adoption of digitalization and data-driven decision-making in sectors like Oil & Gas, Chemicals, Pharmaceuticals, and Manufacturing is a key catalyst. Companies are recognizing the significant value proposition of clean and enriched MRO data in optimizing maintenance schedules, reducing downtime, improving inventory management, and ultimately lowering operational costs. The market is segmented by application (Chemical, Oil and Gas, Pharmaceutical, Mining, Transportation, Others) and type of service (Data Cleansing, Data Enrichment), reflecting the diverse needs of different industries and the varying levels of data processing required. While precise market sizing data is not provided, considering the strong growth drivers and the established presence of numerous players like Enventure, Grihasoft, and OptimizeMRO, a conservative estimate places the 2025 market size at approximately $500 million, with a Compound Annual Growth Rate (CAGR) of 12% projected through 2033. This growth is further fueled by advancements in artificial intelligence (AI) and machine learning (ML) technologies, which are enabling more efficient and accurate data cleansing and enrichment processes. The competitive landscape is characterized by a mix of established players and emerging companies. Established players leverage their extensive industry experience and existing customer bases to maintain market share, while emerging companies are innovating with new technologies and service offerings. Regional growth varies, with North America and Europe currently dominating the market due to higher levels of digital adoption and established MRO processes. However, Asia-Pacific is expected to experience significant growth in the coming years driven by increasing industrialization and investment in digital transformation initiatives within the region. Challenges for market growth include data security concerns, the integration of new technologies with legacy systems, and the need for skilled professionals capable of managing and interpreting large datasets. Despite these challenges, the long-term outlook for the MRO Data Cleansing and Enrichment Service market remains exceptionally positive, driven by the increasing reliance on data-driven insights for improved efficiency and operational excellence across industries.

  10. Data Cleansing Tools Market Report | Global Forecast From 2025 To 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Data Cleansing Tools Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-data-cleansing-tools-market
    Explore at:
    pdf, csv, pptxAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Data Cleansing Tools Market Outlook



    The global data cleansing tools market size was valued at approximately USD 1.5 billion in 2023 and is projected to reach USD 4.2 billion by 2032, growing at a CAGR of 12.1% from 2024 to 2032. One of the primary growth factors driving the market is the increasing need for high-quality data in various business operations and decision-making processes.



    The surge in big data and the subsequent increased reliance on data analytics are significant factors propelling the growth of the data cleansing tools market. Organizations increasingly recognize the value of high-quality data in driving strategic initiatives, customer relationship management, and operational efficiency. The proliferation of data generated across different sectors such as healthcare, finance, retail, and telecommunications necessitates the adoption of tools that can clean, standardize, and enrich data to ensure its reliability and accuracy.



    Furthermore, the rising adoption of Machine Learning (ML) and Artificial Intelligence (AI) technologies has underscored the importance of clean data. These technologies rely heavily on large datasets to provide accurate and reliable insights. Any errors or inconsistencies in data can lead to erroneous outcomes, making data cleansing tools indispensable. Additionally, regulatory and compliance requirements across various industries necessitate the maintenance of clean and accurate data, further driving the market for data cleansing tools.



    The growing trend of digital transformation across industries is another critical growth factor. As businesses increasingly transition from traditional methods to digital platforms, the volume of data generated has skyrocketed. However, this data often comes from disparate sources and in various formats, leading to inconsistencies and errors. Data cleansing tools are essential in such scenarios to integrate data from multiple sources and ensure its quality, thus enabling organizations to derive actionable insights and maintain a competitive edge.



    In the context of ensuring data reliability and accuracy, Data Quality Software and Solutions play a pivotal role. These solutions are designed to address the challenges associated with managing large volumes of data from diverse sources. By implementing robust data quality frameworks, organizations can enhance their data governance strategies, ensuring that data is not only clean but also consistent and compliant with industry standards. This is particularly crucial in sectors where data-driven decision-making is integral to business success, such as finance and healthcare. The integration of advanced data quality solutions helps businesses mitigate risks associated with poor data quality, thereby enhancing operational efficiency and strategic planning.



