100+ datasets found
  1. B

    Data Cleaning Sample

    • borealisdata.ca
    • dataone.org
    Updated Jul 13, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rong Luo (2023). Data Cleaning Sample [Dataset]. http://doi.org/10.5683/SP3/ZCN177
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 13, 2023
    Dataset provided by
    Borealis
    Authors
    Rong Luo
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Sample data for exercises in Further Adventures in Data Cleaning.

  2. q

    Writing Clean Code in R Workshop

    • qubeshub.org
    Updated Oct 15, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Max Joseph; Leah Wasser (2019). Writing Clean Code in R Workshop [Dataset]. https://qubeshub.org/publications/1442
    Explore at:
    Dataset updated
    Oct 15, 2019
    Dataset provided by
    QUBES
    Authors
    Max Joseph; Leah Wasser
    Description

    When working with data, you often spend the most amount of time cleaning your data. Learn how to write more efficient code using the tidyverse in R.

  3. Data cleaning EVI2

    • figshare.com
    txt
    Updated May 13, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Geraldine Klarenberg (2019). Data cleaning EVI2 [Dataset]. http://doi.org/10.6084/m9.figshare.5327527.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    May 13, 2019
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Geraldine Klarenberg
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Scripts to clean EVI2 data obtained from the VIP lab (University of Arizona) website (https://vip.arizona.edu/about.php and https://vip.arizona.edu/viplab_data_explorer.php). Data obtained in 2012.- outlier detection and removal/replacement- alignment of 2 periodsThe manuscript detailing the methods and resulting data sets has been accepted for publication in Nature Scientific Data (05/11/2019).Instructions: use the R Markdown html file for instructions!Code last manipulated and tested in R 3.4.3 ("Kite-Eating Tree")

  4. R/r custom clean llc USA Import & Buyer Data

    • seair.co.in
    Updated Jan 11, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Seair Exim (2018). R/r custom clean llc USA Import & Buyer Data [Dataset]. https://www.seair.co.in
    Explore at:
    .bin, .xml, .csv, .xlsAvailable download formats
    Dataset updated
    Jan 11, 2018
    Dataset provided by
    Seair Exim Solutions
    Authors
    Seair Exim
    Area covered
    United States
    Description

    Subscribers can find out export and import data of 23 countries by HS code or product’s name. This demo is helpful for market analysis.

  5. W

    R Code of Simulations

    • cloud.csiss.gmu.edu
    • catalog.data.gov
    zip
    Updated Mar 7, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States (2021). R Code of Simulations [Dataset]. http://doi.org/10.23719/1504181
    Explore at:
    zipAvailable download formats
    Dataset updated
    Mar 7, 2021
    Dataset provided by
    United States
    License

    https://pasteur.epa.gov/license/sciencehub-license.htmlhttps://pasteur.epa.gov/license/sciencehub-license.html

    Description

    The sims zip file contains R code and accompanying files needed to run the R code. Overall this code demonstrates the R code used in the study is fully functional, documented, and reproducible and that this code could reproduce the simulation results from the study with sufficient computing time. The code as presented is for a single simulated dataset and will produce estimates and confidence intervals produced by all the methods used within the study when run on that one dataset.

    This dataset is associated with the following publication: Nethery, R., F. Mealli, J. Sacks, and F. Dominici. Evaluation of the Health Impacts of the 1990 Clean Air Act Amendments Using Causal Inference and Machine Learning. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION. Taylor & Francis Group, London, UK, 1-12, (2020).

  6. d

    Replication Data for: realdata

    • search.dataone.org
    Updated Nov 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Xu, Ningning (2023). Replication Data for: realdata [Dataset]. http://doi.org/10.7910/DVN/AFZZVP
    Explore at:
    Dataset updated
    Nov 8, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Xu, Ningning
    Description

    (1) dataandpathway_eisner.R, dataandpathway_bordbar.R, dataandpathway_taware.R and dataandpathway_almutawa.R: functions and codes to clean the realdata sets and obtain the annotation databases, which are save as .RData files in sudfolders Eisner, Bordbar, Taware and Al-Mutawa respectively. (2) FWER_excess.R: functions to show the inflation of FWER when integrating multiple annotation databases and to generate Table 1. (3) data_info.R: code to obtain Table 2 and Table 3. (4) rejections_perdataset.R and triangulartable.R: functions to generate Table 4. The runing time of rejections_perdataset.R is 7 hours around, we thus save the corresponding results as res_eisner.RData, res_bordbar.RData, res_taware.RData and res_almutawa.RData in subfolders Eisner, Bordbar, Taware and Al-Mutawa respectively. (5) pathwaysizerank.R: code for generating Figure 4 based on res_eisner.RData from (h). (6) iterationandtime_plot.R: code for generating Figure 5 based on “Al-Mutawa” data. The code is really time-consuming, nearly 5 days, we thus save the corresponding results and plot them in the main manuscript by pgfplot.

