5 datasets found
  1. [Superseded] Intellectual Property Government Open Data 2019

    • demo.dev.magda.io
    csv-geo-au, pdf
    Updated Jan 26, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    IP Australia (2022). [Superseded] Intellectual Property Government Open Data 2019 [Dataset]. https://demo.dev.magda.io/dataset/ds-dga-a4210de2-9cbb-4d43-848d-46138fefd271
    Explore at:
    csv-geo-au, pdfAvailable download formats
    Dataset updated
    Jan 26, 2022
    Dataset provided by
    IP Australiahttp://ipaustralia.gov.au/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    What is IPGOD? The Intellectual Property Government Open Data (IPGOD) includes over 100 years of registry data on all intellectual property (IP) rights administered by IP Australia. It also has …Show full descriptionWhat is IPGOD? The Intellectual Property Government Open Data (IPGOD) includes over 100 years of registry data on all intellectual property (IP) rights administered by IP Australia. It also has derived information about the applicants who filed these IP rights, to allow for research and analysis at the regional, business and individual level. This is the 2019 release of IPGOD. How do I use IPGOD? IPGOD is large, with millions of data points across up to 40 tables, making them too large to open with Microsoft Excel. Furthermore, analysis often requires information from separate tables which would need specialised software for merging. We recommend that advanced users interact with the IPGOD data using the right tools with enough memory and compute power. This includes a wide range of programming and statistical software such as Tableau, Power BI, Stata, SAS, R, Python, and Scalar. IP Data Platform IP Australia is also providing free trials to a cloud-based analytics platform with the capabilities to enable working with large intellectual property datasets, such as the IPGOD, through the web browser, without any installation of software. IP Data Platform References The following pages can help you gain the understanding of the intellectual property administration and processes in Australia to help your analysis on the dataset. Patents Trade Marks Designs Plant Breeder’s Rights Updates Tables and columns Due to the changes in our systems, some tables have been affected. We have added IPGOD 225 and IPGOD 325 to the dataset! The IPGOD 206 table is not available this year. Many tables have been re-built, and as a result may have different columns or different possible values. Please check the data dictionary for each table before use. Data quality improvements Data quality has been improved across all tables. Null values are simply empty rather than '31/12/9999'. All date columns are now in ISO format 'yyyy-mm-dd'. All indicator columns have been converted to Boolean data type (True/False) rather than Yes/No, Y/N, or 1/0. All tables are encoded in UTF-8. All tables use the backslash \ as the escape character. The applicant name cleaning and matching algorithms have been updated. We believe that this year's method improves the accuracy of the matches. Please note that the "ipa_id" generated in IPGOD 2019 will not match with those in previous releases of IPGOD.

  2. u

    University of Cape Town Student Admissions Data 2015-2019 - South Africa

    • datafirst.uct.ac.za
    Updated Jul 28, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UCT Student Administration (2020). University of Cape Town Student Admissions Data 2015-2019 - South Africa [Dataset]. https://www.datafirst.uct.ac.za/dataportal/index.php/catalog/787
    Explore at:
    Dataset updated
    Jul 28, 2020
    Dataset authored and provided by
    UCT Student Administration
    Time period covered
    2015 - 2019
    Area covered
    South Africa
    Description

    Abstract

    The dataset was generated from a set of Excel spreadsheets extracted from an Information and Communication Technology Services (ICTS) administrative database on student applications to the University of Cape Town (UCT). The data in this second part of the series contain information on applications to UCT made between January 2015 and September 2019.

    In the original form received by DataFirst the data were ill suited to research purposes. The series represents an attempt at cleaning and organizing the data into a more tractable format.

    Analysis unit

    Individuals, applications

    Universe

    All applications to study at the University of Cape Town

    Kind of data

    Administrative records data

    Mode of data collection

    Other [oth]

    Cleaning operations

    In order to lessen computation times the main applications file was split by year - this part contains the years 2014-2019. Note however that the other 3 files released with the application file (that can be merged into it for additional detail) did not need to be split. As such, the four files can be used to produce a series for 2014-2019 and are labelled as such, even though the person, secondary schooling and tertiary education files all span a longer time period.

