62 datasets found
  1. Data Cleaning, Translation & Split of the Dataset for the Automatic...

    • zenodo.org
    • data.niaid.nih.gov
    bin, csv +1
    Updated Apr 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Juliane Köhler; Juliane Köhler (2025). Data Cleaning, Translation & Split of the Dataset for the Automatic Classification of Documents for the Classification System for the Berliner Handreichungen zur Bibliotheks- und Informationswissenschaft [Dataset]. http://doi.org/10.5281/zenodo.6957842
    Explore at:
    text/x-python, csv, binAvailable download formats
    Dataset updated
    Apr 24, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Juliane Köhler; Juliane Köhler
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description
    • Cleaned_Dataset.csv – The combined CSV files of all scraped documents from DABI, e-LiS, o-bib and Springer.
    • Data_Cleaning.ipynb – The Jupyter Notebook with python code for the analysis and cleaning of the original dataset.
    • ger_train.csv – The German training set as CSV file.
    • ger_validation.csv – The German validation set as CSV file.
    • en_test.csv – The English test set as CSV file.
    • en_train.csv – The English training set as CSV file.
    • en_validation.csv – The English validation set as CSV file.
    • splitting.py – The python code for splitting a dataset into train, test and validation set.
    • DataSetTrans_de.csv – The final German dataset as a CSV file.
    • DataSetTrans_en.csv – The final English dataset as a CSV file.
    • translation.py – The python code for translating the cleaned dataset.
  2. h

    codeparrot-clean

    • huggingface.co
    Updated Dec 7, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CodeParrot (2021). codeparrot-clean [Dataset]. https://huggingface.co/datasets/codeparrot/codeparrot-clean
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 7, 2021
    Dataset provided by
    Good Engineering, Inc
    Authors
    CodeParrot
    Description

    CodeParrot 🦜 Dataset Cleaned

      What is it?
    

    A dataset of Python files from Github. This is the deduplicated version of the codeparrot.

      Processing
    

    The original dataset contains a lot of duplicated and noisy data. Therefore, the dataset was cleaned with the following steps:

    Deduplication Remove exact matches

    Filtering Average line length < 100 Maximum line length < 1000 Alpha numeric characters fraction > 0.25 Remove auto-generated files (keyword search)

    For… See the full description on the dataset page: https://huggingface.co/datasets/codeparrot/codeparrot-clean.

  3. t

    Data from: Decoding Wayfinding: Analyzing Wayfinding Processes in the...

    • researchdata.tuwien.at
    html, pdf, zip
    Updated Mar 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Negar Alinaghi; Ioannis Giannopoulos; Ioannis Giannopoulos; Negar Alinaghi; Negar Alinaghi; Negar Alinaghi (2025). Decoding Wayfinding: Analyzing Wayfinding Processes in the Outdoor Environment [Dataset]. http://doi.org/10.48436/m2ha4-t1v92
    Explore at:
    html, zip, pdfAvailable download formats
    Dataset updated
    Mar 19, 2025
    Dataset provided by
    TU Wien
    Authors
    Negar Alinaghi; Ioannis Giannopoulos; Ioannis Giannopoulos; Negar Alinaghi; Negar Alinaghi; Negar Alinaghi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    How To Cite?

    Alinaghi, N., Giannopoulos, I., Kattenbeck, M., & Raubal, M. (2025). Decoding wayfinding: analyzing wayfinding processes in the outdoor environment. International Journal of Geographical Information Science, 1–31. https://doi.org/10.1080/13658816.2025.2473599

    Link to the paper: https://www.tandfonline.com/doi/full/10.1080/13658816.2025.2473599

    Folder Structure

    The folder named “submission” contains the following:

    1. “pythonProject”: This folder contains all the Python files and subfolders needed for analysis.
    2. ijgis.yml: This file lists all the Python libraries and dependencies required to run the code.

    Setting Up the Environment

    1. Use the ijgis.yml file to create a Python project and environment. Ensure you activate the environment before running the code.
    2. The pythonProject folder contains several .py files and subfolders, each with specific functionality as described below.

    Subfolders

    1. Data_4_IJGIS

    • This folder contains the data used for the results reported in the paper.
    • Note: The data analysis that we explain in this paper already begins with the synchronization and cleaning of the recorded raw data. The published data is already synchronized and cleaned. Both the cleaned files and the merged files with features extracted for them are given in this directory. If you want to perform the segmentation and feature extraction yourself, you should run the respective Python files yourself. If not, you can use the “merged_…csv” files as input for the training.

    2. results_[DateTime] (e.g., results_20240906_15_00_13)

    • This folder will be generated when you run the code and will store the output of each step.
    • The current folder contains results created during code debugging for the submission.
    • When you run the code, a new folder with fresh results will be generated.

    Python Files

    1. helper_functions.py

    • Contains reusable functions used throughout the analysis.
    • Each function includes a description of its purpose and the input parameters required.

    2. create_sanity_plots.py

    • Generates scatter plots like those in Figure 3 of the paper.
    • Although the code has been run for all 309 trials, it can be used to check the sample data provided.
    • Output: A .png file for each column of the raw gaze and IMU recordings, color-coded with logged events.
    • Usage: Run this file to create visualizations similar to Figure 3.

    3. overlapping_sliding_window_loop.py

    • Implements overlapping sliding window segmentation and generates plots like those in Figure 4.
    • Output:
      • Two new subfolders, “Gaze” and “IMU”, will be added to the Data_4_IJGIS folder.
      • Segmented files (default: 2–10 seconds with a 1-second step size) will be saved as .csv files.
      • A visualization of the segments, similar to Figure 4, will be automatically generated.

    4. gaze_features.py & imu_features.py (Note: there has been an update to the IDT function implementation in the gaze_features.py on 19.03.2025.)

    • These files compute features as explained in Tables 1 and 2 of the paper, respectively.
    • They process the segmented recordings generated by the overlapping_sliding_window_loop.py.
    • Usage: Just to know how the features are calculated, you can run this code after the segmentation with the sliding window and run these files to calculate the features from the segmented data.