  7. f

    Cleaned NHANES 1988-2018

    • figshare.com
    txt
    Updated Feb 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Vy Nguyen; Lauren Y. M. Middleton; Neil Zhao; Lei Huang; Eliseu Verly; Jacob Kvasnicka; Luke Sagers; Chirag Patel; Justin Colacino; Olivier Jolliet (2025). Cleaned NHANES 1988-2018 [Dataset]. http://doi.org/10.6084/m9.figshare.21743372.v9
    Explore at:
    txtAvailable download formats
    Dataset updated
    Feb 18, 2025
    Dataset provided by
    figshare
    Authors
    Vy Nguyen; Lauren Y. M. Middleton; Neil Zhao; Lei Huang; Eliseu Verly; Jacob Kvasnicka; Luke Sagers; Chirag Patel; Justin Colacino; Olivier Jolliet
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The National Health and Nutrition Examination Survey (NHANES) provides data and have considerable potential to study the health and environmental exposure of the non-institutionalized US population. However, as NHANES data are plagued with multiple inconsistencies, processing these data is required before deriving new insights through large-scale analyses. Thus, we developed a set of curated and unified datasets by merging 614 separate files and harmonizing unrestricted data across NHANES III (1988-1994) and Continuous (1999-2018), totaling 135,310 participants and 5,078 variables. The variables conveydemographics (281 variables),dietary consumption (324 variables),physiological functions (1,040 variables),occupation (61 variables),questionnaires (1444 variables, e.g., physical activity, medical conditions, diabetes, reproductive health, blood pressure and cholesterol, early childhood),medications (29 variables),mortality information linked from the National Death Index (15 variables),survey weights (857 variables),environmental exposure biomarker measurements (598 variables), andchemical comments indicating which measurements are below or above the lower limit of detection (505 variables).csv Data Record: The curated NHANES datasets and the data dictionaries includes 23 .csv files and 1 excel file.The curated NHANES datasets involves 20 .csv formatted files, two for each module with one as the uncleaned version and the other as the cleaned version. The modules are labeled as the following: 1) mortality, 2) dietary, 3) demographics, 4) response, 5) medications, 6) questionnaire, 7) chemicals, 8) occupation, 9) weights, and 10) comments."dictionary_nhanes.csv" is a dictionary that lists the variable name, description, module, category, units, CAS Number, comment use, chemical family, chemical family shortened, number of measurements, and cycles available for all 5,078 variables in NHANES."dictionary_harmonized_categories.csv" contains the harmonized categories for the categorical variables.“dictionary_drug_codes.csv” contains the dictionary for descriptors on the drugs codes.“nhanes_inconsistencies_documentation.xlsx” is an excel file that contains the cleaning documentation, which records all the inconsistencies for all affected variables to help curate each of the NHANES modules.R Data Record: For researchers who want to conduct their analysis in the R programming language, only cleaned NHANES modules and the data dictionaries can be downloaded as a .zip file which include an .RData file and an .R file.“w - nhanes_1988_2018.RData” contains all the aforementioned datasets as R data objects. We make available all R scripts on customized functions that were written to curate the data.“m - nhanes_1988_2018.R” shows how we used the customized functions (i.e. our pipeline) to curate the original NHANES data.Example starter codes: The set of starter code to help users conduct exposome analysis consists of four R markdown files (.Rmd). We recommend going through the tutorials in order.“example_0 - merge_datasets_together.Rmd” demonstrates how to merge the curated NHANES datasets together.“example_1 - account_for_nhanes_design.Rmd” demonstrates how to conduct a linear regression model, a survey-weighted regression model, a Cox proportional hazard model, and a survey-weighted Cox proportional hazard model.“example_2 - calculate_summary_statistics.Rmd” demonstrates how to calculate summary statistics for one variable and multiple variables with and without accounting for the NHANES sampling design.“example_3 - run_multiple_regressions.Rmd” demonstrates how run multiple regression models with and without adjusting for the sampling design.

  8. A dataset for temporal analysis of files related to the JFK case

    • zenodo.org
    • data.niaid.nih.gov
    csv
    Updated Jan 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Markus Luczak-Roesch; Markus Luczak-Roesch (2020). A dataset for temporal analysis of files related to the JFK case [Dataset]. http://doi.org/10.5281/zenodo.1042154
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jan 24, 2020
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Markus Luczak-Roesch; Markus Luczak-Roesch
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contains the content of the subset of all files with a correct publication date from the 2017 release of files related to the JFK case (retrieved from https://www.archives.gov/research/jfk/2017-release). This content was extracted from the source PDF files using the R OCR libraries tesseract and pdftools.

    The code to derive the dataset is given as follows:

    ### BEGIN R DATA PROCESSING SCRIPT

    library(tesseract)
    library(pdftools)

    pdfs <- list.files("[path to your output directory containing all PDF files]")

    meta <- read.csv2("[path to your input directory]/jfkrelease-2017-dce65d0ec70a54d5744de17d280f3ad2.csv",header = T,sep = ',') #the meta file containing all metadata for the PDF files (e.g. publication date)

    meta$Doc.Date <- as.character(meta$Doc.Date)

    meta.clean <- meta[-which(meta$Doc.Date=="" | grepl("/0000",meta$Doc.Date)),]
    for(i in 1:nrow(meta.clean)){
    meta.clean$Doc.Date[i] <- gsub("00","01",meta.clean$Doc.Date[i])

    if(nchar(meta.clean$Doc.Date[i])<10){
    meta.clean$Doc.Date[i]<-format(strptime(meta.clean$Doc.Date[i],format = "%d/%m/%y"),"%m/%d/%Y")
    }