    Here is additional information about the files:

    1. Application file: the "finest" or most disaggregated unit of analysis. Individuals may have multiple applications. Uniquely identified by an application ID variable. There are a total of 1,540,129 applications between 2015 and 2019. As mentioned, it was this application file that was split to reduce computation times. It was not necessary or logical to split the other files.
    2. Person file: Each individual is uniquely identified by an individual ID variable. Each individual is associated with information on "key subjects" from a separate data file also contained in the database. These key subjects are all separate variables in the individual level data file. It is important to note that because individuals may have multiple applications, potentially spanning over many years, it was decided not to split the person level datafile. Rather, the person file spans the full data range from 2006 to 2019.
    3. Secondary Education Information: Individuals can also be associated with row entries for each subject. This data file does not have a unique identifier. Instead, each row entry represents a specific secondary school subject for a specific individual. These subjects are quite specific and the data allows the user to distinguish between, for example, higher grade accounting and standard grade accounting. It also allows the user to identify the educational authority issuing the qualification e.g. Cambridge Internal Examinations (CIE) versus National Senior Certificate (NSC). This file spans 2006 to 2019.
    4. Tertiary Education Information: the smallest of the four data files. There are multiple entries for each individual in this dataset. Each row entry contains information on the year, institution and transcript information and can be associated with individuals.This file spans 2006 to 2019.

    Further information on the processing of the original data files is summarised in a document entitled "Notes on preparing the UCT Student Admissions Data" accompanying the data.

  3. C

    STOP WORK ORDERS

    • data.cityofchicago.org
    application/rdfxml +5
    Updated Mar 26, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Chicago (2025). STOP WORK ORDERS [Dataset]. https://data.cityofchicago.org/Buildings/STOP-WORK-ORDERS/y2d8-v96t
    Explore at:
    tsv, application/rssxml, csv, application/rdfxml, json, xmlAvailable download formats
    Dataset updated
    Mar 26, 2025
    Authors
    City of Chicago
    Description

    Violations issued by the Department of Buildings in the City of Chicago from 2006 to the present. The dataset contains more than 1 million records/rows of data and cannot be viewed in full in Microsoft Excel. Therefore, when downloading the file, select CSV from the Export menu. Open the file in an ASCII text editor, such as Wordpad, to view and search. Violations are always associated to an inspection and there can be multiple violation records to one(1) inspection record. Data fields requiring description are detailed below. VIOLATION DATE: The date the violation was cited. INSPECTION CATEGORY: Inspections are categorized by one of the following: COMPLAINT – Inspection is a result of a 311 Complaint PERIODIC – Inspection is a result of recurring inspection (typically on an annual cycle) PERMIT – Inspection is a result of a Permit REGISTRATION – Inspection is a result of a Registration (typically Vacant Building Registration) PROPERTY GROUP: Properties (lots) in the City of Chicago can typically have multiple point addresses, range addresses and buildings. Examples are corner lots, large lots, lots with front and rear buildings, etc.. As a result, inspections (and their associated violations), permits and complaints related to a single property could have different addresses. This problem can be reconciled by using Property Group. All point and range addresses for a property are assigned the same Property Group key. Data Owner: Buildings Time Period: January 1, 2006 to present Frequency: Data is updated daily Related Applications: Building Data Warehouse http://www.cityofchicago.org/city/en/depts/bldgs/provdrs/inspect/svcs/building_violationsonline.html

  4. Labour Force Survey Household Datasets, 2002-2023: Secure Access

    • beta.ukdataservice.ac.uk
    • datacatalogue.cessda.eu
    Updated 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Social Survey Division Office For National Statistics (2024). Labour Force Survey Household Datasets, 2002-2023: Secure Access [Dataset]. http://doi.org/10.5255/ukda-sn-7674-16
    Explore at:
    Dataset updated
    2024
    Dataset provided by
    UK Data Servicehttps://ukdataservice.ac.uk/
    datacite
    Authors
    Social Survey Division Office For National Statistics
    Description