    Regionally, North America is expected to hold the largest market share due to the early adoption of advanced technologies, robust IT infrastructure, and the presence of key market players. Europe is also anticipated to witness substantial growth due to stringent data protection regulations and the increasing adoption of data-driven decision-making processes. Meanwhile, the Asia Pacific region is projected to experience the highest growth rate, driven by the rapid digitalization of emerging economies, the expansion of the IT and telecommunications sector, and increasing investments in data management solutions.



    Component Analysis



    The data cleansing tools market is segmented into software and services based on components. The software segment is anticipated to dominate the market due to its extensive use in automating the data cleansing process. The software solutions are designed to identify, rectify, and remove errors in data sets, ensuring data accuracy and consistency. They offer various functionalities such as data profiling, validation, enrichment, and standardization, which are critical in maintaining high data quality. The high demand for these functionalities across various industries is driving the growth of the software segment.



    On the other hand, the services segment, which includes professional services and managed services, is also expected to witness significant growth. Professional services such as consulting, implementation, and training are crucial for organizations to effectively deploy and utilize data cleansing tools. As businesses increasingly realize the importance of clean data, the demand for expert

  11. Restaurant Sales-Dirty Data for Cleaning Training

    • kaggle.com
    Updated Jan 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ahmed Mohamed (2025). Restaurant Sales-Dirty Data for Cleaning Training [Dataset]. https://www.kaggle.com/datasets/ahmedmohamed2003/restaurant-sales-dirty-data-for-cleaning-training
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 25, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Ahmed Mohamed
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    Restaurant Sales Dataset with Dirt Documentation

    Overview

    The Restaurant Sales Dataset with Dirt contains data for 17,534 transactions. The data introduces realistic inconsistencies ("dirt") to simulate real-world scenarios where data may have missing or incomplete information. The dataset includes sales details across multiple categories, such as starters, main dishes, desserts, drinks, and side dishes.

    Dataset Use Cases

    This dataset is suitable for: - Practicing data cleaning tasks, such as handling missing values and deducing missing information. - Conducting exploratory data analysis (EDA) to study restaurant sales patterns. - Feature engineering to create new variables for machine learning tasks.

    Columns Description

    Column NameDescriptionExample Values
    Order IDA unique identifier for each order.ORD_123456
    Customer IDA unique identifier for each customer.CUST_001
    CategoryThe category of the purchased item.Main Dishes, Drinks
    ItemThe name of the purchased item. May contain missing values due to data dirt.Grilled Chicken, None
    PriceThe static price of the item. May contain missing values.15.0, None
    QuantityThe quantity of the purchased item. May contain missing values.1, None
    Order TotalThe total price for the order (Price * Quantity). May contain missing values.45.0, None
    Order DateThe date when the order was placed. Always present.2022-01-15
    Payment MethodThe payment method used for the transaction. May contain missing values due to data dirt.Cash, None

    Key Characteristics

    1. Data Dirtiness:

      • Missing values in key columns (Item, Price, Quantity, Order Total, Payment Method) simulate real-world challenges.
      • At least one of the following conditions is ensured for each record to identify an item:
        • Item is present.
        • Price is present.
        • Both Quantity and Order Total are present.
      • If Price or Quantity is missing, the other is used to deduce the missing value (e.g., Order Total / Quantity).
    2. Menu Categories and Items:

      • Items are divided into five categories:
        • Starters: E.g., Chicken Melt, French Fries.
        • Main Dishes: E.g., Grilled Chicken, Steak.
        • Desserts: E.g., Chocolate Cake, Ice Cream.
        • Drinks: E.g., Coca Cola, Water.
        • Side Dishes: E.g., Mashed Potatoes, Garlic Bread.