    }

    meta.clean$Doc.Date <- strptime(meta.clean$Doc.Date,format = "%m/%d/%Y")

    meta.clean <- meta.clean[order(meta.clean$Doc.Date),]

    docs <- data.frame(content=character(0),dpub=character(0),stringsAsFactors = F)
    for(i in 1:nrow(meta.clean)){
    #for(i in 1:3){
    pdf_prop <- pdftools::pdf_info(paste0("[path to your output directory]/",tolower(meta.clean$File.Name[i])))
    tmp_files <- c()
    for(k in 1:pdf_prop$pages){
    tmp_files <- c(tmp_files,paste0("/home/STAFF/luczakma/RProjects/JFK/data/tmp/",k))
    }

    img_file <- pdftools::pdf_convert(paste0("[path to your output directory]/",tolower(meta.clean$File.Name[i])), format = 'tiff', pages = NULL, dpi = 700,filenames = tmp_files)

    txt <- ""

    for(j in 1:length(img_file)){
    extract <- ocr(img_file[j], engine = tesseract("eng"))
    #unlink(img_file)
    txt <- paste(txt,extract,collapse = " ")
    }

    docs <- rbind(docs,data.frame(content=iconv(tolower(gsub("\\s+"," ",gsub("[[:punct:]]|[ ]"," ",txt))),to="UTF-8"),dpub=format(meta.clean$Doc.Date[i],"%Y/%m/%d"),stringsAsFactors = F),stringsAsFactors = F)
    }


    write.table(docs,"[path to your output directory]/documents.csv", row.names = F)

    ### END R DATA PROCESSING SCRIPT

  9. Clean Cyclistic Data

    • kaggle.com
    Updated Sep 29, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eric R. (2021). Clean Cyclistic Data [Dataset]. https://www.kaggle.com/ericramoscastillo/clean-cyclistic-data/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 29, 2021
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Eric R.
    Description

    Dataset

    This dataset was created by Eric R.

    Contents

  10. g

    Jacob Kaplan's Concatenated Files: Uniform Crime Reporting (UCR) Program...

    • datasearch.gesis.org
    • openicpsr.org
    Updated Feb 19, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kaplan, Jacob (2020). Jacob Kaplan's Concatenated Files: Uniform Crime Reporting (UCR) Program Data: Property Stolen and Recovered (Supplement to Return A) 1960-2017 [Dataset]. http://doi.org/10.3886/E105403V3
    Explore at:
    Dataset updated
    Feb 19, 2020
    Dataset provided by
    da|ra (Registration agency for social science and economic data)
    Authors
    Kaplan, Jacob
    Description

    For any questions about this data please email me at jacob@crimedatatool.com. If you use this data, please cite it.Version 3 release notes:Adds data in the following formats: Excel.Changes project name to avoid confusing this data for the ones done by NACJD.Version 2 release notes:Adds data for 2017.Adds a "number_of_months_reported" variable which says how many months of the year the agency reported data.Property Stolen and Recovered is a Uniform Crime Reporting (UCR) Program data set with information on the number of offenses (crimes included are murder, rape, robbery, burglary, theft/larceny, and motor vehicle theft), the value of the offense, and subcategories of the offense (e.g. for robbery it is broken down into subcategories including highway robbery, bank robbery, gas station robbery). The majority of the data relates to theft. Theft is divided into subcategories of theft such as shoplifting, theft of bicycle, theft from building, and purse snatching. For a number of items stolen (e.g. money, jewelry and previous metals, guns), the value of property stolen and and the value for property recovered is provided. This data set is also referred to as the Supplement to Return A (Offenses Known and Reported). All the data was received directly from the FBI as text or .DTA files. I created a setup file based on the documentation provided by the FBI and read the data into R using the package asciiSetupReader. All work to clean the data and save it in various file formats was also done in R. For the R code used to clean this data, see here: https://github.com/jacobkap/crime_data. The Word document file available for download is the guidebook the FBI provided with the raw data which I used to create the setup file to read in data.There may be inaccuracies in the data, particularly in the group of columns starting with "auto." To reduce (but certainly not eliminate) data errors, I replaced the following values with NA for the group of columns beginning with "offenses" or "auto" as they are common data entry error values (e.g. are larger than the agency's population, are much larger than other crimes or months in same agency): 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 20000, 30000, 40000, 50000, 60000, 70000, 80000, 90000, 100000, 99942. This cleaning was NOT done on the columns starting with "value."For every numeric column I replaced negative indicator values (e.g. "j" for -1) with the negative number they are supposed to be. These negative number indicators are not included in the FBI's codebook for this data but are present in the data. I used the values in the FBI's codebook for the Offenses Known and Clearances by Arrest data.To make it easier to merge with other data, I merged this data with the Law Enforcement Agency Identifiers Crosswalk (LEAIC) data. The data from the LEAIC add FIPS (state, county, and place) and agency type/subtype. If an agency has used a different FIPS code in the past, check to make sure the FIPS code is the same as in this data.