    Background

    The Labour Force Survey (LFS) is a unique source of information using international definitions of employment and unemployment and economic inactivity, together with a wide range of related topics such as occupation, training, hours of work and personal characteristics of household members aged 16 years and over. It is used to inform social, economic and employment policy. The LFS was first conducted biennially from 1973-1983. Between 1984 and 1991 the survey was carried out annually and consisted of a quarterly survey conducted throughout the year and a 'boost' survey in the spring quarter (data were then collected seasonally). From 1992 quarterly data were made available, with a quarterly sample size approximately equivalent to that of the previous annual data. The survey then became known as the Quarterly Labour Force Survey (QLFS). From December 1994, data gathering for Northern Ireland moved to a full quarterly cycle to match the rest of the country, so the QLFS then covered the whole of the UK (though some additional annual Northern Ireland LFS datasets are also held at the UK Data Archive). Further information on the background to the QLFS may be found in the documentation.

    New reweighting policy
    Following the new reweighting policy ONS has reviewed the latest population estimates made available during 2019 and have decided not to carry out a 2019 LFS and APS reweighting exercise. Therefore, the next reweighting exercise will take place in 2020. These will incorporate the 2019 Sub-National Population Projection data (published in May 2020) and 2019 Mid-Year Estimates (published in June 2020). It is expected that reweighted Labour Market aggregates and microdata will be published towards the end of 2020/early 2021.

    Secure Access QLFS household data
    Up to 2015, the LFS household datasets were produced twice a year (April-June and October-December) from the corresponding quarter's individual-level data. From January 2015 onwards, they are now produced each quarter alongside the main QLFS. The household datasets include all the usual variables found in the individual-level datasets, with the exception of those relating to income, and are intended to facilitate the analysis of the economic activity patterns of whole households. It is recommended that the existing individual-level LFS datasets continue to be used for any analysis at individual level, and that the LFS household datasets be used for analysis involving household or family-level data. For some quarters, users should note that all missing values in the data are set to one '-10' category instead of the separate '-8' and '-9' categories. For that period, the ONS introduced a new imputation process for the LFS household datasets and it was necessary to code the missing values into one new combined category ('-10'), to avoid over-complication. From the 2013 household datasets, the standard -8 and -9 missing categories have been reinstated.

    Secure Access household datasets for the QLFS are available from 2002 onwards, and include additional, detailed variables not included in the standard 'End User Licence' (EUL) versions. Extra variables that typically can be found in the Secure Access versions but not in the EUL versions relate to: geography; date of birth, including day; education and training; household and family characteristics; employment; unemployment and job hunting; accidents at work and work-related health problems; nationality, national identity and country of birth; occurence of learning difficulty or disability; and benefits.

    Prospective users of a Secure Access version of the QLFS will need to fulfil additional requirements, commencing with the completion of an extra application form to demonstrate to the data owners exactly why they need access to the extra, more detailed variables, in order to obtain permission to use that version. Secure Access users must also complete face-to-face training and agree to Secure Access' User Agreement (see 'Access' section below). Therefore, users are encouraged to download and inspect the EUL version of the data prior to ordering the Secure Access version.

    LFS Documentation
    The documentation available from the Archive to accompany LFS datasets largely consists of each volume of the User Guide including the appropriate questionnaires for the years concerned. However, LFS volumes are updated periodically by ONS, so users are advised to check the ONS LFS User Guidance pages before commencing analysis.

    The study documentation presented in the Documentation section includes the most recent documentation for the LFS only, due to available space. Documentation for previous years is provided alongside the data for access and is also available upon request.

    Review of imputation methods for LFS Household data - changes to missing values
    A review of the imputation methods used in LFS Household and Family analysis resulted in a change from the January-March 2015 quarter onwards. It was no longer considered appropriate to impute any personal characteristic variables (e.g. religion, ethnicity, country of birth, nationality, national identity, etc.) using the LFS donor imputation method. This method is primarily focused to ensure the 'economic status' of all individuals within a household is known, allowing analysis of the combined economic status of households. This means that from 2015 larger amounts of missing values ('-8'/-9') will be present in the data for these personal characteristic variables than before. Therefore if users need to carry out any time series analysis of households/families which also includes personal characteristic variables covering this time period, then it is advised to filter off 'ioutcome=3' cases from all periods to remove this inconsistent treatment of non-responders.