    5. training_prediction.py

    • This file contains the main machine learning analysis of the paper. This file contains all the code for the training of the model, its evaluation, and its use for the inference of the “monitoring part”. It covers the following steps:
    a. Data Preparation (corresponding to Section 5.1.1 of the paper)
    • Prepares the data according to the research question (RQ) described in the paper. Since this data was collected with several RQs in mind, we remove parts of the data that are not related to the RQ of this paper.
    • A function named plot_labels_comparison(df, save_path, x_label_freq=10, figsize=(15, 5)) in line 116 visualizes the data preparation results. As this visualization is not used in the paper, the line is commented out, but if you want to see visually what has been changed compared to the original data, you can comment out this line.
    b. Training/Validation/Test Split
    • Splits the data for machine learning experiments (an explanation can be found in Section 5.1.1. Preparation of data for training and inference of the paper).
    • Make sure that you follow the instructions in the comments to the code exactly.
    • Output: The split data is saved as .csv files in the results folder.
    c. Machine and Deep Learning Experiments

    This part contains three main code blocks:

    iii. One for the XGboost code with correct hyperparameter tuning:
    Please read the instructions for each block carefully to ensure that the code works smoothly. Regardless of which block you use, you will get the classification results (in the form of scores) for unseen data. The way we empirically test the confidence threshold of

    • MLP Network (Commented Out): This code was used for classification with the MLP network, and the results shown in Table 3 are from this code. If you wish to use this model, please comment out the following blocks accordingly.
    • XGBoost without Hyperparameter Tuning: If you want to run the code but do not want to spend time on the full training with hyperparameter tuning (as was done for the paper), just uncomment this part. This will give you a simple, untuned model with which you can achieve at least some results.
    • XGBoost with Hyperparameter Tuning: If you want to train the model the way we trained it for the analysis reported in the paper, use this block (the plots in Figure 7 are from this block). We ran this block with different feature sets and different segmentation files and created a simple bar chart from the saved results, shown in Figure 6.

    Note: Please read the instructions for each block carefully to ensure that the code works smoothly. Regardless of which block you use, you will get the classification results (in the form of scores) for unseen data. The way we empirically calculated the confidence threshold of the model (explained in the paper in Section 5.2. Part II: Decoding surveillance by sequence analysis) is given in this block in lines 361 to 380.

    d. Inference (Monitoring Part)
    • Final inference is performed using the monitoring data. This step produces a .csv file containing inferred labels.
    • Figure 8 in the paper is generated using this part of the code.

    6. sequence_analysis.py

    • Performs analysis on the inferred data, producing Figures 9 and 10 from the paper.
    • This file reads the inferred data from the previous step and performs sequence analysis as described in Sections 5.2.1 and 5.2.2.

    Licenses

    The data is licensed under CC-BY, the code is licensed under MIT.

  4. Dataset for "MicrographCleaner: A python package for cryo-EM micrograph...

    • zenodo.org
    application/gzip
    Updated Jul 20, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ruben Sanchez Garcia; Ruben Sanchez Garcia (2022). Dataset for "MicrographCleaner: A python package for cryo-EM micrograph cleaning using deep learning" [Dataset]. http://doi.org/10.5281/zenodo.6862671
    Explore at:
    application/gzipAvailable download formats
    Dataset updated
    Jul 20, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Ruben Sanchez Garcia; Ruben Sanchez Garcia
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The dataset used for the Publicaton "MicrographCleaner: A python package for cryo-EM micrograph cleaning using deep learning" https://doi.org/10.1016/j.jsb.2020.107498

  5. f

    Data and tools for studying isograms

    • figshare.com
    Updated Jul 31, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Florian Breit (2017). Data and tools for studying isograms [Dataset]. http://doi.org/10.6084/m9.figshare.5245810.v1
    Explore at:
    application/x-sqlite3Available download formats
    Dataset updated
    Jul 31, 2017
    Dataset provided by
    figshare
    Authors
    Florian Breit
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    A collection of datasets and python scripts for extraction and analysis of isograms (and some palindromes and tautonyms) from corpus-based word-lists, specifically Google Ngram and the British National Corpus (BNC).Below follows a brief description, first, of the included datasets and, second, of the included scripts.1. DatasetsThe data from English Google Ngrams and the BNC is available in two formats: as a plain text CSV file and as a SQLite3 database.1.1 CSV formatThe CSV files for each dataset actually come in two parts: one labelled ".csv" and one ".totals". The ".csv" contains the actual extracted data, and the ".totals" file contains some basic summary statistics about the ".csv" dataset with the same name.The CSV files contain one row per data point, with the colums separated by a single tab stop. There are no labels at the top of the files. Each line has the following columns, in this order (the labels below are what I use in the database, which has an identical structure, see section below):

    Label Data type Description

    isogramy int The order of isogramy, e.g. "2" is a second order isogram

    length int The length of the word in letters

    word text The actual word/isogram in ASCII

    source_pos text The Part of Speech tag from the original corpus

    count int Token count (total number of occurences)

    vol_count int Volume count (number of different sources which contain the word)

    count_per_million int Token count per million words

    vol_count_as_percent int Volume count as percentage of the total number of volumes

    is_palindrome bool Whether the word is a palindrome (1) or not (0)

    is_tautonym bool Whether the word is a tautonym (1) or not (0)

    The ".totals" files have a slightly different format, with one row per data point, where the first column is the label and the second column is the associated value. The ".totals" files contain the following data:

    Label

    Data type

    Description

    !total_1grams

    int

    The total number of words in the corpus

    !total_volumes

    int

    The total number of volumes (individual sources) in the corpus

    !total_isograms

    int

    The total number of isograms found in the corpus (before compacting)