  11. Data from: Data and code from: A natural polymer material as a pesticide...

    • s.cnmilf.com
    • agdatacommons.nal.usda.gov
    • +1more
    Updated Apr 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agricultural Research Service (2025). Data and code from: A natural polymer material as a pesticide adjuvant for mitigating off-target drift and protecting pollinator health [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/data-and-code-from-a-natural-polymer-material-as-a-pesticide-adjuvant-for-mitigating-off-t
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    Agricultural Research Servicehttps://www.ars.usda.gov/
    Description

    This dataset contains all data and code required to clean the data, fit the models, and create the figures and tables for the laboratory experiment portion of the manuscript:Kannan, N., Q. D. Read, and W. Zhang. 2024. A natural polymer material as a pesticide adjuvant for mitigating off-target drift and protecting pollinator health. Heliyon, in press. https://doi.org/10.1016/j.heliyon.2024.e35510.In this dataset, we archive results from several laboratory and field trials testing different adjuvants (spray additives) that are intended to reduce particle drift, increase particle size, and slow down the particles from pesticide spray nozzles. We fit statistical models to the droplet size and speed distribution data and statistically compare different metrics between the adjuvants (sodium alginate, polyacrylamide [PAM], and control without any adjuvants). The following files are included:RawDataPAMsodAlgOxfLsr.xlsx: Raw data for primary analysesOrganizedDataPaperRevision20240614.xlsx: Raw data to produce density plots presented in Figs. 8 and 9raw_data_readme.md: Markdown file with description of the raw data filesR_code_supplement.R: All R code required to reproduce primary analysesR_code_supplement2.R: R code required to produce density plots presented in Figs. 8 and 9Intermediate R output files are also included so that tables and figures can be recreated without having to rerun the data preprocessing, model fitting, and posterior estimation steps:pam_cleaned.RData: Data combined into clean R data frames for analysisvelocityscaledlogdiamfit.rds: Fitted brms model object for velocitylnormfitreduced.rds: Fitted brms model object for diameter distributionemm_con_velo_diam_draws.RData: Posterior distributions of estimated marginal means for velocityemm_con_draws.RData: Posterior distributions of estimated marginal means for diameter distributionThe following software and package versions were used:R version 4.3.1CmdStan version 2.33.1R packages:brms version 2.20.5cmdstanr version 0.5.3fitdistrplus version 1.1-11tidybayes version 3.0.4emmeans version 1.8.9

  12. H

    Replication Data for: Race, gender, and the politics of incivility

    • dataverse.harvard.edu
    Updated Jun 10, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sam Gubitz (2020). Replication Data for: Race, gender, and the politics of incivility [Dataset]. http://doi.org/10.7910/DVN/ODPNI8
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 10, 2020
    Dataset provided by
    Harvard Dataverse
    Authors
    Sam Gubitz
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Use the project file first, then open the cleaning R file to clean the raw data. Then use the R file called OLS analysis to analyze the cleaned data, which was outputted as a .rds file.

  13. H

    Data from: SBIR - STTR Data and Code for Collecting Wrangling and Using It

    • dataverse.harvard.edu
    Updated Nov 5, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Grant Allard (2018). SBIR - STTR Data and Code for Collecting Wrangling and Using It [Dataset]. http://doi.org/10.7910/DVN/CKTAZX
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 5, 2018
    Dataset provided by
    Harvard Dataverse
    Authors
    Grant Allard
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Data set consisting of data joined for analyzing the SBIR/STTR program. Data consists of individual awards and agency-level observations. The R and python code required for pulling, cleaning, and creating useful data sets has been included. Allard_Get and Clean Data.R This file provides the code for getting, cleaning, and joining the numerous data sets that this project combined. This code is written in the R language and can be used in any R environment running R 3.5.1 or higher. If the other files in this Dataverse are downloaded to the working directory, then this Rcode will be able to replicate the original study without needing the user to update any file paths. Allard SBIR STTR WebScraper.py This is the code I deployed to multiple Amazon EC2 instances to scrape data o each individual award in my data set, including the contact info and DUNS data. Allard_Analysis_APPAM SBIR project Forthcoming Allard_Spatial Analysis Forthcoming Awards_SBIR_df.Rdata This unique data set consists of 89,330 observations spanning the years 1983 - 2018 and accounting for all eleven SBIR/STTR agencies. This data set consists of data collected from the Small Business Administration's Awards API and also unique data collected through web scraping by the author. Budget_SBIR_df.Rdata 246 observations for 20 agencies across 25 years of their budget-performance in the SBIR/STTR program. Data was collected from the Small Business Administration using the Annual Reports Dashboard, the Awards API, and an author-designed web crawler of the websites of awards. Solicit_SBIR-df.Rdata This data consists of observations of solicitations published by agencies for the SBIR program. This data was collected from the SBA Solicitations API. Primary Sources Small Business Administration. “Annual Reports Dashboard,” 2018. https://www.sbir.gov/awards/annual-reports. Small Business Administration. “SBIR Awards Data,” 2018. https://www.sbir.gov/api. Small Business Administration. “SBIR Solicit Data,” 2018. https://www.sbir.gov/api.