    Variables DISEA and LNGLST
    Dataset A08 (Labour market status of disabled people) which ONS suspended due to an apparent discontinuity between April to June 2017 and July to September 2017 is now available. As a result of this apparent discontinuity and the inconclusive investigations at this stage, comparisons should be made with caution between April to June 2017 and subsequent time periods. However users should note that the estimates are not seasonally adjusted, so some of the change between quarters could be due to seasonality. Further recommendations on historical comparisons of the estimates will be given in November 2018 when ONS are due to publish estimates for July to September 2018.

    An article explaining the quality assurance investigations that have been conducted so far is available on the ONS Methodology webpage. For any queries about Dataset A08 please email Labour.Market@ons.gov.uk.

    Latest Edition Information
    For the sixteenth edition (November 2023), one quarterly data file covering the time period April-June, 2023, along with a new Excel variable catalogue for 2023 and a documentation form, have been added to the study.

  5. w

    National Family Survey 2019-2021 - India

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated May 12, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Family Survey 2019-2021 - India [Dataset]. https://microdata.worldbank.org/index.php/catalog/4482
    Explore at:
    Dataset updated
    May 12, 2022
    Dataset provided by
    Ministry of Health and Family Welfare (MoHFW)
    International Institute for Population Sciences (IIPS)
    Time period covered
    2019 - 2021
    Area covered
    India
    Description

    Abstract

    The National Family Health Survey 2019-21 (NFHS-5), the fifth in the NFHS series, provides information on population, health, and nutrition for India, each state/union territory (UT), and for 707 districts.

    The primary objective of the 2019-21 round of National Family Health Surveys is to provide essential data on health and family welfare, as well as data on emerging issues in these areas, such as levels of fertility, infant and child mortality, maternal and child health, and other health and family welfare indicators by background characteristics at the national and state levels. Similar to NFHS-4, NFHS-5 also provides information on several emerging issues including perinatal mortality, high-risk sexual behaviour, safe injections, tuberculosis, noncommunicable diseases, and the use of emergency contraception.

    The information collected through NFHS-5 is intended to assist policymakers and programme managers in setting benchmarks and examining progress over time in India’s health sector. Besides providing evidence on the effectiveness of ongoing programmes, NFHS-5 data will help to identify the need for new programmes in specific health areas.

    The clinical, anthropometric, and biochemical (CAB) component of NFHS-5 is designed to provide vital estimates of the prevalence of malnutrition, anaemia, hypertension, high blood glucose levels, and waist and hip circumference, Vitamin D3, HbA1c, and malaria parasites through a series of biomarker tests and measurements.

    Geographic coverage

    National coverage

    Analysis unit

    • Household
    • Individual
    • Children age 0-5
    • Woman age 15-49
    • Man age 15 to 54

    Universe

    The survey covered all de jure household members (usual residents), all women aged 15-49, all men age 15-54, and all children aged 0-5 resident in the household.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    A uniform sample design, which is representative at the national, state/union territory, and district level, was adopted in each round of the survey. Each district is stratified into urban and rural areas. Each rural stratum is sub-stratified into smaller substrata which are created considering the village population and the percentage of the population belonging to scheduled castes and scheduled tribes (SC/ST). Within each explicit rural sampling stratum, a sample of villages was selected as Primary Sampling Units (PSUs); before the PSU selection, PSUs were sorted according to the literacy rate of women age 6+ years. Within each urban sampling stratum, a sample of Census Enumeration Blocks (CEBs) was selected as PSUs. Before the PSU selection, PSUs were sorted according to the percentage of SC/ST population. In the second stage of selection, a fixed number of 22 households per cluster was selected with an equal probability systematic selection from a newly created list of households in the selected PSUs. The list of households was created as a result of the mapping and household listing operation conducted in each selected PSU before the household selection in the second stage. In all, 30,456 Primary Sampling Units (PSUs) were selected across the country in NFHS-5 drawn from 707 districts as on March 31st 2017, of which fieldwork was completed in 30,198 PSUs.

