Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset is designed specifically for beginners and intermediate learners to practice data cleaning techniques using Python and Pandas.
It includes 500 rows of simulated employee data with intentional errors such as:
Missing values in Age and Salary
Typos in email addresses (@gamil.com)
Inconsistent city name casing (e.g., lahore, Karachi)
Extra spaces in department names (e.g., " HR ")
✅ Skills You Can Practice:
Detecting and handling missing data
String cleaning and formatting
Removing duplicates
Validating email formats
Standardizing categorical data
You can use this dataset to build your own data cleaning notebook, or use it in interviews, assessments, and tutorials.
Facebook
TwitterThis resource contains a Python script used to clean and preprocess the alum dosage dataset from a small Oklahoma water treatment plant. The script handles missing values, removes outliers, merges historical water quality and weather data, and prepares the dataset for AI model training.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Alinaghi, N., Giannopoulos, I., Kattenbeck, M., & Raubal, M. (2025). Decoding wayfinding: analyzing wayfinding processes in the outdoor environment. International Journal of Geographical Information Science, 1–31. https://doi.org/10.1080/13658816.2025.2473599
Link to the paper: https://www.tandfonline.com/doi/full/10.1080/13658816.2025.2473599
The folder named “submission” contains the following:
ijgis.yml: This file lists all the Python libraries and dependencies required to run the code.ijgis.yml file to create a Python project and environment. Ensure you activate the environment before running the code.pythonProject folder contains several .py files and subfolders, each with specific functionality as described below..png file for each column of the raw gaze and IMU recordings, color-coded with logged events..csv files.overlapping_sliding_window_loop.py.plot_labels_comparison(df, save_path, x_label_freq=10, figsize=(15, 5)) in line 116 visualizes the data preparation results. As this visualization is not used in the paper, the line is commented out, but if you want to see visually what has been changed compared to the original data, you can comment out this line..csv files in the results folder.This part contains three main code blocks:
iii. One for the XGboost code with correct hyperparameter tuning:
Please read the instructions for each block carefully to ensure that the code works smoothly. Regardless of which block you use, you will get the classification results (in the form of scores) for unseen data. The way we empirically test the confidence threshold of
Note: Please read the instructions for each block carefully to ensure that the code works smoothly. Regardless of which block you use, you will get the classification results (in the form of scores) for unseen data. The way we empirically calculated the confidence threshold of the model (explained in the paper in Section 5.2. Part II: Decoding surveillance by sequence analysis) is given in this block in lines 361 to 380.
.csv file containing inferred labels.The data is licensed under CC-BY, the code is licensed under MIT.
Facebook
TwitterDescription: The NoCORA dataset represents a significant effort to compile and clean a comprehensive set of daily rainfall data for Northern Cameroon (North and Extreme North regions). This dataset, overing more than 1 million observations across 418 rainfall stations on a temporal range going from 1927 to 2022, is instrumental for researchers, meteorologists, and policymakers working in climate research, agricultural planning, and water resource management in the region. It integrates data from diverse sources, including Sodecoton rain funnels, the archive of Robert Morel (IRD), Centrale de Lagdo, the GHCN daily service, and the TAHMO network. The construction of NoCORA involved meticulous processes, including manual assembly of data, extensive data cleaning, and standardization of station names and coordinates, making it a hopefully robust and reliable resource for understanding climatic dynamics in Northern Cameroon. Data Sources: The dataset comprises eight primary rainfall data sources and a comprehensive coordinates dataset. The rainfall data sources include extensive historical and contemporary measurements, while the coordinates dataset was developed using reference data and an inference strategy for variant station names or missing coordinates. Dataset Preparation Methods: The preparation involved manual compilation, integration of machine-readable files, data cleaning with OpenRefine, and finalization using Python/Jupyter Notebook. This process should ensured the accuracy and consistency of the dataset. Discussion: NoCORA, with its extensive data compilation, presents an invaluable resource for climate-related studies in Northern Cameroon. However, users must navigate its complexities, including missing data interpretations, potential biases, and data inconsistencies. The dataset's comprehensive nature and historical span require careful handling and validation in research applications. Access to Dataset: The NoCORA dataset, while a comprehensive resource for climatological and meteorological research in Northern Cameroon, is subject to specific access conditions due to its compilation from various partner sources. The original data sources vary in their openness and accessibility, and not all partners have confirmed the open-access status of their data. As such, to ensure compliance with these varying conditions, access to the NoCORA dataset is granted on a request basis. Interested researchers and users are encouraged to contact us for permission to access the dataset. This process allows us to uphold the data sharing agreements with our partners while facilitating research and analysis within the scientific community. Authors Contributions:
Data treatment: Victor Hugo Nenwala, Carmel Foulna Tcheobe, Jérémy Lavarenne. Documentation: Jérémy Lavarenne. Funding: This project was funded by the DESIRA INNOVACC project. Changelog:
v1.0.2 : corrected interversion in column names in the coordinates dataset v1.0.1 : dataset specification file has been updated with complementary information regarding station locations v1.0.0 : initial submission
Facebook
TwitterCodeParrot 🦜 Dataset Cleaned
What is it?