  14. Bellabeat Case Study

    • kaggle.com
    Updated Nov 23, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sierra Klimek (2023). Bellabeat Case Study [Dataset]. https://www.kaggle.com/datasets/sierraklimek/bellabeat-case-study/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 23, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Sierra Klimek
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    About the Company:

    Bellabeat, a small company manufacturing high-tech products focused on bringing Health-focused smart devices and other Wellness products to Women around the world. Since Urška Sršen and Sando Mur founded the company in 2013 they have seen it grow tremendously. Now they have asked for an analysis on non-Bellabeat smart device usage and how we can use this data to create new campaign strategies and drive future growth.

    Questions and Objectives

    Questions:

    • What are some trends in smart device usage?
    • How could these trends apply to Bellabeat customers?
    • How could these trends help influence Bellabeat marketing strategy? ### Objectives:
    • Utilize R Studio to clean and format the data
    • Visualize trends in the data, showing your findings
    • Identify opportunities for growth and recommendations for Bellabeat marketing team _

    R Programming Showcase

    Loading packages

    1. library(tidyverse)
    2. library(lubridate)
    3. library(dplyr)
    4. library(ggplot2)
    5. library(tidyr)

    Importing the datasets

    I utilized Fitbit Fitness tracker data, located here for this project. 6. activity <- read.csv("Fitabase_Data/dailyActivity_merged.csv") 7. calories <- read.csv("Fitabase_Data/dailyCalories_merged.csv") 8. sleep <- read.csv("Fitabase_Data/sleepDay_merged.csv") 9. weight <- read.csv("Fitabase_Data/weightLogInfo_merged.csv")

    Viewing the data

    While using the view function I'm able to skim through the datasets and make sure everything is imported correctly. I will also use this time to see if I need to clean the data in anyway or format the data differently. 10. View(activity) 11. View(calories) 12. View(sleep) 13. View(weight)

    Formatting the data

    After viewing the datasets I see that I will need to format the Dates and Times to matching formats on all the datasets. 14. sleep$SleepDay=as.POSIXct(sleep$SleepDay, format="%m/%d/%Y %I:%M:%S %p", tz=Sys.timezone()) 15. sleep$date <- format(sleep$SleepDay, format = "%m/%d/%y") 16. activity$ActivityDate=as.POSIXct(activity$ActivityDate, format="%m/%d/%Y", tz=Sys.timezone()) 17. activity$date <- format(activity$ActivityDate, format = "%m/%d/%y") 18. weight$Date=as.POSIXct(weight$Date, format="%m/%d/%Y %I:%M:%S %p", tz=Sys.timezone()) 19. weight$time <- format(weight$Date, format = "%H:%M:%S") 20. weight$date <- format(weight$Date, format = "%m/%d/%y") 21. calories$date <- format(calories$ActivityDay, format = "%m/%d/%y")

    Summarizing the data

    Here I will be using the summary function to gather information about minimum, medians, averages, and maximums for certain column in the datasets (ie; Total Steps, Calories, Active Minutes, Minutes Asleep, Sedentary Minutes) 22. activity %>% select(TotalSteps, TotalDistance, SedentaryMinutes, Calories) %>% summary() 23. activity %>% select(VeryActiveMinutes, FairlyActiveMinutes, LightlyActiveMinutes) %>% summary() 24. calories %>% select(Calories) %>% summary() 25. sleep %>% select(TotalSleepRecords, TotalMinutesAsleep, TotalTimeInBed) %>% summary() 26. weight %>% select(WeightKg, BMI) %>% summary()

    Discoveries I made from summarizing the data:

    • Most participants in this dataset are lightly active (on a scale of light, moderate, and high)
    • Average sleep time is 7 hours
    • Average steps per day is 7638
    • Average weight is 72kg, or 158lbs _ ### Visualizing the data Now it's time to visualize our data with some scatter plots. I chose this form of visualization because it easily shows correlation and trends. _ https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16489441%2Fe8609be4b7c42b45697ee0a77661ee5d%2Fstepsvcal.png?generation=1700709197910572&alt=media" alt="">
    • The first scatter plot shows a positive correlation between Total Steps and Calories, which shows that the more active we are, the more calories we burn
    • ggplot(data=activity, aes(x=TotalSteps, y=Calories)) + geom_point(color='purple') + geom_smooth() + labs(title="Total Steps vs. Calories") _

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16489441%2Fe7a12b855837b0c6b7a2a5b1736e0fe1%2Fminsleepvsedentarymin.png?generation=1700709515785307&alt=media" alt=""> - The second scatter plot showcas...

  15. n

    Data from: Generalizable EHR-R-REDCap pipeline for a national...

    • data.niaid.nih.gov
    • explore.openaire.eu
    • +2more
    zip
    Updated Jan 9, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sophia Shalhout; Farees Saqlain; Kayla Wright; Oladayo Akinyemi; David Miller (2022). Generalizable EHR-R-REDCap pipeline for a national multi-institutional rare tumor patient registry [Dataset]. http://doi.org/10.5061/dryad.rjdfn2zcm
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jan 9, 2022
    Dataset provided by
    Harvard Medical School
    Massachusetts General Hospital
    Authors
    Sophia Shalhout; Farees Saqlain; Kayla Wright; Oladayo Akinyemi; David Miller
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    Objective: To develop a clinical informatics pipeline designed to capture large-scale structured EHR data for a national patient registry.