    3 Time Range: - Orders span from January 1, 2022, to December 31, 2023.

    Cleaning Suggestions

    1. Handle Missing Values:

      • Fill missing Order Total or Quantity using the formula: Order Total = Price * Quantity.
      • Deduce missing Price from Order Total / Quantity if both are available.
    2. Validate Data Consistency:

      • Ensure that calculated values (Order Total = Price * Quantity) match.
    3. Analyze Missing Patterns:

      • Study the distribution of missing values across categories and payment methods.

    Menu Map with Prices and Categories

    CategoryItemPrice
    StartersChicken Melt8.0
    StartersFrench Fries4.0
    StartersCheese Fries5.0
    StartersSweet Potato Fries5.0
    StartersBeef Chili7.0
    StartersNachos Grande10.0
    Main DishesGrilled Chicken15.0
    Main DishesSteak20.0
    Main DishesPasta Alfredo12.0
    Main DishesSalmon18.0
    Main DishesVegetarian Platter14.0
    DessertsChocolate Cake6.0
    DessertsIce Cream5.0
    DessertsFruit Salad4.0
    DessertsCheesecake7.0
    DessertsBrownie6.0
    DrinksCoca Cola2.5
    DrinksOrange Juice3.0
    Drinks ...
  12. e

    Data pre-processing and clean-up

    • paper.erudition.co.in
    html
    Updated Dec 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Einetic (2025). Data pre-processing and clean-up [Dataset]. https://paper.erudition.co.in/makaut/btech-in-computer-science-and-engineering-artificial-intelligence-and-machine-learning/6/data-mining
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Dec 2, 2023
    Dataset authored and provided by
    Einetic
    License

    https://paper.erudition.co.in/termshttps://paper.erudition.co.in/terms

    Description

    Question Paper Solutions of chapter Data pre-processing and clean-up of Data Mining, 6th Semester , B.Tech in Computer Science & Engineering (Artificial Intelligence and Machine Learning)

  13. D

    Data Labeling Market Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Mar 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Data Labeling Market Report [Dataset]. https://www.datainsightsmarket.com/reports/data-labeling-market-20383
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    Mar 8, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The data labeling market is experiencing robust growth, projected to reach $3.84 billion in 2025 and maintain a Compound Annual Growth Rate (CAGR) of 28.13% from 2025 to 2033. This expansion is fueled by the increasing demand for high-quality training data across various sectors, including healthcare, automotive, and finance, which heavily rely on machine learning and artificial intelligence (AI). The surge in AI adoption, particularly in areas like autonomous vehicles, medical image analysis, and fraud detection, necessitates vast quantities of accurately labeled data. The market is segmented by sourcing type (in-house vs. outsourced), data type (text, image, audio), labeling method (manual, automatic, semi-supervised), and end-user industry. Outsourcing is expected to dominate the sourcing segment due to cost-effectiveness and access to specialized expertise. Similarly, image data labeling is likely to hold a significant share, given the visual nature of many AI applications. The shift towards automation and semi-supervised techniques aims to improve efficiency and reduce labeling costs, though manual labeling will remain crucial for tasks requiring high accuracy and nuanced understanding. Geographical distribution shows strong potential across North America and Europe, with Asia-Pacific emerging as a key growth region driven by increasing technological advancements and digital transformation. Competition in the data labeling market is intense, with a mix of established players like Amazon Mechanical Turk and Appen, alongside emerging specialized companies. The market's future trajectory will likely be shaped by advancements in automation technologies, the development of more efficient labeling techniques, and the increasing need for specialized data labeling services catering to niche applications. Companies are focusing on improving the accuracy and speed of data labeling through innovations in AI-powered tools and techniques. Furthermore, the rise of synthetic data generation offers a promising avenue for supplementing real-world data, potentially addressing data scarcity challenges and reducing labeling costs in certain applications. This will, however, require careful attention to ensure that the synthetic data generated is representative of real-world data to maintain model accuracy. This comprehensive report provides an in-depth analysis of the global data labeling market, offering invaluable insights for businesses, investors, and researchers. The study period covers 2019-2033, with 2025 as the base and estimated year, and a forecast period of 2025-2033. We delve into market size, segmentation, growth drivers, challenges, and emerging trends, examining the impact of technological advancements and regulatory changes on this rapidly evolving sector. The market is projected to reach multi-billion dollar valuations by 2033, fueled by the increasing demand for high-quality data to train sophisticated machine learning models. Recent developments include: September 2024: The National Geospatial-Intelligence Agency (NGA) is poised to invest heavily in artificial intelligence, earmarking up to USD 700 million for data labeling services over the next five years. This initiative aims to enhance NGA's machine-learning capabilities, particularly in analyzing satellite imagery and other geospatial data. The agency has opted for a multi-vendor indefinite-delivery/indefinite-quantity (IDIQ) contract, emphasizing the importance of annotating raw data be it images or videos—to render it understandable for machine learning models. For instance, when dealing with satellite imagery, the focus could be on labeling distinct entities such as buildings, roads, or patches of vegetation.October 2023: Refuel.ai unveiled a new platform, Refuel Cloud, and a specialized large language model (LLM) for data labeling. Refuel Cloud harnesses advanced LLMs, including its proprietary model, to automate data cleaning, labeling, and enrichment at scale, catering to diverse industry use cases. Recognizing that clean data underpins modern AI and data-centric software, Refuel Cloud addresses the historical challenge of human labor bottlenecks in data production. With Refuel Cloud, enterprises can swiftly generate the expansive, precise datasets they require in mere minutes, a task that traditionally spanned weeks.. Key drivers for this market are: Rising Penetration of Connected Cars and Advances in Autonomous Driving Technology, Advances in Big Data Analytics based on AI and ML. Potential restraints include: Rising Penetration of Connected Cars and Advances in Autonomous Driving Technology, Advances in Big Data Analytics based on AI and ML. Notable trends are: Healthcare is Expected to Witness Remarkable Growth.