A dataset of Python files from Github. This is the deduplicated version of the codeparrot.
Processing
The original dataset contains a lot of duplicated and noisy data. Therefore, the dataset was cleaned with the following steps:
Deduplication Remove exact matches
Filtering Average line length < 100 Maximum line length < 1000 Alpha numeric characters fraction > 0.25 Remove auto-generated files (keyword search)
For… See the full description on the dataset page: https://huggingface.co/datasets/codeparrot/codeparrot-clean.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
python scripts and functions needed to view and clean saccade data
Facebook
TwitterThis upload includes the following files related to the Python analysis:
- Raw data as a XLSX table (brushing_v2.xlsx), i.e. results from R Script #1 (see https://doi.org/10.5281/zenodo.3632517)
- Python script of the whole analysis (BrushingDirt_Analysis.py)
- Jupyter notebook files of the analysis run on epLsar as an example (NotebookBrushingDirt_4Level.inpyb) and of a summary of the whole analysis (NotebookBrushingDirt_Overview_4LevelPlots.ipynb), and associated HTML output files (*.html).
- Full samples of parameter values for each parameter (*.pkl)
- Energy plots of Hamiltonian Monte Carlo for each parameter, as PDF files (*_Energy.pdf)
- Contrast plots between each treatment (No_Is, Is_No, Is_Is) and the control (No_No) for each parameter (*_Contrasts.pdf)
- Trace plots for each parameter (*_Trace.pdf)
- Distribution of posteriors for each parameter (*_Posterior.pdf)
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
A collection of datasets and python scripts for extraction and analysis of isograms (and some palindromes and tautonyms) from corpus-based word-lists, specifically Google Ngram and the British National Corpus (BNC).Below follows a brief description, first, of the included datasets and, second, of the included scripts.1. DatasetsThe data from English Google Ngrams and the BNC is available in two formats: as a plain text CSV file and as a SQLite3 database.1.1 CSV formatThe CSV files for each dataset actually come in two parts: one labelled ".csv" and one ".totals". The ".csv" contains the actual extracted data, and the ".totals" file contains some basic summary statistics about the ".csv" dataset with the same name.The CSV files contain one row per data point, with the colums separated by a single tab stop. There are no labels at the top of the files. Each line has the following columns, in this order (the labels below are what I use in the database, which has an identical structure, see section below):
Label Data type Description
isogramy int The order of isogramy, e.g. "2" is a second order isogram
length int The length of the word in letters
word text The actual word/isogram in ASCII
source_pos text The Part of Speech tag from the original corpus
count int Token count (total number of occurences)
vol_count int Volume count (number of different sources which contain the word)
count_per_million int Token count per million words
vol_count_as_percent int Volume count as percentage of the total number of volumes
is_palindrome bool Whether the word is a palindrome (1) or not (0)
is_tautonym bool Whether the word is a tautonym (1) or not (0)
The ".totals" files have a slightly different format, with one row per data point, where the first column is the label and the second column is the associated value. The ".totals" files contain the following data:
Label
Data type
Description
!total_1grams
int
The total number of words in the corpus
!total_volumes
int
The total number of volumes (individual sources) in the corpus
!total_isograms
int
The total number of isograms found in the corpus (before compacting)
!total_palindromes
int
How many of the isograms found are palindromes
!total_tautonyms
int
How many of the isograms found are tautonyms