    !total_palindromes

    int

    How many of the isograms found are palindromes

    !total_tautonyms

    int

    How many of the isograms found are tautonyms

    The CSV files are mainly useful for further automated data processing. For working with the data set directly (e.g. to do statistics or cross-check entries), I would recommend using the database format described below.1.2 SQLite database formatOn the other hand, the SQLite database combines the data from all four of the plain text files, and adds various useful combinations of the two datasets, namely:• Compacted versions of each dataset, where identical headwords are combined into a single entry.• A combined compacted dataset, combining and compacting the data from both Ngrams and the BNC.• An intersected dataset, which contains only those words which are found in both the Ngrams and the BNC dataset.The intersected dataset is by far the least noisy, but is missing some real isograms, too.The columns/layout of each of the tables in the database is identical to that described for the CSV/.totals files above.To get an idea of the various ways the database can be queried for various bits of data see the R script described below, which computes statistics based on the SQLite database.2. ScriptsThere are three scripts: one for tiding Ngram and BNC word lists and extracting isograms, one to create a neat SQLite database from the output, and one to compute some basic statistics from the data. The first script can be run using Python 3, the second script can be run using SQLite 3 from the command line, and the third script can be run in R/RStudio (R version 3).2.1 Source dataThe scripts were written to work with word lists from Google Ngram and the BNC, which can be obtained from http://storage.googleapis.com/books/ngrams/books/datasetsv2.html and [https://www.kilgarriff.co.uk/bnc-readme.html], (download all.al.gz).For Ngram the script expects the path to the directory containing the various files, for BNC the direct path to the *.gz file.2.2 Data preparationBefore processing proper, the word lists need to be tidied to exclude superfluous material and some of the most obvious noise. This will also bring them into a uniform format.Tidying and reformatting can be done by running one of the following commands:python isograms.py --ngrams --indir=INDIR --outfile=OUTFILEpython isograms.py --bnc --indir=INFILE --outfile=OUTFILEReplace INDIR/INFILE with the input directory or filename and OUTFILE with the filename for the tidied and reformatted output.2.3 Isogram ExtractionAfter preparing the data as above, isograms can be extracted from by running the following command on the reformatted and tidied files:python isograms.py --batch --infile=INFILE --outfile=OUTFILEHere INFILE should refer the the output from the previosu data cleaning process. Please note that the script will actually write two output files, one named OUTFILE with a word list of all the isograms and their associated frequency data, and one named "OUTFILE.totals" with very basic summary statistics.2.4 Creating a SQLite3 databaseThe output data from the above step can be easily collated into a SQLite3 database which allows for easy querying of the data directly for specific properties. The database can be created by following these steps:1. Make sure the files with the Ngrams and BNC data are named “ngrams-isograms.csv” and “bnc-isograms.csv” respectively. (The script assumes you have both of them, if you only want to load one, just create an empty file for the other one).2. Copy the “create-database.sql” script into the same directory as the two data files.3. On the command line, go to the directory where the files and the SQL script are. 4. Type: sqlite3 isograms.db 5. This will create a database called “isograms.db”.See the section 1 for a basic descript of the output data and how to work with the database.2.5 Statistical processingThe repository includes an R script (R version 3) named “statistics.r” that computes a number of statistics about the distribution of isograms by length, frequency, contextual diversity, etc. This can be used as a starting point for running your own stats. It uses RSQLite to access the SQLite database version of the data described above.

  6. Klib library python

    • kaggle.com
    Updated Jan 11, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sripaad Srinivasan (2021). Klib library python [Dataset]. https://www.kaggle.com/sripaadsrinivasan/klib-library-python/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 11, 2021
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Sripaad Srinivasan
    Description

    klib library enables us to quickly visualize missing data, perform data cleaning, visualize data distribution plot, visualize correlation plot and visualize categorical column values. klib is a Python library for importing, cleaning, analyzing and preprocessing data. Explanations on key functionalities can be found on Medium / TowardsDataScience in the examples section or on YouTube (Data Professor).

    Original Github repo

    https://raw.githubusercontent.com/akanz1/klib/main/examples/images/header.png" alt="klib Header">

    Usage

    !pip install klib
    
    import klib
    import pandas as pd
    
    df = pd.DataFrame(data)
    
    # klib.describe functions for visualizing datasets
    - klib.cat_plot(df) # returns a visualization of the number and frequency of categorical features
    - klib.corr_mat(df) # returns a color-encoded correlation matrix
    - klib.corr_plot(df) # returns a color-encoded heatmap, ideal for correlations
    - klib.dist_plot(df) # returns a distribution plot for every numeric feature
    - klib.missingval_plot(df) # returns a figure containing information about missing values
    

    Examples

    Take a look at this starter notebook.

    Further examples, as well as applications of the functions can be found here.

    Contributing

    Pull requests and ideas, especially for further functions are welcome. For major changes or feedback, please open an issue first to discuss what you would like to change. Take a look at this Github repo.

    License

    MIT

  7. m

    Reddit r/AskScience Flair Dataset

    • data.mendeley.com
    Updated May 23, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sumit Mishra (2022). Reddit r/AskScience Flair Dataset [Dataset]. http://doi.org/10.17632/k9r2d9z999.3
    Explore at:
    Dataset updated
    May 23, 2022
    Authors
    Sumit Mishra
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Reddit is a social news, content rating and discussion website. It's one of the most popular sites on the internet. Reddit has 52 million daily active users and approximately 430 million users who use it once a month. Reddit has different subreddits and here We'll use the r/AskScience Subreddit.

    The dataset is extracted from the subreddit /r/AskScience from Reddit. The data was collected between 01-01-2016 and 20-05-2022. It contains 612,668 Datapoints and 25 Columns. The database contains a number of information about the questions asked on the subreddit, the description of the submission, the flair of the question, NSFW or SFW status, the year of the submission, and more. The data is extracted using python and Pushshift's API. A little bit of cleaning is done using NumPy and pandas as well. (see the descriptions of individual columns below).

    The dataset contains the following columns and descriptions: author - Redditor Name author_fullname - Redditor Full name contest_mode - Contest mode [implement obscured scores and randomized sorting]. created_utc - Time the submission was created, represented in Unix Time. domain - Domain of submission. edited - If the post is edited or not. full_link - Link of the post on the subreddit. id - ID of the submission. is_self - Whether or not the submission is a self post (text-only). link_flair_css_class - CSS Class used to identify the flair. link_flair_text - Flair on the post or The link flair’s text content. locked - Whether or not the submission has been locked. num_comments - The number of comments on the submission. over_18 - Whether or not the submission has been marked as NSFW. permalink - A permalink for the submission. retrieved_on - time ingested. score - The number of upvotes for the submission. description - Description of the Submission. spoiler - Whether or not the submission has been marked as a spoiler. stickied - Whether or not the submission is stickied. thumbnail - Thumbnail of Submission. question - Question Asked in the Submission. url - The URL the submission links to, or the permalink if a self post. year - Year of the Submission. banned - Banned by the moderator or not.