  14. o

    Data from: Training data from SPCAM for machine learning in moist physics

    • explore.openaire.eu
    • search.dataone.org
    • +1more
    Updated Aug 7, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Guang Zhang; Yilun Han; Xiaomeng Huang; Yong Wang (2020). Data from: Training data from SPCAM for machine learning in moist physics [Dataset]. http://doi.org/10.6075/j0cz35pp
    Explore at:
    Dataset updated
    Aug 7, 2020
    Authors
    Guang Zhang; Yilun Han; Xiaomeng Huang; Yong Wang
    Description

    Current moist physics parameterization schemes in general circulation models (GCMs) are the main source of biases in simulated precipitation and atmospheric circulation. Recent advances in machine learning make it possible to explore data-driven approaches to developing parameterization for moist physics processes such as convection and clouds. This study aims to develop a new moist physics parameterization scheme based on deep learning. We use a residual convolutional neural network (ResNet) for this purpose. It is trained with one-year simulation from a superparameterized GCM, SPCAM. An independent year of SPCAM simulation is used for evaluation. In the design of the neural network, referred to as ResCu, the moist static energy conservation during moist processes is considered. In addition, the past history of the atmospheric states, convection and clouds are also considered. The predicted variables from the neural network are GCM grid-scale heating and drying rates by convection and clouds, and cloud liquid and ice water contents. Precipitation is derived from predicted moisture tendency. In the independent-data test, ResCu can accurately reproduce the SPCAM simulation in both time-mean and temporal variance. Comparison with other neural networks demonstrates the superior performance of ResNet architecture. ResCu is further tested in a single column model for both continental midlatitude warm season convection and tropical monsoonal convection. In both cases, it simulates the timing and intensity of convective events well. In the prognostic test of tropical convection case, the simulated temperature and moisture biases with ResCu are smaller than those using conventional convection and cloud parameterizations. This dataset is extracted from a simulation using a Superparameterized GCM, SPCAM (https://wiki.ucar.edu/display/ccsm/Superparameterized+CAM+(SPCAM)). The SPCAM implements a 2-D CRM in CAM5.2 to replace its conventional parameterization for moist convection and large-scale condensation. The dynamic framework of CAM5 has a horizontal resolution of 1.9x2.5 degrees and 30 vertical levels that are shared with the embedded CRM. The SPCAM used in this study has a coupled land surface model Community Land Model 4.0 (CLM4.0). It uses a prescribed climatological sea surface temperature field that comes with the CAM5 model. It is run for three years and 4 months from Jan. 1st in 1998 to March 31st in 2001 with a time step of 20 minutes. The first year and 4 months are for spin up, the second year is used for training and the third year is used for testing and evaluation. The training data from SPCAM is output every timestep. This dataset contains one year training data and one year evaluation data. The training samples of the entire year (from yr-2 of simulation) are compressed in SPCAM_ML_Han_et_al_0.tar.gz, and testing samples of the entire year (from yr-3 of simulation) are compressed in SPCAM_ML_Han_et_al_1.tar.gz. In each dataset, there are a data documentation file and 365 netCDF data files (one file for each day) that are marked by its date. The variable fields contain temperature and moisture tendencies and cloud water and cloud ice from the CRM, and vertical profiles of temperature and moisture and large-scale temperature and moisture tendencies from the dynamic core of SPCAM’s host model CAM5 and PBL diffusion. In addition, we include surface sensible and latent heat fluxes. For more details, please read the data documentation inside the tar.gz files.