The CSV files are mainly useful for further automated data processing. For working with the data set directly (e.g. to do statistics or cross-check entries), I would recommend using the database format described below.1.2 SQLite database formatOn the other hand, the SQLite database combines the data from all four of the plain text files, and adds various useful combinations of the two datasets, namely:• Compacted versions of each dataset, where identical headwords are combined into a single entry.• A combined compacted dataset, combining and compacting the data from both Ngrams and the BNC.• An intersected dataset, which contains only those words which are found in both the Ngrams and the BNC dataset.The intersected dataset is by far the least noisy, but is missing some real isograms, too.The columns/layout of each of the tables in the database is identical to that described for the CSV/.totals files above.To get an idea of the various ways the database can be queried for various bits of data see the R script described below, which computes statistics based on the SQLite database.2. ScriptsThere are three scripts: one for tiding Ngram and BNC word lists and extracting isograms, one to create a neat SQLite database from the output, and one to compute some basic statistics from the data. The first script can be run using Python 3, the second script can be run using SQLite 3 from the command line, and the third script can be run in R/RStudio (R version 3).2.1 Source dataThe scripts were written to work with word lists from Google Ngram and the BNC, which can be obtained from http://storage.googleapis.com/books/ngrams/books/datasetsv2.html and [https://www.kilgarriff.co.uk/bnc-readme.html], (download all.al.gz).For Ngram the script expects the path to the directory containing the various files, for BNC the direct path to the *.gz file.2.2 Data preparationBefore processing proper, the word lists need to be tidied to exclude superfluous material and some of the most obvious noise. This will also bring them into a uniform format.Tidying and reformatting can be done by running one of the following commands:python isograms.py --ngrams --indir=INDIR --outfile=OUTFILEpython isograms.py --bnc --indir=INFILE --outfile=OUTFILEReplace INDIR/INFILE with the input directory or filename and OUTFILE with the filename for the tidied and reformatted output.2.3 Isogram ExtractionAfter preparing the data as above, isograms can be extracted from by running the following command on the reformatted and tidied files:python isograms.py --batch --infile=INFILE --outfile=OUTFILEHere INFILE should refer the the output from the previosu data cleaning process. Please note that the script will actually write two output files, one named OUTFILE with a word list of all the isograms and their associated frequency data, and one named "OUTFILE.totals" with very basic summary statistics.2.4 Creating a SQLite3 databaseThe output data from the above step can be easily collated into a SQLite3 database which allows for easy querying of the data directly for specific properties. The database can be created by following these steps:1. Make sure the files with the Ngrams and BNC data are named “ngrams-isograms.csv” and “bnc-isograms.csv” respectively. (The script assumes you have both of them, if you only want to load one, just create an empty file for the other one).2. Copy the “create-database.sql” script into the same directory as the two data files.3. On the command line, go to the directory where the files and the SQL script are. 4. Type: sqlite3 isograms.db 5. This will create a database called “isograms.db”.See the section 1 for a basic descript of the output data and how to work with the database.2.5 Statistical processingThe repository includes an R script (R version 3) named “statistics.r” that computes a number of statistics about the distribution of isograms by length, frequency, contextual diversity, etc. This can be used as a starting point for running your own stats. It uses RSQLite to access the SQLite database version of the data described above.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This synthetic dataset is designed specifically for practicing data visualization and exploratory data analysis (EDA) using popular Python libraries like Seaborn, Matplotlib, and Pandas.
Unlike most public datasets, this one includes a diverse mix of column types:
📅 Date columns (for time series and trend plots) 🔢 Numerical columns (for histograms, boxplots, scatter plots) 🏷️ Categorical columns (for bar charts, group analysis)
Whether you are a beginner learning how to visualize data or an intermediate user testing new charting techniques, this dataset offers a versatile playground.
Feel free to:
Create EDA notebooks Practice plotting techniques Experiment with filtering, grouping, and aggregations 🛠️ No missing values, no data cleaning needed — just download and start exploring!