    This dataset can be used for Flair Prediction, NSFW Classification, and different Text Mining/NLP tasks. Exploratory Data Analysis can also be done to get the insights and see the trend and patterns over the years.

  8. IMDb Top 4070: Explore the Cinema Data

    • kaggle.com
    Updated Aug 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    K.T.S. Prabhu (2023). IMDb Top 4070: Explore the Cinema Data [Dataset]. https://www.kaggle.com/datasets/ktsprabhu/imdb-top-4070-explore-the-cinema-data
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 15, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    K.T.S. Prabhu
    Description

    Description: Dive into the world of exceptional cinema with our meticulously curated dataset, "IMDb's Gems Unveiled." This dataset is a result of an extensive data collection effort based on two critical criteria: IMDb ratings exceeding 7 and a substantial number of votes, surpassing 10,000. The outcome? A treasure trove of 4070 movies meticulously selected from IMDb's vast repository.

    What sets this dataset apart is its richness and diversity. With more than 20 data points meticulously gathered for each movie, this collection offers a comprehensive insight into each cinematic masterpiece. Our data collection process leveraged the power of Selenium and Pandas modules, ensuring accuracy and reliability.

    Cleaning this vast dataset was a meticulous task, combining both Excel and Python for optimum precision. Analysis is powered by Pandas, Matplotlib, and NLTK, enabling to uncover hidden patterns, trends, and themes within the realm of cinema.

    Note: The data is collected as of April 2023. Future versions of this analysis include Movie recommendation system Please do connect for any queries, All Love, No Hate.

  9. Saccade data cleaning

    • figshare.com
    txt
    Updated Mar 26, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Annie Campbell (2022). Saccade data cleaning [Dataset]. http://doi.org/10.6084/m9.figshare.4810471.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Mar 26, 2022
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Annie Campbell
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    python scripts and functions needed to view and clean saccade data

  10. o

    CompBMus_FAIR

    • explore.openaire.eu
    • data.niaid.nih.gov
    Updated Mar 26, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Katerina Drakoulaki; Polykarpos Polykarpidis (2022). CompBMus_FAIR [Dataset]. http://doi.org/10.5281/zenodo.6386552
    Explore at:
    Dataset updated
    Mar 26, 2022
    Authors
    Katerina Drakoulaki; Polykarpos Polykarpidis
    Description

    Making Byzantine Computational Musicology FAIR - a working example This is the repository for the Making Byzantine Computational Musicology FAIR - a working example project. We have submitted a short paper for this. In this repository, there is a folder with the dataset, the data package schemas in YAML file, as well as the python code (main.py) for describing and validating the data. Upon acceptance of the paper, the accepted draft will also be uploaded.

  11. f

    S1 Data -

    • plos.figshare.com
    zip
    Updated Oct 11, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yancong Zhou; Wenyue Chen; Xiaochen Sun; Dandan Yang (2023). S1 Data - [Dataset]. http://doi.org/10.1371/journal.pone.0292466.s001
    Explore at:
    zipAvailable download formats
    Dataset updated
    Oct 11, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Yancong Zhou; Wenyue Chen; Xiaochen Sun; Dandan Yang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analyzing customers’ characteristics and giving the early warning of customer churn based on machine learning algorithms, can help enterprises provide targeted marketing strategies and personalized services, and save a lot of operating costs. Data cleaning, oversampling, data standardization and other preprocessing operations are done on 900,000 telecom customer personal characteristics and historical behavior data set based on Python language. Appropriate model parameters were selected to build BPNN (Back Propagation Neural Network). Random Forest (RF) and Adaboost, the two classic ensemble learning models were introduced, and the Adaboost dual-ensemble learning model with RF as the base learner was put forward. The four models and the other four classical machine learning models-decision tree, naive Bayes, K-Nearest Neighbor (KNN), Support Vector Machine (SVM) were utilized respectively to analyze the customer churn data. The results show that the four models have better performance in terms of recall rate, precision rate, F1 score and other indicators, and the RF-Adaboost dual-ensemble model has the best performance. Among them, the recall rates of BPNN, RF, Adaboost and RF-Adaboost dual-ensemble model on positive samples are respectively 79%, 90%, 89%,93%, the precision rates are 97%, 99%, 98%, 99%, and the F1 scores are 87%, 95%, 94%, 96%. The RF-Adaboost dual-ensemble model has the best performance, and the three indicators are 10%, 1%, and 6% higher than the reference. The prediction results of customer churn provide strong data support for telecom companies to adopt appropriate retention strategies for pre-churn customers and reduce customer churn.

  12. f

    Enhancing UNCDF Operations: Power BI Dashboard Development and Data Mapping

    • figshare.com
    Updated Jan 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Maryam Binti Haji Abdul Halim (2025). Enhancing UNCDF Operations: Power BI Dashboard Development and Data Mapping [Dataset]. http://doi.org/10.6084/m9.figshare.28147451.v1
    Explore at:
    Dataset updated
    Jan 6, 2025
    Dataset provided by
    figshare
    Authors
    Maryam Binti Haji Abdul Halim
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This project focuses on data mapping, integration, and analysis to support the development and enhancement of six UNCDF operational applications: OrgTraveler, Comms Central, Internal Support Hub, Partnership 360, SmartHR, and TimeTrack. These apps streamline workflows for travel claims, internal support, partnership management, and time tracking within UNCDF.Key Features and Tools:Data Mapping for Salesforce CRM Migration: Structured and mapped data flows to ensure compatibility and seamless migration to Salesforce CRM.Python for Data Cleaning and Transformation: Utilized pandas, numpy, and APIs to clean, preprocess, and transform raw datasets into standardized formats.Power BI Dashboards: Designed interactive dashboards to visualize workflows and monitor performance metrics for decision-making.Collaboration Across Platforms: Integrated Google Collab for code collaboration and Microsoft Excel for data validation and analysis.