  15. d

    Training dataset for NABat Machine Learning V1.0

    • catalog.data.gov
    • data.usgs.gov
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Training dataset for NABat Machine Learning V1.0 [Dataset]. https://catalog.data.gov/dataset/training-dataset-for-nabat-machine-learning-v1-0
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    U.S. Geological Survey
    Description

    Bats play crucial ecological roles and provide valuable ecosystem services, yet many populations face serious threats from various ecological disturbances. The North American Bat Monitoring Program (NABat) aims to assess status and trends of bat populations while developing innovative and community-driven conservation solutions using its unique data and technology infrastructure. To support scalability and transparency in the NABat acoustic data pipeline, we developed a fully-automated machine-learning algorithm. This dataset includes audio files of bat echolocation calls that were considered to develop V1.0 of the NABat machine-learning algorithm, however the test set (i.e., holdout dataset) has been excluded from this release. These recordings were collected by various bat monitoring partners across North America using ultrasonic acoustic recorders for stationary acoustic and mobile acoustic surveys. For more information on how these surveys may be conducted, see Chapters 4 and 5 of “A Plan for the North American Bat Monitoring Program” (https://doi.org/10.2737/SRS-GTR-208). These data were then post-processed by bat monitoring partners to remove noise files (or those that do not contain recognizable bat calls) and apply a species label to each file. There is undoubtedly variation in the steps that monitoring partners take to apply a species label, but the steps documented in “A Guide to Processing Bat Acoustic Data for the North American Bat Monitoring Program” (https://doi.org/10.3133/ofr20181068) include first processing with an automated classifier and then manually reviewing to confirm or downgrade the suggested species label. Once a manual ID label was applied, audio files of bat acoustic recordings were submitted to the NABat database in Waveform Audio File format. From these available files in the NABat database, we considered files from 35 classes (34 species and a noise class). Files for 4 species were excluded due to low sample size (Corynorhinus rafinesquii, N=3; Eumops floridanus, N =3; Lasiurus xanthinus, N = 4; Nyctinomops femorosaccus, N =11). From this pool, files were randomly selected until files for each species/grid cell combination were exhausted or the number of recordings reach 1250. The dataset was then randomly split into training, validation, and test sets (i.e., holdout dataset). This data release includes all files considered for training and validation, including files that had been excluded from model development and testing due to low sample size for a given species or because the threshold for species/grid cell combinations had been met. The test set (i.e., holdout dataset) is not included. Audio files are grouped by species, as indicated by the four-letter species code in the name of each folder. Definitions for each four-letter code, including Family, Genus, Species, and Common name, are also included as a dataset in this release.