Hope you find this helpful. Looking forward to hearing from you all.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundThe Department of Rehabilitation Medicine is key to improving patients’ quality of life. Driven by chronic diseases and an aging population, there is a need to enhance the efficiency and resource allocation of outpatient facilities. This study aims to analyze the treatment preferences of outpatient rehabilitation patients by using data and a grading tool to establish predictive models. The goal is to improve patient visit efficiency and optimize resource allocation through these predictive models.MethodsData were collected from 38 Chinese institutions, including 4,244 patients visiting outpatient rehabilitation clinics. Data processing was conducted using Python software. The pandas library was used for data cleaning and preprocessing, involving 68 categorical and 12 continuous variables. The steps included handling missing values, data normalization, and encoding conversion. The data were divided into 80% training and 20% test sets using the Scikit-learn library to ensure model independence and prevent overfitting. Performance comparisons among XGBoost, random forest, and logistic regression were conducted using metrics, including accuracy and receiver operating characteristic (ROC) curves. The imbalanced learning library’s SMOTE technique was used to address the sample imbalance during model training. The model was optimized using a confusion matrix and feature importance analysis, and partial dependence plots (PDP) were used to analyze the key influencing factors.ResultsXGBoost achieved the highest overall accuracy of 80.21% with high precision and recall in Category 1. random forest showed a similar overall accuracy. Logistic Regression had a significantly lower accuracy, indicating difficulties with nonlinear data. The key influencing factors identified include distance to medical institutions, arrival time, length of hospital stay, and specific diseases, such as cardiovascular, pulmonary, oncological, and orthopedic conditions. The tiered diagnosis and treatment tool effectively helped doctors assess patients’ conditions and recommend suitable medical institutions based on rehabilitation grading.ConclusionThis study confirmed that ensemble learning methods, particularly XGBoost, outperform single models in classification tasks involving complex datasets. Addressing class imbalance and enhancing feature engineering can further improve model performance. Understanding patient preferences and the factors influencing medical institution selection can guide healthcare policies to optimize resource allocation, improve service quality, and enhance patient satisfaction. Tiered diagnosis and treatment tools play a crucial role in helping doctors evaluate patient conditions and make informed recommendations for appropriate medical care.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This folder contains the full set of code and data for the CompuCrawl database. The database contains the archived websites of publicly traded North American firms listed in the Compustat database between 1996 and 2020\u2014representing 11,277 firms with 86,303 firm/year observations and 1,617,675 webpages in the final cleaned and selected set.The files are ordered by moment of use in the work flow. For example, the first file in the list is the input file for code files 01 and 02, which create and update the two tracking files "scrapedURLs.csv" and "URLs_1_deeper.csv" and which write HTML files to its folder. "HTML.zip" is the resultant folder, converted to .zip for ease of sharing. Code file 03 then reads this .zip file and is therefore below it in the ordering.The full set of files, in order of use, is as follows:Compustat_2021.xlsx: The input file containing the URLs to be scraped and their date range.01 Collect frontpages.py: Python script scraping the front pages of the list of URLs and generating a list of URLs one page deeper in the domains.URLs_1_deeper.csv: List of URLs one page deeper on the main domains.02 Collect further pages.py: Python script scraping the list of URLs one page deeper in the domains.scrapedURLs.csv: Tracking file containing all URLs that were accessed and their scraping status.HTML.zip: Archived version of the set of individual HTML files.03 Convert HTML to plaintext.py: Python script converting the individual HTML pages to plaintext.TXT_uncleaned.zip: Archived version of the converted yet uncleaned plaintext files.input_categorization_allpages.csv: Input file for classification of pages using GPT according to their HTML title and URL.04 GPT application.py: Python script using OpenAI\u2019s API to classify selected pages according to their HTML title and URL.categorization_applied.csv: Output file containing classification of selected pages.exclusion_list.xlsx: File containing three sheets: 'gvkeys' containing the GVKEYs of duplicate observations (that need to be excluded), 'pages' containing page IDs for pages that should be removed, and 'sentences' containing (sub-)sentences to be removed.05 Clean and select.py: Python script applying data selection and cleaning (including selection based on page category), with setting and decisions described at the top of the script. This script also combined individual pages into one combined observation per GVKEY/year.metadata.csv: Metadata containing information on all processed HTML pages, including those not selected.TXT_cleaned.zip: Archived version of the selected and cleaned plaintext page files. This file serves as input for the word embeddings application.TXT_combined.zip: Archived version of the combined plaintext files at the GVKEY/year level. This file serves as input for the data description using topic modeling.06 Topic model.R: R script that loads up the combined text data from the folder stored in "TXT_combined.zip", applies further cleaning, and estimates a 125-topic model.TM_125.RData: RData file containing the results of the 125-topic model.loadings125.csv: CSV file containing the loadings for all 125 topics for all GVKEY/year observations that were included in the topic model.125_topprob.xlsx: Overview of top-loading terms for the 125 topic model.07 Word2Vec train and align.py: Python script that loads the plaintext files in the "TXT_cleaned.zip" archive to train a series of Word2Vec models and subsequently align them in order to compare word embeddings across time periods.Word2Vec_models.zip: Archived version of the saved Word2Vec models, both unaligned and aligned.08 Word2Vec work with aligned models.py: Python script which loads the trained Word2Vec models to trace the development of the embeddings for the terms \u201csustainability\u201d and \u201cprofitability\u201d over time.99 Scrape further levels down.py: Python script that can be used to generate a list of unscraped URLs from the pages that themselves were one level deeper than the front page.URLs_2_deeper.csv: CSV file containing unscraped URLs from the pages that themselves were one level deeper than the front page.For those only interested in downloading the final database of texts, the files "HTML.zip", "TXT_uncleaned.zip", "TXT_cleaned.zip", and "TXT_combined.zip" contain the full set of HTML pages, the processed but uncleaned texts, the selected and cleaned texts, and combined and cleaned texts at the GVKEY/year level, respectively.The following webpage contains answers to frequently asked questions: https://haans-mertens.github.io/faq/. More information on the database and the underlying project can be found here: https://haans-mertens.github.io/ and the following article: \u201cThe Internet Never Forgets: A Four-Step Scraping Tutorial, Codebase, and Database for Longitudinal Organizational Website Data\u201d, by Richard F.J. Haans and Marc J. Mertens in Organizational Research Methods. The full paper can be accessed here.