  13. H

    Data from: SBIR - STTR Data and Code for Collecting Wrangling and Using It

    • dataverse.harvard.edu
    Updated Nov 5, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Grant Allard (2018). SBIR - STTR Data and Code for Collecting Wrangling and Using It [Dataset]. http://doi.org/10.7910/DVN/CKTAZX
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 5, 2018
    Dataset provided by
    Harvard Dataverse
    Authors
    Grant Allard
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Data set consisting of data joined for analyzing the SBIR/STTR program. Data consists of individual awards and agency-level observations. The R and python code required for pulling, cleaning, and creating useful data sets has been included. Allard_Get and Clean Data.R This file provides the code for getting, cleaning, and joining the numerous data sets that this project combined. This code is written in the R language and can be used in any R environment running R 3.5.1 or higher. If the other files in this Dataverse are downloaded to the working directory, then this Rcode will be able to replicate the original study without needing the user to update any file paths. Allard SBIR STTR WebScraper.py This is the code I deployed to multiple Amazon EC2 instances to scrape data o each individual award in my data set, including the contact info and DUNS data. Allard_Analysis_APPAM SBIR project Forthcoming Allard_Spatial Analysis Forthcoming Awards_SBIR_df.Rdata This unique data set consists of 89,330 observations spanning the years 1983 - 2018 and accounting for all eleven SBIR/STTR agencies. This data set consists of data collected from the Small Business Administration's Awards API and also unique data collected through web scraping by the author. Budget_SBIR_df.Rdata 246 observations for 20 agencies across 25 years of their budget-performance in the SBIR/STTR program. Data was collected from the Small Business Administration using the Annual Reports Dashboard, the Awards API, and an author-designed web crawler of the websites of awards. Solicit_SBIR-df.Rdata This data consists of observations of solicitations published by agencies for the SBIR program. This data was collected from the SBA Solicitations API. Primary Sources Small Business Administration. “Annual Reports Dashboard,” 2018. https://www.sbir.gov/awards/annual-reports. Small Business Administration. “SBIR Awards Data,” 2018. https://www.sbir.gov/api. Small Business Administration. “SBIR Solicit Data,” 2018. https://www.sbir.gov/api.

  14. US Means of Transportation to Work Census Data

    • kaggle.com
    Updated Feb 23, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sagar G (2022). US Means of Transportation to Work Census Data [Dataset]. https://www.kaggle.com/goswamisagard/american-census-survey-b08301-cleaned-csv-data/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 23, 2022
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Sagar G
    Area covered
    United States
    Description

    US Census Bureau conducts American Census Survey 1 and 5 Yr surveys that record various demographics and provide public access through APIs. I have attempted to call the APIs through the python environment using the requests library, Clean, and organize the data in a usable format.

    Data Ingestion and Cleaning:

    ACS Subject data [2011-2019] was accessed using Python by following the below API Link: https://api.census.gov/data/2011/acs/acs1?get=group(B08301)&for=county:* The data was obtained in JSON format by calling the above API, then imported as Python Pandas Dataframe. The 84 variables returned have 21 Estimate values for various metrics, 21 pairs of respective Margin of Error, and respective Annotation values for Estimate and Margin of Error Values. This data was then undergone through various cleaning processes using Python, where excess variables were removed, and the column names were renamed. Web-Scraping was carried out to extract the variables' names and replace the codes in the column names in raw data.

    The above step was carried out for multiple ACS/ACS-1 datasets spanning 2011-2019 and then merged into a single Python Pandas Dataframe. The columns were rearranged, and the "NAME" column was split into two columns, namely 'StateName' and 'CountyName.' The counties for which no data was available were also removed from the Dataframe. Once the Dataframe was ready, it was separated into two new dataframes for separating State and County Data and exported into '.csv' format

    Data Source:

    More information about the source of Data can be found at the URL below: US Census Bureau. (n.d.). About: Census Bureau API. Retrieved from Census.gov https://www.census.gov/data/developers/about.html

    Final Word:

    I hope this data helps you to create something beautiful, and awesome. I will be posting a lot more databases shortly, if I get more time from assignments, submissions, and Semester Projects 🧙🏼‍♂️. Good Luck.

  15. h

    govreport-summarization-8192

    • huggingface.co
    Updated Jun 15, 1997
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Peter Szemraj (1997). govreport-summarization-8192 [Dataset]. https://huggingface.co/datasets/pszemraj/govreport-summarization-8192
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 15, 1997
    Authors
    Peter Szemraj
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    GovReport Summarization - 8192 tokens

    ccdv/govreport-summarization with the changes of: data cleaned with the clean-text python package total tokens for each column computed and added in new columns according to the long-t5 tokenizer (done after cleaning)

      train info
    

    RangeIndex: 8200 entries, 0 to 8199 Data columns (total 4 columns): # Column Non-Null Count Dtype

    0 report 8200 non-null… See the full description on the dataset page: https://huggingface.co/datasets/pszemraj/govreport-summarization-8192.

  16. Data from: The International Transport Energy Modeling (iTEM) Open Data &...

    • zenodo.org
    • explore.openaire.eu
    pdf
    Updated Sep 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Humberto Linero; Sonia Yeh; Sonia Yeh; Paul Kishimoto; Paul Kishimoto; Pierpaolo Cazzola; Lewis Fulton; David McCollum; Joshua Miller; Page Kyle; Manuel Pérez Bravo; Manuel Pérez Bravo; Humberto Linero; Pierpaolo Cazzola; Lewis Fulton; David McCollum; Joshua Miller; Page Kyle (2024). The International Transport Energy Modeling (iTEM) Open Data & Harmonized Transport Database [Dataset]. http://doi.org/10.5281/zenodo.13749361
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Sep 11, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Humberto Linero; Sonia Yeh; Sonia Yeh; Paul Kishimoto; Paul Kishimoto; Pierpaolo Cazzola; Lewis Fulton; David McCollum; Joshua Miller; Page Kyle; Manuel Pérez Bravo; Manuel Pérez Bravo; Humberto Linero; Pierpaolo Cazzola; Lewis Fulton; David McCollum; Joshua Miller; Page Kyle
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset and documentation contains detailed information of the iTEM Open Database, a harmonized transport data set of historical values, 1970 - present. It aims to create transparency through two key features:

    • Open-Data: Assembling a comprehensive collection of publicly-available transportation data
    • Open-Code: All code and documentation will be publicly accessible and open for modification and extension. https://github.com/transportenergy

    The iTEM Open Database is comprised of individual datasets collected from public sources. Each dataset is downloaded, cleaned, and harmonised to the common region and technology definitions defined by the iTEM consortium https://transportenergy.org. For each dataset, we describe the name of the dataset, the web link to the original source, the web link to the cleaning script (in python), variables, and explain the data cleaning steps (which explains the data cleaning script in plain English).