  16. 📣 Ad Click Prediction Dataset

    • kaggle.com
    Updated Sep 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ciobanu Marius (2024). 📣 Ad Click Prediction Dataset [Dataset]. https://www.kaggle.com/datasets/marius2303/ad-click-prediction-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 7, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Ciobanu Marius
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    About

    This dataset provides insights into user behavior and online advertising, specifically focusing on predicting whether a user will click on an online advertisement. It contains user demographic information, browsing habits, and details related to the display of the advertisement. This dataset is ideal for building binary classification models to predict user interactions with online ads.

    Features

    • id: Unique identifier for each user.
    • full_name: User's name formatted as "UserX" for anonymity.
    • age: Age of the user (ranging from 18 to 64 years).
    • gender: The gender of the user (categorized as Male, Female, or Non-Binary).
    • device_type: The type of device used by the user when viewing the ad (Mobile, Desktop, Tablet).
    • ad_position: The position of the ad on the webpage (Top, Side, Bottom).
    • browsing_history: The user's browsing activity prior to seeing the ad (Shopping, News, Entertainment, Education, Social Media).
    • time_of_day: The time when the user viewed the ad (Morning, Afternoon, Evening, Night).
    • click: The target label indicating whether the user clicked on the ad (1 for a click, 0 for no click).

    Goal

    The objective of this dataset is to predict whether a user will click on an online ad based on their demographics, browsing behavior, the context of the ad's display, and the time of day. You will need to clean the data, understand it and then apply machine learning models to predict and evaluate data. It is a really challenging request for this kind of data. This data can be used to improve ad targeting strategies, optimize ad placement, and better understand user interaction with online advertisements.

  17. Data Preparation Tools Market Report | Global Forecast From 2025 To 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Data Preparation Tools Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-data-preparation-tools-market
    Explore at:
    csv, pdf, pptxAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Data Preparation Tools Market Outlook



    The global data preparation tools market size was valued at USD 3.5 billion in 2023 and is projected to reach USD 12.8 billion by 2032, exhibiting a CAGR of 15.5% during the forecast period. The primary growth factors driving this market include the increasing adoption of big data analytics, the rising significance of data-driven decision-making, and growing technological advancements in AI and machine learning.



    The surge in data-driven decision-making across various industries is a significant growth driver for the data preparation tools market. Organizations are increasingly leveraging advanced analytics to gain insights from massive datasets, necessitating efficient data preparation tools. These tools help in cleaning, transforming, and structuring raw data, thereby enhancing the quality of data analytics outcomes. As the volume of data generated continues to rise exponentially, the demand for robust data preparation tools is expected to grow correspondingly.



    The integration of AI and machine learning technologies into data preparation tools is another crucial factor propelling market growth. These technologies enable automated data cleaning, error detection, and anomaly identification, thereby reducing manual intervention and increasing efficiency. Additionally, AI-driven data preparation tools can adapt to evolving data patterns, making them highly effective in dynamic business environments. This trend is expected to further accelerate the adoption of data preparation tools across various sectors.



    As the demand for efficient data handling grows, the role of Data Infrastructure Construction becomes increasingly crucial. This involves building robust frameworks that support the seamless flow and management of data across various platforms. Effective data infrastructure construction ensures that data is easily accessible, securely stored, and efficiently processed, which is vital for organizations leveraging big data analytics. With the rise of IoT and cloud computing, constructing a scalable and flexible data infrastructure is essential for businesses aiming to harness the full potential of their data assets. This foundational work not only supports current data needs but also prepares organizations for future technological advancements and data growth.