    For further details on sample design, see Section 1.2 of the final report.

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Research instrument

    Four survey schedules/questionnaires: Household, Woman, Man, and Biomarker were canvassed in 18 local languages using Computer Assisted Personal Interviewing (CAPI).

    Cleaning operations

    Electronic data collected in the 2019-21 National Family Health Survey were received on a daily basis via the SyncCloud system at the International Institute for Population Sciences, where the data were stored on a password-protected computer. Secondary editing of the data, which required resolution of computer-identified inconsistencies and coding of open-ended questions, was conducted in the field by the Field Agencies and at the Field Agencies central office, and IIPS checked the secondary edits before the dataset was finalized.

    Field-check tables were produced by IIPS and the Field Agencies on a regular basis to identify certain types of errors that might have occurred in eliciting information and recording question responses. Information from the field-check tables on the performance of each fieldwork team and individual investigator was promptly shared with the Field Agencies during the fieldwork so that the performance of the teams could be improved, if required.

    Response rate

    A total of 664,972 households were selected for the sample, of which 653,144 were occupied. Among the occupied households, 636,699 were successfully interviewed, for a response rate of 98 percent.

    In the interviewed households, 747,176 eligible women age 15-49 were identified for individual women’s interviews. Interviews were completed with 724,115 women, for a response rate of 97 percent. In all, there were 111,179 eligible men age 15-54 in households selected for the state module. Interviews were completed with 101,839 men, for a response rate of 92 percent.

  6. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
IP Australia (2022). [Superseded] Intellectual Property Government Open Data 2019 [Dataset]. https://demo.dev.magda.io/dataset/ds-dga-a4210de2-9cbb-4d43-848d-46138fefd271
Organization logo

[Superseded] Intellectual Property Government Open Data 2019

Explore at:
csv-geo-au, pdfAvailable download formats
Dataset updated
Jan 26, 2022
Dataset provided by
IP Australiahttp://ipaustralia.gov.au/
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

What is IPGOD? The Intellectual Property Government Open Data (IPGOD) includes over 100 years of registry data on all intellectual property (IP) rights administered by IP Australia. It also has …Show full descriptionWhat is IPGOD? The Intellectual Property Government Open Data (IPGOD) includes over 100 years of registry data on all intellectual property (IP) rights administered by IP Australia. It also has derived information about the applicants who filed these IP rights, to allow for research and analysis at the regional, business and individual level. This is the 2019 release of IPGOD. How do I use IPGOD? IPGOD is large, with millions of data points across up to 40 tables, making them too large to open with Microsoft Excel. Furthermore, analysis often requires information from separate tables which would need specialised software for merging. We recommend that advanced users interact with the IPGOD data using the right tools with enough memory and compute power. This includes a wide range of programming and statistical software such as Tableau, Power BI, Stata, SAS, R, Python, and Scalar. IP Data Platform IP Australia is also providing free trials to a cloud-based analytics platform with the capabilities to enable working with large intellectual property datasets, such as the IPGOD, through the web browser, without any installation of software. IP Data Platform References The following pages can help you gain the understanding of the intellectual property administration and processes in Australia to help your analysis on the dataset. Patents Trade Marks Designs Plant Breeder’s Rights Updates Tables and columns Due to the changes in our systems, some tables have been affected. We have added IPGOD 225 and IPGOD 325 to the dataset! The IPGOD 206 table is not available this year. Many tables have been re-built, and as a result may have different columns or different possible values. Please check the data dictionary for each table before use. Data quality improvements Data quality has been improved across all tables. Null values are simply empty rather than '31/12/9999'. All date columns are now in ISO format 'yyyy-mm-dd'. All indicator columns have been converted to Boolean data type (True/False) rather than Yes/No, Y/N, or 1/0. All tables are encoded in UTF-8. All tables use the backslash \ as the escape character. The applicant name cleaning and matching algorithms have been updated. We believe that this year's method improves the accuracy of the matches. Please note that the "ipa_id" generated in IPGOD 2019 will not match with those in previous releases of IPGOD.

Search
Clear search
Close search
Google apps
Main menu