    Shall you find any problems with the dataset, please report the issues here https://github.com/transportenergy/database/issues.

  17. E

    A Replication Dataset for Fundamental Frequency Estimation

    • live.european-language-grid.eu
    • data.niaid.nih.gov
    • +1more
    json
    Updated Oct 19, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). A Replication Dataset for Fundamental Frequency Estimation [Dataset]. https://live.european-language-grid.eu/catalogue/corpus/7808
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Oct 19, 2023
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Part of the dissertation Pitch of Voiced Speech in the Short-Time Fourier Transform: Algorithms, Ground Truths, and Evaluation Methods.© 2020, Bastian Bechtold. All rights reserved. Estimating the fundamental frequency of speech remains an active area of research, with varied applications in speech recognition, speaker identification, and speech compression. A vast number of algorithms for estimatimating this quantity have been proposed over the years, and a number of speech and noise corpora have been developed for evaluating their performance. The present dataset contains estimated fundamental frequency tracks of 25 algorithms, six speech corpora, two noise corpora, at nine signal-to-noise ratios between -20 and 20 dB SNR, as well as an additional evaluation of synthetic harmonic tone complexes in white noise.The dataset also contains pre-calculated performance measures both novel and traditional, in reference to each speech corpus’ ground truth, the algorithms’ own clean-speech estimate, and our own consensus truth. It can thus serve as the basis for a comparison study, or to replicate existing studies from a larger dataset, or as a reference for developing new fundamental frequency estimation algorithms. All source code and data is available to download, and entirely reproducible, albeit requiring about one year of processor-time.Included Code and Data

    ground truth data.zip is a JBOF dataset of fundamental frequency estimates and ground truths of all speech files in the following corpora:

    CMU-ARCTIC (consensus truth) [1]FDA (corpus truth and consensus truth) [2]KEELE (corpus truth and consensus truth) [3]MOCHA-TIMIT (consensus truth) [4]PTDB-TUG (corpus truth and consensus truth) [5]TIMIT (consensus truth) [6]

    noisy speech data.zip is a JBOF datasets of fundamental frequency estimates of speech files mixed with noise from the following corpora:NOISEX [7]QUT-NOISE [8]

    synthetic speech data.zip is a JBOF dataset of fundamental frequency estimates of synthetic harmonic tone complexes in white noise.noisy_speech.pkl and synthetic_speech.pkl are pickled Pandas dataframes of performance metrics derived from the above data for the following list of fundamental frequency estimation algorithms:AUTOC [9]AMDF [10]BANA [11]CEP [12]CREPE [13]DIO [14]DNN [15]KALDI [16]MAPSMBSC [17]NLS [18]PEFAC [19]PRAAT [20]RAPT [21]SACC [22]SAFE [23]SHR [24]SIFT [25]SRH [26]STRAIGHT [27]SWIPE [28]YAAPT [29]YIN [30]

    noisy speech evaluation.py and synthetic speech evaluation.py are Python programs to calculate the above Pandas dataframes from the above JBOF datasets. They calculate the following performance measures:Gross Pitch Error (GPE), the percentage of pitches where the estimated pitch deviates from the true pitch by more than 20%.Fine Pitch Error (FPE), the mean error of grossly correct estimates.High/Low Octave Pitch Error (OPE), the percentage pitches that are GPEs and happens to be at an integer multiple of the true pitch.Gross Remaining Error (GRE), the percentage of pitches that are GPEs but not OPEs.Fine Remaining Bias (FRB), the median error of GREs.True Positive Rate (TPR), the percentage of true positive voicing estimates.False Positive Rate (FPR), the percentage of false positive voicing estimates.False Negative Rate (FNR), the percentage of false negative voicing estimates.F₁, the harmonic mean of precision and recall of the voicing decision.

    Pipfile is a pipenv-compatible pipfile for installing all prerequisites necessary for running the above Python programs.

    The Python programs take about an hour to compute on a fast 2019 computer, and require at least 32 Gb of memory.References:

    John Kominek and Alan W Black. CMU ARCTIC database for speech synthesis, 2003.Paul C Bagshaw, Steven Hiller, and Mervyn A Jack. Enhanced Pitch Tracking and the Processing of F0 Contours for Computer Aided Intonation Teaching. In EUROSPEECH, 1993.F Plante, Georg F Meyer, and William A Ainsworth. A Pitch Extraction Reference Database. In Fourth European Conference on Speech Communication and Technology, pages 837–840, Madrid, Spain, 1995.Alan Wrench. MOCHA MultiCHannel Articulatory database: English, November 1999.Gregor Pirker, Michael Wohlmayr, Stefan Petrik, and Franz Pernkopf. A Pitch Tracking Corpus with Evaluation on Multipitch Tracking Scenario. page 4, 2011.John S. Garofolo, Lori F. Lamel, William M. Fisher, Jonathan G. Fiscus, David S. Pallett, Nancy L. Dahlgren, and Victor Zue. TIMIT Acoustic-Phonetic Continuous Speech Corpus, 1993.Andrew Varga and Herman J.M. Steeneken. Assessment for automatic speech recognition: II. NOISEX-92: A database and an experiment to study the effect of additive noise on speech recog- nition systems. Speech Communication, 12(3):247–251, July 1993.David B. Dean, Sridha Sridharan, Robert J. Vogt, and Michael W. Mason. The QUT-NOISE-TIMIT corpus for the evaluation of voice activity detection algorithms. Proceedings of Interspeech 2010, 2010.Man Mohan Sondhi. New methods of pitch extraction. Audio and Electroacoustics, IEEE Transactions on, 16(2):262—266, 1968.Myron J. Ross, Harry L. Shaffer, Asaf Cohen, Richard Freudberg, and Harold J. Manley. Average magnitude difference function pitch extractor. Acoustics, Speech and Signal Processing, IEEE Transactions on, 22(5):353—362, 1974.Na Yang, He Ba, Weiyang Cai, Ilker Demirkol, and Wendi Heinzelman. BaNa: A Noise Resilient Fundamental Frequency Detection Algorithm for Speech and Music. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 22(12):1833–1848, December 2014.Michael Noll. Cepstrum Pitch Determination. The Journal of the Acoustical Society of America, 41(2):293–309, 1967.Jong Wook Kim, Justin Salamon, Peter Li, and Juan Pablo Bello. CREPE: A Convolutional Representation for Pitch Estimation. arXiv:1802.06182 [cs, eess, stat], February 2018. arXiv: 1802.06182.Masanori Morise, Fumiya Yokomori, and Kenji Ozawa. WORLD: A Vocoder-Based High-Quality Speech Synthesis System for Real-Time Applications. IEICE Transactions on Information and Systems, E99.D(7):1877–1884, 2016.Kun Han and DeLiang Wang. Neural Network Based Pitch Tracking in Very Noisy Speech. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 22(12):2158–2168, Decem- ber 2014.Pegah Ghahremani, Bagher BabaAli, Daniel Povey, Korbinian Riedhammer, Jan Trmal, and Sanjeev Khudanpur. A pitch extraction algorithm tuned for automatic speech recognition. In Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on, pages 2494–2498. IEEE, 2014.Lee Ngee Tan and Abeer Alwan. Multi-band summary correlogram-based pitch detection for noisy speech. Speech Communication, 55(7-8):841–856, September 2013.Jesper Kjær Nielsen, Tobias Lindstrøm Jensen, Jesper Rindom Jensen, Mads Græsbøll Christensen, and Søren Holdt Jensen. Fast fundamental frequency estimation: Making a statistically efficient estimator computationally efficient. Signal Processing, 135:188–197, June 2017.Sira Gonzalez and Mike Brookes. PEFAC - A Pitch Estimation Algorithm Robust to High Levels of Noise. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 22(2):518—530, February 2014.Paul Boersma. Accurate short-term analysis of the fundamental frequency and the harmonics-to-noise ratio of a sampled sound. In Proceedings of the institute of phonetic sciences, volume 17, page 97—110. Amsterdam, 1993.David Talkin. A robust algorithm for pitch tracking (RAPT). Speech coding and synthesis, 495:518, 1995.Byung Suk Lee and Daniel PW Ellis. Noise robust pitch tracking by subband autocorrelation classification. In Interspeech, pages 707–710, 2012.Wei Chu and Abeer Alwan. SAFE: a statistical algorithm for F0 estimation for both clean and noisy speech. In INTERSPEECH, pages 2590–2593, 2010.Xuejing Sun. Pitch determination and voice quality analysis using subharmonic-to-harmonic ratio. In Acoustics, Speech, and Signal Processing (ICASSP), 2002 IEEE International Conference on, volume 1, page I—333. IEEE, 2002.Markel. The SIFT algorithm for fundamental frequency estimation. IEEE Transactions on Audio and Electroacoustics, 20(5):367—377, December 1972.Thomas Drugman and Abeer Alwan. Joint Robust Voicing Detection and Pitch Estimation Based on Residual Harmonics. In Interspeech, page 1973—1976, 2011.Hideki Kawahara, Masanori Morise, Toru Takahashi, Ryuichi Nisimura, Toshio Irino, and Hideki Banno. TANDEM-STRAIGHT: A temporally stable power spectral representation for periodic signals and applications to interference-free spectrum, F0, and aperiodicity estimation. In Acous- tics, Speech and Signal Processing, 2008. ICASSP 2008. IEEE International Conference on, pages 3933–3936. IEEE, 2008.Arturo Camacho. SWIPE: A sawtooth waveform inspired pitch estimator for speech and music. PhD thesis, University of Florida, 2007.Kavita Kasi and Stephen A. Zahorian. Yet Another Algorithm for Pitch Tracking. In IEEE International Conference on Acoustics Speech and Signal Processing, pages I–361–I–364, Orlando, FL, USA, May 2002. IEEE.Alain de Cheveigné and Hideki Kawahara. YIN, a fundamental frequency estimator for speech and music. The Journal of the Acoustical Society of America, 111(4):1917, 2002.

  18. Z

    Spatialized sorghum & millet yields in West Africa, derived from LSMS-ISA...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jul 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Baboz, Eliott (2024). Spatialized sorghum & millet yields in West Africa, derived from LSMS-ISA and RHoMIS datasets [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_10556265
    Explore at:
    Dataset updated
    Jul 7, 2024
    Dataset provided by
    Baboz, Eliott
    Lavarenne, Jérémy
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    West Africa, Africa
    Description

    Description: The dataset represents a significant effort to compile and clean a comprehensive set of seasonal yield data for sub-saharan West Africa (Benin, Burkina Faso, Mali, Niger). This dataset, overing more than 22,000 survey answers scattered across more than 2500 unique locations of smallholder producers’ households groups, is instrumental for researchers and policymakers working in agricultural planning and food security in the region. It integrates data from two sources, the LSMS-ISA program (link to the World Bank's site), and the RHoMIS dataset (link to RHoMIS files, RHoMIS' DOI).

    The construction of the dataset involved meticulous processes, including converting production into standardized unit, yield calculation for each dataset, standardization of column names, assembly of data, extensive data cleaning, and making it a hopefully robust and reliable resource for understanding spatial yield distribution in the region.

    Data Sources: The dataset comprises seven spatialized yield data sources, six of which are from the LSMS-ISA program (Mali 2014, Mali 2017, Mali 2018, Benin 2018, Burkina Faso 2018, Niger 2018) and one from the RHoMIS study (only Mali 2017 and Burkina Faso 2018 data selected).

    Dataset Preparation Methods: The preparation involved integration of machine-readable files, data cleaning and finalization using Python/Jupyter Notebook. This process should ensure the accuracy and consistency of the dataset. Yield have been calculated with declared production quantities and GPS-measured plot areas. Each yield value corresponds to a single plot.

    Discussion: This dataset, with its extensive data compilation, presents an invaluable resource for agricultural productivity-related studies in West Africa. However, users must navigate its complexities, including potential biases due to survey and due to UML units, and data inconsistencies. The dataset's comprehensive nature requires careful handling and validation in research applications.