Facebook
TwitterData set consisting of data joined for analyzing the SBIR/STTR program. Data consists of individual awards and agency-level observations. The R and python code required for pulling, cleaning, and creating useful data sets has been included. Allard_Get and Clean Data.R This file provides the code for getting, cleaning, and joining the numerous data sets that this project combined. This code is written in the R language and can be used in any R environment running R 3.5.1 or higher. If the other files in this Dataverse are downloaded to the working directory, then this Rcode will be able to replicate the original study without needing the user to update any file paths. Allard SBIR STTR WebScraper.py This is the code I deployed to multiple Amazon EC2 instances to scrape data o each individual award in my data set, including the contact info and DUNS data. Allard_Analysis_APPAM SBIR project Forthcoming Allard_Spatial Analysis Forthcoming Awards_SBIR_df.Rdata This unique data set consists of 89,330 observations spanning the years 1983 - 2018 and accounting for all eleven SBIR/STTR agencies. This data set consists of data collected from the Small Business Administration's Awards API and also unique data collected through web scraping by the author. Budget_SBIR_df.Rdata 246 observations for 20 agencies across 25 years of their budget-performance in the SBIR/STTR program. Data was collected from the Small Business Administration using the Annual Reports Dashboard, the Awards API, and an author-designed web crawler of the websites of awards. Solicit_SBIR-df.Rdata This data consists of observations of solicitations published by agencies for the SBIR program. This data was collected from the SBA Solicitations API. Primary Sources Small Business Administration. “Annual Reports Dashboard,” 2018. https://www.sbir.gov/awards/annual-reports. Small Business Administration. “SBIR Awards Data,” 2018. https://www.sbir.gov/api. Small Business Administration. “SBIR Solicit Data,” 2018. https://www.sbir.gov/api.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Part of the dissertation Pitch of Voiced Speech in the Short-Time Fourier Transform: Algorithms, Ground Truths, and Evaluation Methods.© 2020, Bastian Bechtold. All rights reserved. Estimating the fundamental frequency of speech remains an active area of research, with varied applications in speech recognition, speaker identification, and speech compression. A vast number of algorithms for estimatimating this quantity have been proposed over the years, and a number of speech and noise corpora have been developed for evaluating their performance. The present dataset contains estimated fundamental frequency tracks of 25 algorithms, six speech corpora, two noise corpora, at nine signal-to-noise ratios between -20 and 20 dB SNR, as well as an additional evaluation of synthetic harmonic tone complexes in white noise.The dataset also contains pre-calculated performance measures both novel and traditional, in reference to each speech corpus’ ground truth, the algorithms’ own clean-speech estimate, and our own consensus truth. It can thus serve as the basis for a comparison study, or to replicate existing studies from a larger dataset, or as a reference for developing new fundamental frequency estimation algorithms. All source code and data is available to download, and entirely reproducible, albeit requiring about one year of processor-time.Included Code and Data
ground truth data.zip is a JBOF dataset of fundamental frequency estimates and ground truths of all speech files in the following corpora:
CMU-ARCTIC (consensus truth) [1]FDA (corpus truth and consensus truth) [2]KEELE (corpus truth and consensus truth) [3]MOCHA-TIMIT (consensus truth) [4]PTDB-TUG (corpus truth and consensus truth) [5]TIMIT (consensus truth) [6]
noisy speech data.zip is a JBOF datasets of fundamental frequency estimates of speech files mixed with noise from the following corpora:NOISEX [7]QUT-NOISE [8]
synthetic speech data.zip is a JBOF dataset of fundamental frequency estimates of synthetic harmonic tone complexes in white noise.noisy_speech.pkl and synthetic_speech.pkl are pickled Pandas dataframes of performance metrics derived from the above data for the following list of fundamental frequency estimation algorithms:AUTOC [9]AMDF [10]BANA [11]CEP [12]CREPE [13]DIO [14]DNN [15]KALDI [16]MAPSMBSC [17]NLS [18]PEFAC [19]PRAAT [20]RAPT [21]SACC [22]SAFE [23]SHR [24]SIFT [25]SRH [26]STRAIGHT [27]SWIPE [28]YAAPT [29]YIN [30]
noisy speech evaluation.py and synthetic speech evaluation.py are Python programs to calculate the above Pandas dataframes from the above JBOF datasets. They calculate the following performance measures:Gross Pitch Error (GPE), the percentage of pitches where the estimated pitch deviates from the true pitch by more than 20%.Fine Pitch Error (FPE), the mean error of grossly correct estimates.High/Low Octave Pitch Error (OPE), the percentage pitches that are GPEs and happens to be at an integer multiple of the true pitch.Gross Remaining Error (GRE), the percentage of pitches that are GPEs but not OPEs.Fine Remaining Bias (FRB), the median error of GREs.True Positive Rate (TPR), the percentage of true positive voicing estimates.False Positive Rate (FPR), the percentage of false positive voicing estimates.False Negative Rate (FNR), the percentage of false negative voicing estimates.F₁, the harmonic mean of precision and recall of the voicing decision.