    The growing emphasis on regulatory compliance and data governance is also contributing to the market expansion. Organizations are required to adhere to strict regulatory standards such as GDPR, HIPAA, and CCPA, which mandate stringent data handling and processing protocols. Data preparation tools play a vital role in ensuring that data is compliant with these regulations, thereby minimizing the risk of data breaches and associated penalties. As regulatory frameworks continue to evolve, the demand for compliant data preparation tools is likely to increase.



    Regionally, North America holds the largest market share due to the presence of major technology players and early adoption of advanced analytics solutions. Europe follows closely, driven by stringent data protection regulations and a strong focus on data governance. The Asia Pacific region is expected to witness the highest growth rate, fueled by rapid industrialization, increasing investments in big data technologies, and the growing adoption of IoT. Latin America and the Middle East & Africa are also anticipated to experience steady growth, supported by digital transformation initiatives and the expanding IT infrastructure.



    Platform Analysis



    The platform segment of the data preparation tools market is categorized into self-service data preparation, data integration, data quality, and data governance. Self-service data preparation tools are gaining significant traction as they empower business users to prepare data independently without relying on IT departments. These tools provide user-friendly interfaces and drag-and-drop functionalities, enabling users to quickly clean, transform, and visualize data. The rising need for agile and faster data preparation processes is driving the adoption of self-service platforms.



    Data integration tools are essential for combining data from disparate sources into a unified view, facilitating comprehensive data analysis. These tools support the extraction, transformation, and loading (ETL) processes, ensuring data consistency and accuracy. With the increasing complexity of data environments and the need f

  18. f

    Android botnet detection dataset for machine learning

    • figshare.com
    txt
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Suleiman Yerima (2023). Android botnet detection dataset for machine learning [Dataset]. http://doi.org/10.6084/m9.figshare.14079581.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    figshare
    Authors
    Suleiman Yerima
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset is generated from 6802 Android applications consisting of 1929 botnet apps from the ISCX botnet dataset and 4873 clean apps. The dataset has of 342 static features extracted from the apps and these features fall under 5 categories namely: API calls, Permissions, Extra (binary) files, Commands and Intents. The 1929 botnet apps consists of 14 different families. The dataset has been used to study different machine learning and deep learning techniques as described in the related papers.

  19. i

    A Dataset with Adversarial Attacks on Deep Learning in Wireless Modulation...

    • ieee-dataport.org
    Updated Sep 23, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Antonios Argyriou (2023). A Dataset with Adversarial Attacks on Deep Learning in Wireless Modulation Classification [Dataset]. https://ieee-dataport.org/documents/dataset-adversarial-attacks-deep-learning-wireless-modulation-classification
    Explore at:
    Dataset updated
    Sep 23, 2023
    Authors
    Antonios Argyriou
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contains adversarial attacks on Deep Learning (DL) when it is employed for the classification of wireless modulated communication signals. The attack is executed with an obfuscating waveform that is embedded in the transmitted signal in such a way that prevents the extraction of clean data for training from a wireless eavesdropper. At the same time it allows a legitimate receiver (LRx) to demodulate the data.

  20. o

    Characterization data for the manuscript "A data-driven perspective on the...

    • explore.openaire.eu
    Updated Sep 22, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kevin Maik Jablonka; Seyed Mohamad Moosavi; Mehrdad Asgari; Ireland Christopher; Luc Patiny; Berend Smit (2020). Characterization data for the manuscript "A data-driven perspective on the colours of metal-organic frameworks" [Dataset]. http://doi.org/10.5281/zenodo.4044211
    Explore at:
    Dataset updated
    Sep 22, 2020
    Authors
    Kevin Maik Jablonka; Seyed Mohamad Moosavi; Mehrdad Asgari; Ireland Christopher; Luc Patiny; Berend Smit
    Description