    Materials and Methods: The EHR-R-REDCap pipeline is implemented using R-statistical software to remap and import structured EHR data into the REDCap-based multi-institutional Merkel Cell Carcinoma (MCC) Patient Registry using an adaptable data dictionary.

    Results: Clinical laboratory data were extracted from EPIC Clarity across several participating institutions. Labs were transformed, remapped and imported into the MCC registry using the EHR labs abstraction (eLAB) pipeline. Forty-nine clinical tests encompassing 482,450 results were imported into the registry for 1,109 enrolled MCC patients. Data-quality assessment revealed highly accurate, valid labs. Univariate modeling was performed for labs at baseline on overall survival (N=176) using this clinical informatics pipeline.

    Conclusion: We demonstrate feasibility of the facile eLAB workflow. EHR data is successfully transformed, and bulk-loaded/imported into a REDCap-based national registry to execute real-world data analysis and interoperability.

    Methods eLAB Development and Source Code (R statistical software):

    eLAB is written in R (version 4.0.3), and utilizes the following packages for processing: DescTools, REDCapR, reshape2, splitstackshape, readxl, survival, survminer, and tidyverse. Source code for eLAB can be downloaded directly (https://github.com/TheMillerLab/eLAB).

    eLAB reformats EHR data abstracted for an identified population of patients (e.g. medical record numbers (MRN)/name list) under an Institutional Review Board (IRB)-approved protocol. The MCCPR does not host MRNs/names and eLAB converts these to MCCPR assigned record identification numbers (record_id) before import for de-identification.

    Functions were written to remap EHR bulk lab data pulls/queries from several sources including Clarity/Crystal reports or institutional EDW including Research Patient Data Registry (RPDR) at MGB. The input, a csv/delimited file of labs for user-defined patients, may vary. Thus, users may need to adapt the initial data wrangling script based on the data input format. However, the downstream transformation, code-lab lookup tables, outcomes analysis, and LOINC remapping are standard for use with the provided REDCap Data Dictionary, DataDictionary_eLAB.csv. The available R-markdown ((https://github.com/TheMillerLab/eLAB) provides suggestions and instructions on where or when upfront script modifications may be necessary to accommodate input variability.

    The eLAB pipeline takes several inputs. For example, the input for use with the ‘ehr_format(dt)’ single-line command is non-tabular data assigned as R object ‘dt’ with 4 columns: 1) Patient Name (MRN), 2) Collection Date, 3) Collection Time, and 4) Lab Results wherein several lab panels are in one data frame cell. A mock dataset in this ‘untidy-format’ is provided for demonstration purposes (https://github.com/TheMillerLab/eLAB).

    Bulk lab data pulls often result in subtypes of the same lab. For example, potassium labs are reported as “Potassium,” “Potassium-External,” “Potassium(POC),” “Potassium,whole-bld,” “Potassium-Level-External,” “Potassium,venous,” and “Potassium-whole-bld/plasma.” eLAB utilizes a key-value lookup table with ~300 lab subtypes for remapping labs to the Data Dictionary (DD) code. eLAB reformats/accepts only those lab units pre-defined by the registry DD. The lab lookup table is provided for direct use or may be re-configured/updated to meet end-user specifications. eLAB is designed to remap, transform, and filter/adjust value units of semi-structured/structured bulk laboratory values data pulls from the EHR to align with the pre-defined code of the DD.

    Data Dictionary (DD)

    EHR clinical laboratory data is captured in REDCap using the ‘Labs’ repeating instrument (Supplemental Figures 1-2). The DD is provided for use by researchers at REDCap-participating institutions and is optimized to accommodate the same lab-type captured more than once on the same day for the same patient. The instrument captures 35 clinical lab types. The DD serves several major purposes in the eLAB pipeline. First, it defines every lab type of interest and associated lab unit of interest with a set field/variable name. It also restricts/defines the type of data allowed for entry for each data field, such as a string or numerics. The DD is uploaded into REDCap by every participating site/collaborator and ensures each site collects and codes the data the same way. Automation pipelines, such as eLAB, are designed to remap/clean and reformat data/units utilizing key-value look-up tables that filter and select only the labs/units of interest. eLAB ensures the data pulled from the EHR contains the correct unit and format pre-configured by the DD. The use of the same DD at every participating site ensures that the data field code, format, and relationships in the database are uniform across each site to allow for the simple aggregation of the multi-site data. For example, since every site in the MCCPR uses the same DD, aggregation is efficient and different site csv files are simply combined.

    Study Cohort

    This study was approved by the MGB IRB. Search of the EHR was performed to identify patients diagnosed with MCC between 1975-2021 (N=1,109) for inclusion in the MCCPR. Subjects diagnosed with primary cutaneous MCC between 2016-2019 (N= 176) were included in the test cohort for exploratory studies of lab result associations with overall survival (OS) using eLAB.

    Statistical Analysis

    OS is defined as the time from date of MCC diagnosis to date of death. Data was censored at the date of the last follow-up visit if no death event occurred. Univariable Cox proportional hazard modeling was performed among all lab predictors. Due to the hypothesis-generating nature of the work, p-values were exploratory and Bonferroni corrections were not applied.