    Authors Contributions:

    Data treatment: Eliott Baboz, Jérémy Lavarenne.

    Documentation: Jérémy Lavarenne.

    Funding: This project was funded by the INTEN-SAHEL TOSCA project (Centre national d’études spatiales). "123456789" was chosen randomly and is not the actual award number because there is none, but it was mandatory to put one here on Zenodo.

    Changelog:

    v1.0.0 : initial submission

  19. Z

    Enhanced Latin Lemma Dataset

    • data.niaid.nih.gov
    Updated Sep 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Simeonov, Kristiyan (2024). Enhanced Latin Lemma Dataset [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_13838471
    Explore at:
    Dataset updated
    Sep 25, 2024
    Dataset authored and provided by
    Simeonov, Kristiyan
    License

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Description

    Overview

    The Latin Lexicon Dataset contains information about Latin words collected through webscraping from Wiktionary. The dataset includes various linguistic features such as part of speech, lemma, aspect, tense, verb form, voice, mood, number, person, case, and gender. Additionally, it provides source URLs and links to the Wiktionary pages for further reference. The dataset aims to contribute to linguistic research and analysis of Latin language elements.

    Versions of the Dataset

    This dataset is available in three versions, each offering varying levels of refinement:

    wiki_latin_data_v1.csv(v1): The initial raw version, containing all webscraped data without extensive cleaning or filtering.

    wiki_latin_data_v2.csv(v2): A more processed version, where some inconsistencies and duplicates were removed, and linguistic features were better aligned.

    wiki_latin_data_v3.csv (v3): The most refined version, offering a clean, well-organized dataset with comprehensive linguistic features and translation equivalents with minimal errors. This version is recommended for most use cases.

    Data Source:

    Webscraped from Wiktionary

    Produced by:

    Python-based web scraping algorithms

  20. s

    Data from: Nairobi Motorcycle Transit Comparison Dataset: Fuel vs. Electric...

    • scholardata.sun.ac.za
    • data.mendeley.com
    Updated Mar 8, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Martin Kitetu; Alois Mbutura; Halloran Stratford; MJ Booysen (2025). Nairobi Motorcycle Transit Comparison Dataset: Fuel vs. Electric Vehicle Performance Tracking (2023) [Dataset]. http://doi.org/10.25413/sun.28554200.v1
    Explore at:
    Dataset updated
    Mar 8, 2025
    Dataset provided by
    SUNScholarData
    Authors
    Martin Kitetu; Alois Mbutura; Halloran Stratford; MJ Booysen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Nairobi
    Description

    This dataset contains GPS tracking data and performance metrics for motorcycle taxis (boda bodas) in Nairobi, Kenya, comparing traditional internal combustion engine (ICE) motorcycles with electric motorcycles. The study was conducted in two phases:Baseline Phase: 118 ICE motorcycles tracked over 14 days (2023-11-13 to 2023-11-26)Transition Phase: 108 ICE motorcycles (control) and 9 electric motorcycles (treatment) tracked over 12 days (2023-12-10 to 2023-12-21)The dataset is organised into two main categories:Trip Data: Individual trip-level records containing timing, distance, duration, location, and speed metricsDaily Data: Daily aggregated summaries containing usage metrics, economic data, and energy consumptionThis dataset enables comparative analysis of electric vs. ICE motorcycle performance, economic modelling of transportation costs, environmental impact assessment, urban mobility pattern analysis, and energy efficiency studies in emerging markets.Institutions:EED AdvisoryClean Air TaskforceStellenbosch UniversitySteps to reproduce:Raw Data CollectionGPS tracking devices installed on motorcycles, collecting location data at 10-second intervalsRider-reported information on revenue, maintenance costs, and fuel/electricity usageProcessing StepsGPS data cleaning: Filtered invalid coordinates, removed duplicates, interpolated missing pointsTrip identification: Defined by >1 minute stationary periods or ignition cyclesTrip metrics calculation: Distance, duration, idle time, average/max speedsDaily data aggregation: Summed by user_id and date with self-reported economic dataValidation: Cross-checked with rider logs and known routesAnonymisation: Removed start and end coordinates for first and last trips of each day to protect rider privacy and home locationsTechnical InformationGeographic coverage: Nairobi, KenyaTime period: November-December 2023Time zone: UTC+3 (East Africa Time)Currency: Kenyan Shillings (KES)Data format: CSV filesSoftware used: Python 3.8 (pandas, numpy, geopy)Notes: Some location data points are intentionally missing to protect rider privacy. Self-reported economic and energy consumption data has some missing values where riders did not report.CategoriesMotorcycle, Transportation in Africa, Electric Vehicles

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Juliane Köhler; Juliane Köhler (2025). Data Cleaning, Translation & Split of the Dataset for the Automatic Classification of Documents for the Classification System for the Berliner Handreichungen zur Bibliotheks- und Informationswissenschaft [Dataset]. http://doi.org/10.5281/zenodo.6957842
Organization logo

Data Cleaning, Translation & Split of the Dataset for the Automatic Classification of Documents for the Classification System for the Berliner Handreichungen zur Bibliotheks- und Informationswissenschaft

Explore at:
text/x-python, csv, binAvailable download formats
Dataset updated
Apr 24, 2025
Dataset provided by
Zenodohttp://zenodo.org/
Authors
Juliane Köhler; Juliane Köhler
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description
  • Cleaned_Dataset.csv – The combined CSV files of all scraped documents from DABI, e-LiS, o-bib and Springer.
  • Data_Cleaning.ipynb – The Jupyter Notebook with python code for the analysis and cleaning of the original dataset.
  • ger_train.csv – The German training set as CSV file.
  • ger_validation.csv – The German validation set as CSV file.
  • en_test.csv – The English test set as CSV file.
  • en_train.csv – The English training set as CSV file.
  • en_validation.csv – The English validation set as CSV file.
  • splitting.py – The python code for splitting a dataset into train, test and validation set.
  • DataSetTrans_de.csv – The final German dataset as a CSV file.
  • DataSetTrans_en.csv – The final English dataset as a CSV file.
  • translation.py – The python code for translating the cleaned dataset.
Search
Clear search
Close search
Google apps
Main menu