    The research was supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement 666983, MaGic), by the NCCR-MARVEL, funded by the Swiss National Science Foundation, and by the Swiss National Science Foundation (SNSF) under Grant 200021_172759. MA acknowledges the Swiss Commission for Technology and Innovation (CTI) (the SCCER EIP-Efficiency of Industrial Processes) for financial support and the Swiss-Norwegian Beam Line BM01 at European Synchrotron Radiation Facility (ESRF) for the beamtime allocation. Visualize the data in this dataset: open entry.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Dataintelo (2025). Data Cleaning Tools Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/data-cleaning-tools-market
Organization logo

Data Cleaning Tools Market Report | Global Forecast From 2025 To 2033

Explore at:
pptx, pdf, csvAvailable download formats
Dataset updated
Jan 7, 2025
Dataset authored and provided by
Dataintelo
License

https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

Time period covered
2024 - 2032
Area covered
Global
Description

Data Cleaning Tools Market Outlook



As of 2023, the global market size for data cleaning tools is estimated at $2.5 billion, with projections indicating that it will reach approximately $7.1 billion by 2032, reflecting a robust CAGR of 12.1% during the forecast period. This growth is primarily driven by the increasing importance of data quality in business intelligence and analytics workflows across various industries.



The growth of the data cleaning tools market can be attributed to several critical factors. Firstly, the exponential increase in data generation across industries necessitates efficient tools to manage data quality. Poor data quality can result in significant financial losses, inefficient business processes, and faulty decision-making. Organizations recognize the value of clean, accurate data in driving business insights and operational efficiency, thereby propelling the adoption of data cleaning tools. Additionally, regulatory requirements and compliance standards also push companies to maintain high data quality standards, further driving market growth.



Another significant growth factor is the rising adoption of AI and machine learning technologies. These advanced technologies rely heavily on high-quality data to deliver accurate results. Data cleaning tools play a crucial role in preparing datasets for AI and machine learning models, ensuring that the data is free from errors, inconsistencies, and redundancies. This surge in the use of AI and machine learning across various sectors like healthcare, finance, and retail is driving the demand for efficient data cleaning solutions.



The proliferation of big data analytics is another critical factor contributing to market growth. Big data analytics enables organizations to uncover hidden patterns, correlations, and insights from large datasets. However, the effectiveness of big data analytics is contingent upon the quality of the data being analyzed. Data cleaning tools help in sanitizing large datasets, making them suitable for analysis and thus enhancing the accuracy and reliability of analytics outcomes. This trend is expected to continue, fueling the demand for data cleaning tools.



In terms of regional growth, North America holds a dominant position in the data cleaning tools market. The region's strong technological infrastructure, coupled with the presence of major market players and a high adoption rate of advanced data management solutions, contributes to its leadership. However, the Asia Pacific region is anticipated to witness the highest growth rate during the forecast period. The rapid digitization of businesses, increasing investments in IT infrastructure, and a growing focus on data-driven decision-making are key factors driving the market in this region.



As organizations strive to maintain high data quality standards, the role of an Email List Cleaning Service becomes increasingly vital. These services ensure that email databases are free from invalid addresses, duplicates, and outdated information, thereby enhancing the effectiveness of marketing campaigns and communications. By leveraging sophisticated algorithms and validation techniques, email list cleaning services help businesses improve their email deliverability rates and reduce the risk of being flagged as spam. This not only optimizes marketing efforts but also protects the reputation of the sender. As a result, the demand for such services is expected to grow alongside the broader data cleaning tools market, as companies recognize the importance of maintaining clean and accurate contact lists.



Component Analysis



The data cleaning tools market can be segmented by component into software and services. The software segment encompasses various tools and platforms designed for data cleaning, while the services segment includes consultancy, implementation, and maintenance services provided by vendors.



The software segment holds the largest market share and is expected to continue leading during the forecast period. This dominance can be attributed to the increasing adoption of automated data cleaning solutions that offer high efficiency and accuracy. These software solutions are equipped with advanced algorithms and functionalities that can handle large volumes of data, identify errors, and correct them without manual intervention. The rising adoption of cloud-based data cleaning software further bolsters this segment, as it offers scalability and ease of

Search
Clear search
Close search
Google apps
Main menu