  16. Examining Policy Impacts on Racial Disparities in Federal Sentencing Across...

    • icpsr.umich.edu
    ascii, delimited, r +3
    Updated Apr 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    McGilton, Mari (2024). Examining Policy Impacts on Racial Disparities in Federal Sentencing Across Stages and Groups and over Time, [United States], 1998-2021 [Dataset]. http://doi.org/10.3886/ICPSR38647.v1
    Explore at:
    spss, r, sas, delimited, ascii, stataAvailable download formats
    Dataset updated
    Apr 25, 2024
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    McGilton, Mari
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/38647/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/38647/terms

    Area covered
    United States
    Description

    In this secondary analysis, the research team used publicly available federal sentencing data from the United States Sentencing Commission (USSC) to measure racial disparities for multiple race groups and stages of sentencing across time (fiscal years 1999-2021). They sought to answer the following research questions: Do racial disparities vary across 3 stages of federal sentencing and over time? If so, how? During which years do the measured racial disparities have a statistically significant decrease? Which policies likely impacted these decreases the most? What are the commonalities between them? To answer the research questions, the research team measured racial disparities between matched cases across three stages of federal sentencing, represented by two elements each; identified at which points in time the disparities changed significantly using time series plots and structured break analyses; and used this information to systematically review federal policies to identify which might have contributed to significant decreases in racial disparities. This collection contains 1 analytic dataset (n = 1,281,732) containing 27 key variables for all fiscal years and the code/syntax used to complete the secondary analysis: 5 files to compile and clean the original data and produce matched datasets (3 R, 1 SAS, 1 Stata) 6 files to analyze sentences by race (all R) 4 files to analyze sentences by federal sentencing guideline (all R) 11 files to analyze sentences by circuit court (all R) Please refer to the Data Sources metadata field and accompanying documentation for details on obtaining the original data.

  17. g

    Jacob Kaplan's Concatenated Files: Uniform Crime Reporting (UCR) Program...

    • datasearch.gesis.org
    • openicpsr.org
    Updated Feb 19, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kaplan, Jacob (2020). Jacob Kaplan's Concatenated Files: Uniform Crime Reporting (UCR) Program Data: Property Stolen and Recovered (Supplement to Return A) 1960-2018 [Dataset]. http://doi.org/10.3886/E105403
    Explore at:
    Dataset updated
    Feb 19, 2020
    Dataset provided by
    da|ra (Registration agency for social science and economic data)
    Authors
    Kaplan, Jacob
    Description

    For any questions about this data please email me at jacob@crimedatatool.com. If you use this data, please cite it.Version 4 release notes:Adds data for 2018Version 3 release notes:Adds data in the following formats: Excel.Changes project name to avoid confusing this data for the ones done by NACJD.Version 2 release notes:Adds data for 2017.Adds a "number_of_months_reported" variable which says how many months of the year the agency reported data.Property Stolen and Recovered is a Uniform Crime Reporting (UCR) Program data set with information on the number of offenses (crimes included are murder, rape, robbery, burglary, theft/larceny, and motor vehicle theft), the value of the offense, and subcategories of the offense (e.g. for robbery it is broken down into subcategories including highway robbery, bank robbery, gas station robbery). The majority of the data relates to theft. Theft is divided into subcategories of theft such as shoplifting, theft of bicycle, theft from building, and purse snatching. For a number of items stolen (e.g. money, jewelry and previous metals, guns), the value of property stolen and and the value for property recovered is provided. This data set is also referred to as the Supplement to Return A (Offenses Known and Reported). All the data was received directly from the FBI as text or .DTA files. I created a setup file based on the documentation provided by the FBI and read the data into R using the package asciiSetupReader. All work to clean the data and save it in various file formats was also done in R. For the R code used to clean this data, see here: https://github.com/jacobkap/crime_data. The Word document file available for download is the guidebook the FBI provided with the raw data which I used to create the setup file to read in data.There may be inaccuracies in the data, particularly in the group of columns starting with "auto." To reduce (but certainly not eliminate) data errors, I replaced the following values with NA for the group of columns beginning with "offenses" or "auto" as they are common data entry error values (e.g. are larger than the agency's population, are much larger than other crimes or months in same agency): 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 20000, 30000, 40000, 50000, 60000, 70000, 80000, 90000, 100000, 99942. This cleaning was NOT done on the columns starting with "value."For every numeric column I replaced negative indicator values (e.g. "j" for -1) with the negative number they are supposed to be. These negative number indicators are not included in the FBI's codebook for this data but are present in the data. I used the values in the FBI's codebook for the Offenses Known and Clearances by Arrest data.To make it easier to merge with other data, I merged this data with the Law Enforcement Agency Identifiers Crosswalk (LEAIC) data. The data from the LEAIC add FIPS (state, county, and place) and agency type/subtype. If an agency has used a different FIPS code in the past, check to make sure the FIPS code is the same as in this data.