Pipfile is a pipenv-compatible pipfile for installing all prerequisites necessary for running the above Python programs.
The Python programs take about an hour to compute on a fast 2019 computer, and require at least 32 Gb of memory.References:
John Kominek and Alan W Black. CMU ARCTIC database for speech synthesis, 2003.Paul C Bagshaw, Steven Hiller, and Mervyn A Jack. Enhanced Pitch Tracking and the Processing of F0 Contours for Computer Aided Intonation Teaching. In EUROSPEECH, 1993.F Plante, Georg F Meyer, and William A Ainsworth. A Pitch Extraction Reference Database. In Fourth European Conference on Speech Communication and Technology, pages 837–840, Madrid, Spain, 1995.Alan Wrench. MOCHA MultiCHannel Articulatory database: English, November 1999.Gregor Pirker, Michael Wohlmayr, Stefan Petrik, and Franz Pernkopf. A Pitch Tracking Corpus with Evaluation on Multipitch Tracking Scenario. page 4, 2011.John S. Garofolo, Lori F. Lamel, William M. Fisher, Jonathan G. Fiscus, David S. Pallett, Nancy L. Dahlgren, and Victor Zue. TIMIT Acoustic-Phonetic Continuous Speech Corpus, 1993.Andrew Varga and Herman J.M. Steeneken. Assessment for automatic speech recognition: II. NOISEX-92: A database and an experiment to study the effect of additive noise on speech recog- nition systems. Speech Communication, 12(3):247–251, July 1993.David B. Dean, Sridha Sridharan, Robert J. Vogt, and Michael W. Mason. The QUT-NOISE-TIMIT corpus for the evaluation of voice activity detection algorithms. Proceedings of Interspeech 2010, 2010.Man Mohan Sondhi. New methods of pitch extraction. Audio and Electroacoustics, IEEE Transactions on, 16(2):262—266, 1968.Myron J. Ross, Harry L. Shaffer, Asaf Cohen, Richard Freudberg, and Harold J. Manley. Average magnitude difference function pitch extractor. Acoustics, Speech and Signal Processing, IEEE Transactions on, 22(5):353—362, 1974.Na Yang, He Ba, Weiyang Cai, Ilker Demirkol, and Wendi Heinzelman. BaNa: A Noise Resilient Fundamental Frequency Detection Algorithm for Speech and Music. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 22(12):1833–1848, December 2014.Michael Noll. Cepstrum Pitch Determination. The Journal of the Acoustical Society of America, 41(2):293–309, 1967.Jong Wook Kim, Justin Salamon, Peter Li, and Juan Pablo Bello. CREPE: A Convolutional Representation for Pitch Estimation. arXiv:1802.06182 [cs, eess, stat], February 2018. arXiv: 1802.06182.Masanori Morise, Fumiya Yokomori, and Kenji Ozawa. WORLD: A Vocoder-Based High-Quality Speech Synthesis System for Real-Time Applications. IEICE Transactions on Information and Systems, E99.D(7):1877–1884, 2016.Kun Han and DeLiang Wang. Neural Network Based Pitch Tracking in Very Noisy Speech. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 22(12):2158–2168, Decem- ber 2014.Pegah Ghahremani, Bagher BabaAli, Daniel Povey, Korbinian Riedhammer, Jan Trmal, and Sanjeev Khudanpur. A pitch extraction algorithm tuned for automatic speech recognition. In Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on, pages 2494–2498. IEEE, 2014.Lee Ngee Tan and Abeer Alwan. Multi-band summary correlogram-based pitch detection for noisy speech. Speech Communication, 55(7-8):841–856, September 2013.Jesper Kjær Nielsen, Tobias Lindstrøm Jensen, Jesper Rindom Jensen, Mads Græsbøll Christensen, and Søren Holdt Jensen. Fast fundamental frequency estimation: Making a statistically efficient estimator computationally efficient. Signal Processing, 135:188–197, June 2017.Sira Gonzalez and Mike Brookes. PEFAC - A Pitch Estimation Algorithm Robust to High Levels of Noise. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 22(2):518—530, February 2014.Paul Boersma. Accurate short-term analysis of the fundamental frequency and the harmonics-to-noise ratio of a sampled sound. In Proceedings of the institute of phonetic sciences, volume 17, page 97—110. Amsterdam, 1993.David Talkin. A robust algorithm for pitch tracking (RAPT). Speech coding and synthesis, 495:518, 1995.Byung Suk Lee and Daniel PW Ellis. Noise robust pitch tracking by subband autocorrelation classification. In Interspeech, pages 707–710, 2012.Wei Chu and Abeer Alwan. SAFE: a statistical algorithm for F0 estimation for both clean and noisy speech. In INTERSPEECH, pages 2590–2593, 2010.Xuejing Sun. Pitch determination and voice quality analysis using subharmonic-to-harmonic ratio. In Acoustics, Speech, and Signal Processing (ICASSP), 2002 IEEE International Conference on, volume 1, page I—333. IEEE, 2002.Markel. The SIFT algorithm for fundamental frequency estimation. IEEE Transactions on Audio and Electroacoustics, 20(5):367—377, December 1972.Thomas Drugman and Abeer Alwan. Joint Robust Voicing Detection and Pitch Estimation Based on Residual Harmonics. In Interspeech, page 1973—1976, 2011.Hideki Kawahara, Masanori Morise, Toru Takahashi, Ryuichi Nisimura, Toshio Irino, and Hideki Banno. TANDEM-STRAIGHT: A temporally stable power spectral representation for periodic signals and applications to interference-free spectrum, F0, and aperiodicity estimation. In Acous- tics, Speech and Signal Processing, 2008. ICASSP 2008. IEEE International Conference on, pages 3933–3936. IEEE, 2008.Arturo Camacho. SWIPE: A sawtooth waveform inspired pitch estimator for speech and music. PhD thesis, University of Florida, 2007.Kavita Kasi and Stephen A. Zahorian. Yet Another Algorithm for Pitch Tracking. In IEEE International Conference on Acoustics Speech and Signal Processing, pages I–361–I–364, Orlando, FL, USA, May 2002. IEEE.Alain de Cheveigné and Hideki Kawahara. YIN, a fundamental frequency estimator for speech and music. The Journal of the Acoustical Society of America, 111(4):1917, 2002.
Facebook
TwitterThree PurpleAir sensors were collocated with a T640x reference monitor at the Durango Complex Air Quality Monitoring Station in Phoenix, Arizona in May 2019. Both instruments measured PM2.5 and PM10 and this collocation exercise was done to better understand how the sensor data compared to the reference data and what data cleaning and correcting would need to be applied to the sensor data to make these two dataset more comparable. These data files contain the raw data from this experiment at 1 minute and 20 second time resolution for the sensor data and 1 hour time resolution for the reference monitor data. Data provided courtesy of USEPA and our project partners Maricopa County Air Quality Department. This dataset is associated with the following publication: Kumar, M., S. Frederick, K. Barkjohn, and A. Clements. Sensortoolkit—A Python Library for Standardizing the Ingestion, Analysis, and Reporting of Air Sensor Data for Performance Evaluation. Sensors. MDPI, Basel, SWITZERLAND, 25(18): 5645, (2025).
Facebook
TwitterThis dataset is a cleaned and preprocessed version of the original Netflix Movies and TV Shows dataset available on Kaggle. All cleaning was done using Microsoft Excel — no programming involved.