  18. Dataset: Screening Causal Assessment of Brook Trout Occurrence and Road...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Apr 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. EPA Office of Research and Development (ORD) (2025). Dataset: Screening Causal Assessment of Brook Trout Occurrence and Road Runoff 20250218 [Dataset]. https://catalog.data.gov/dataset/dataset-screening-causal-assessment-of-brook-trout-occurrence-and-road-runoff-20250218
    Explore at:
    Dataset updated
    Apr 25, 2025
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Description

    Pedigree of all data and processing included in the manuscript. Open zip file then access pedigree folder for file describing all other folders, links, and data dictionary Items: NOTES: Description of work and other worksheets. Pedigree: Summary source files used to create figures and tables. DataFiles: Data files used in the R code for creating the figures and tables. DataDictionary: Data file titles in all data files Data: Data file uploaded to Science Hub Output: Files generated from R scripts Plot: Plots generated from R scripts and other software R_Scripts: Clean R scripts used to analyze the data, generate figures and tables Result: Tables generated from R scripts

  19. 4

    Scripts for cleaning and analysis of data from SOFC experiment on...

    • data.4tu.nl
    zip
    Updated Aug 27, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Scripts for cleaning and analysis of data from SOFC experiment on inclination test-bench. [Dataset]. https://data.4tu.nl/datasets/ed0a0cff-7af9-4d3a-baf7-aab5efe39bd1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Aug 27, 2024
    Dataset provided by
    4TU.ResearchData
    Authors
    Berend van Veldhuizen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2023
    Dataset funded by
    European Commission
    Description

    This data set contains the scripts used for importing, trimming, cleaning, analysing, and plotting a large dataset of inclination experiments with an SOFC module. The measurement data is confidential, so it could not be published alongside the scripts. One row of dummy input data is published to illustrate the structure of the analysed data. The analysis is used for the journal paper "Experimental Evaluation of a Solid Oxide Fuel Cell System Exposed to Inclinations and Accelerations by Ship Motions".

    The scripts contain:

    - A script that reads the data, removes unusable data and transforms into analysable dataframes (Clean and trim.R)

    - Two files to make a wide variety of plots (Plotting.R and Specificplots.R)

    - A file data does a Gaussian Progress regression to estimate the degradation rate (Degradation estimation.R)

  20. d

    Alaska Geochemical Database Version 3.0 (AGDB3) including best value data...

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Alaska Geochemical Database Version 3.0 (AGDB3) including best value data compilations for rock, sediment, soil, mineral, and concentrate sample media [Dataset]. https://catalog.data.gov/dataset/alaska-geochemical-database-version-3-0-agdb3-including-best-value-data-compilations-for-r
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Alaska
    Description

    The Alaska Geochemical Database Version 3.0 (AGDB3) contains new geochemical data compilations in which each geologic material sample has one best value determination for each analyzed species, greatly improving speed and efficiency of use. Like the Alaska Geochemical Database Version 2.0 before it, the AGDB3 was created and designed to compile and integrate geochemical data from Alaska to facilitate geologic mapping, petrologic studies, mineral resource assessments, definition of geochemical baseline values and statistics, element concentrations and associations, environmental impact assessments, and studies in public health associated with geology. This relational database, created from databases and published datasets of the U.S. Geological Survey (USGS), Atomic Energy Commission National Uranium Resource Evaluation (NURE), Alaska Division of Geological & Geophysical Surveys (DGGS), U.S. Bureau of Mines, and U.S. Bureau of Land Management serves as a data archive in support of Alaskan geologic and geochemical projects and contains data tables in several different formats describing historical and new quantitative and qualitative geochemical analyses. The analytical results were determined by 112 laboratory and field analytical methods on 396,343 rock, sediment, soil, mineral, heavy-mineral concentrate, and oxalic acid leachate samples. Most samples were collected by personnel of these agencies and analyzed in agency laboratories or, under contracts, in commercial analytical laboratories. These data represent analyses of samples collected as part of various agency programs and projects from 1938 through 2017. In addition, mineralogical data from 18,138 nonmagnetic heavy-mineral concentrate samples are included in this database. The AGDB3 includes historical geochemical data archived in the USGS National Geochemical Database (NGDB) and NURE National Uranium Resource Evaluation-Hydrogeochemical and Stream Sediment Reconnaissance databases, and in the DGGS Geochemistry database. Retrievals from these databases were used to generate most of the AGDB data set. These data were checked for accuracy regarding sample location, sample media type, and analytical methods used. In other words, the data of the AGDB3 supersedes data in the AGDB and the AGDB2, but the background about the data in these two earlier versions are needed by users of the current AGDB3 to understand what has been done to amend, clean up, correct and format this data. Corrections were entered, resulting in a significantly improved Alaska geochemical dataset, the AGDB3. Data that were not previously in these databases because the data predate the earliest agency geochemical databases, or were once excluded for programmatic reasons, are included here in the AGDB3 and will be added to the NGDB and Alaska Geochemistry. The AGDB3 data provided here are the most accurate and complete to date and should be useful for a wide variety of geochemical studies. The AGDB3 data provided in the online version of the database may be updated or changed periodically.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Rong Luo (2023). Data Cleaning Sample [Dataset]. http://doi.org/10.5683/SP3/ZCN177

Data Cleaning Sample

Explore at:
154 scholarly articles cite this dataset (View in Google Scholar)
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Jul 13, 2023
Dataset provided by
Borealis
Authors
Rong Luo
License

CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically

Description

Sample data for exercises in Further Adventures in Data Cleaning.

Search
Clear search
Close search
Google apps
Main menu