🎯 What’s Included: - Cleaned Excel file (standardized columns, proper date format, removed duplicates/missing values) - A separate "formulas_used.txt" file listing all Excel formulas used during cleaning (e.g., TRIM, CLEAN, DATE, SUBSTITUTE, TEXTJOIN, etc.) - Columns like 'date_added' have been properly formatted into DMY structure - Multi-valued columns like 'listed_in' are split for better analysis - Null values replaced with “Unknown” for clarity - Duration field broken into numeric + unit components
🔍 Dataset Purpose: Ideal for beginners and analysts who want to: - Practice data cleaning in Excel - Explore Netflix content trends - Analyze content by type, country, genre, or date added
📁 Original Dataset Credit: The base version was originally published by Shivam Bansal on Kaggle: https://www.kaggle.com/shivamb/netflix-shows
📌 Bonus: You can find a step-by-step cleaning guide and the same dataset on GitHub as well — along with screenshots and formulas documentation.
Facebook
TwitterAttribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically
This dataset is the supporting data for the paper Underneath Social Media Texts: Sentiment Responses to Public Health Emergency During 2022 COVID-19 Pandemic in China.This dataset is mainly used to analyze the data of weibo text and perform sentiment analysis. The data were obtained from Weibo, and the texts were crawled using a Python tool: Weibo crawler tool. The data contains time, text content, user address, etc. Subsequently, Cleaned weibo data was obtained after cleaning operation in Excel. According to the improved Chinese sentiment lexicon, the sentiment analysis tool was used to analyze the text for sentiment analysis, to derive the main sentiment and sentiment scores, and the result file is Sentiment analysis results. Finally, ADF and KPSS analysis tools were used to analyze the stability of sentiment scores in different cities.The weibo text and sentiment analysis results data in the dataset are in .xlsx format, and the rest of the tools are Python code.Crawled data is limited by time, specific search terms and other restrictions, different operation time and terms may lead to differences in the data.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset and documentation contains detailed information of the iTEM Open Database, a harmonized transport data set of historical values, 1970 - present. It aims to create transparency through two key features:
The iTEM Open Database is comprised of individual datasets collected from public sources. Each dataset is downloaded, cleaned, and harmonised to the common region and technology definitions defined by the iTEM consortium https://transportenergy.org. For each dataset, we describe the name of the dataset, the web link to the original source, the web link to the cleaning script (in python), variables, and explain the data cleaning steps (which explains the data cleaning script in plain English).
Shall you find any problems with the dataset, please report the issues here https://github.com/transportenergy/database/issues.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This is the supplementary material accompanying the manuscript "Daily life in the Open Biologist’s second job, as a Data Curator", published in Wellcome Open Research.
It contains:
- Python_scripts.zip: Python scripts used for data cleaning and organization:
-add_headers.py: adds specified headers automatically to a list of csv files, creating new output files containing a "_with_headers" suffix.
-count_NaN_values.py: counts the total number of rows containing null values in a csv file and prints the location of null values in the (row, column) format.
-remove_rowsNaN_file.py: removes rows containing null values in a single csv file and saves the modified file with a "_dropNaN" suffix.
-remove_rowsNaN_list.py: removes rows containing null values in list of csv files and saves the modified files with a "_dropNaN" suffix.
- README_template.txt: a template for a README file to be used to describe and accompany a dataset.
- template_for_source_data_information.xlsx: a spreadsheet to help manuscript authors to keep track of data used for each figure (e.g., information about data location and links to dataset description).
- Supplementary_Figure_1.tif: Example of a dataset shared by us on Zenodo. The elements that make the dataset FAIR are indicated by the respective letters. Findability (F) is achieved by the dataset unique and persistent identifier (DOI), as well as by the related identifiers for the publication and dataset on GitHub. Additionally, the dataset is described with rich metadata, (e.g., keywords). Accessibility (A) is achieved by the ease of visualization and downloading using a standardised communications protocol (https). Also, the metadata are publicly accessible and licensed under the public domain. Interoperability (I) is achieved by the open formats used (CSV; R), and metadata are harvestable using the Open Archives Initiative Protocol for Metadata Harvesting (OAI-PMH), a low-barrier mechanism for repository interoperability. Reusability (R) is achieved by the complete description of the data with metadata in README files and links to the related publication (which contains more detailed information, as well as links to protocols on protocols.io). The dataset has a clear and accessible data usage license (CC-BY 4.0).
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Data schema Tofu - Tofu is a Python tool for generating synthetic UK Biobank data. ukbschemas - Use R to generate a database containing the UK Biobank data schemas. Biobank Read - Python-based tools for the extraction, cleaning and pre-processing. FUNPACK - Python library for pre-processing of UK BioBank data. phemap - Python functions to map between ICD-10 terms and PheCodes. ukb_download_and_prep_template - Template for common processing operations. ukbiobank-loaders - a collection of Python… See the full description on the dataset page: https://huggingface.co/datasets/introvoyz041/ukbiobank-resources.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically